x509_public_key.c 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Instantiate a public key crypto key from an X.509 Certificate
 *
 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */

#define pr_fmt(fmt) "X.509: "fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/mpi.h>
#include <linux/asn1_decoder.h>
#include <keys/asymmetric-subtype.h>
#include <keys/asymmetric-parser.h>
21
#include <keys/system_keyring.h>
22 23 24 25 26
#include <crypto/hash.h>
#include "asymmetric_keys.h"
#include "public_key.h"
#include "x509_parser.h"

27
static bool use_builtin_keys;
28
static struct asymmetric_key_id *ca_keyid;
29 30 31 32 33 34 35

#ifndef MODULE
static int __init ca_keys_setup(char *str)
{
	if (!str)		/* default system keyring */
		return 1;

36 37 38 39 40 41 42 43
	if (strncmp(str, "id:", 3) == 0) {
		struct asymmetric_key_id *p;
		p = asymmetric_key_hex_to_key_id(str);
		if (p == ERR_PTR(-EINVAL))
			pr_err("Unparsable hex string in ca_keys\n");
		else if (!IS_ERR(p))
			ca_keyid = p;	/* owner key 'id:xxxxxx' */
	} else if (strcmp(str, "builtin") == 0) {
44
		use_builtin_keys = true;
45
	}
46 47 48 49 50 51

	return 1;
}
__setup("ca_keys=", ca_keys_setup);
#endif

52 53 54
/**
 * x509_request_asymmetric_key - Request a key by X.509 certificate params.
 * @keyring: The keys to search.
55
 * @kid: The key ID.
56 57 58 59
 *
 * Find a key in the given keyring by subject name and key ID.  These might,
 * for instance, be the issuer name and the authority key ID of an X.509
 * certificate that needs to be verified.
60
 */
61
struct key *x509_request_asymmetric_key(struct key *keyring,
62
					const struct asymmetric_key_id *kid)
63 64
{
	key_ref_t key;
65
	char *id, *p;
66

67 68
	/* Construct an identifier "id:<keyid>". */
	p = id = kmalloc(2 + 1 + kid->len * 2 + 1, GFP_KERNEL);
69 70 71
	if (!id)
		return ERR_PTR(-ENOMEM);

72 73 74 75 76
	*p++ = 'i';
	*p++ = 'd';
	*p++ = ':';
	p = bin2hex(p, kid->data, kid->len);
	*p = 0;
77 78 79 80 81 82

	pr_debug("Look up: \"%s\"\n", id);

	key = keyring_search(make_key_ref(keyring, 1),
			     &key_type_asymmetric, id);
	if (IS_ERR(key))
83
		pr_debug("Request for key '%s' err %ld\n", id, PTR_ERR(key));
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	kfree(id);

	if (IS_ERR(key)) {
		switch (PTR_ERR(key)) {
			/* Hide some search errors */
		case -EACCES:
		case -ENOTDIR:
		case -EAGAIN:
			return ERR_PTR(-ENOKEY);
		default:
			return ERR_CAST(key);
		}
	}

	pr_devel("<==%s() = 0 [%x]\n", __func__,
		 key_serial(key_ref_to_ptr(key)));
	return key_ref_to_ptr(key);
}
102
EXPORT_SYMBOL_GPL(x509_request_asymmetric_key);
103

104
/*
105 106
 * Set up the signature parameters in an X.509 certificate.  This involves
 * digesting the signed data and extracting the signature.
107
 */
108
int x509_get_sig_params(struct x509_certificate *cert)
109 110 111 112
{
	struct crypto_shash *tfm;
	struct shash_desc *desc;
	size_t digest_size, desc_size;
113
	void *digest;
114 115 116
	int ret;

	pr_devel("==>%s()\n", __func__);
117

118 119
	if (cert->unsupported_crypto)
		return -ENOPKG;
120 121 122 123 124 125 126 127
	if (cert->sig.rsa.s)
		return 0;

	cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
	if (!cert->sig.rsa.s)
		return -ENOMEM;
	cert->sig.nr_mpi = 1;

128 129 130
	/* Allocate the hashing algorithm we're going to need and find out how
	 * big the hash operational data will be.
	 */
131
	tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
132 133 134 135 136 137 138
	if (IS_ERR(tfm)) {
		if (PTR_ERR(tfm) == -ENOENT) {
			cert->unsupported_crypto = true;
			return -ENOPKG;
		}
		return PTR_ERR(tfm);
	}
139 140 141 142

	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
	digest_size = crypto_shash_digestsize(tfm);

143 144
	/* We allocate the hash operational data storage on the end of the
	 * digest storage space.
145 146
	 */
	ret = -ENOMEM;
147 148 149
	digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
	if (!digest)
		goto error;
150

151 152
	cert->sig.digest = digest;
	cert->sig.digest_size = digest_size;
153

154 155 156
	desc = digest + digest_size;
	desc->tfm = tfm;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
157 158 159 160

	ret = crypto_shash_init(desc);
	if (ret < 0)
		goto error;
161 162 163 164 165 166 167 168
	might_sleep();
	ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
error:
	crypto_free_shash(tfm);
	pr_devel("<==%s() = %d\n", __func__, ret);
	return ret;
}
EXPORT_SYMBOL_GPL(x509_get_sig_params);
169

170 171 172 173 174 175 176
/*
 * Check the signature on a certificate using the provided public key
 */
int x509_check_signature(const struct public_key *pub,
			 struct x509_certificate *cert)
{
	int ret;
177

178
	pr_devel("==>%s()\n", __func__);
179

180 181 182
	ret = x509_get_sig_params(cert);
	if (ret < 0)
		return ret;
183

184
	ret = public_key_verify_signature(pub, &cert->sig);
185 186
	if (ret == -ENOPKG)
		cert->unsupported_crypto = true;
187 188 189
	pr_debug("Cert Verification: %d\n", ret);
	return ret;
}
190
EXPORT_SYMBOL_GPL(x509_check_signature);
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Check the new certificate against the ones in the trust keyring.  If one of
 * those is the signing key and validates the new certificate, then mark the
 * new certificate as being trusted.
 *
 * Return 0 if the new certificate was successfully validated, 1 if we couldn't
 * find a matching parent certificate in the trusted list and an error if there
 * is a matching certificate but the signature check fails.
 */
static int x509_validate_trust(struct x509_certificate *cert,
			       struct key *trust_keyring)
{
	struct key *key;
	int ret = 1;

	if (!trust_keyring)
		return -EOPNOTSUPP;

210
	if (ca_keyid && !asymmetric_key_id_same(cert->authority, ca_keyid))
211 212
		return -EPERM;

213
	key = x509_request_asymmetric_key(trust_keyring, cert->authority);
214
	if (!IS_ERR(key))  {
215 216 217
		if (!use_builtin_keys
		    || test_bit(KEY_FLAG_BUILTIN, &key->flags))
			ret = x509_check_signature(key->payload.data, cert);
218 219 220 221 222
		key_put(key);
	}
	return ret;
}

223 224 225 226 227
/*
 * Attempt to parse a data blob for a key as an X509 certificate.
 */
static int x509_key_preparse(struct key_preparsed_payload *prep)
{
228
	struct asymmetric_key_ids *kids;
229
	struct x509_certificate *cert;
230
	const char *q;
231
	size_t srlen, sulen;
232
	char *desc = NULL, *p;
233 234 235 236 237 238 239 240
	int ret;

	cert = x509_cert_parse(prep->data, prep->datalen);
	if (IS_ERR(cert))
		return PTR_ERR(cert);

	pr_devel("Cert Issuer: %s\n", cert->issuer);
	pr_devel("Cert Subject: %s\n", cert->subject);
241 242 243 244 245 246

	if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
	    cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
	    cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
	    !pkey_algo[cert->pub->pkey_algo] ||
	    !pkey_algo[cert->sig.pkey_algo] ||
247
	    !hash_algo_name[cert->sig.pkey_hash_algo]) {
248 249 250 251
		ret = -ENOPKG;
		goto error_free_cert;
	}

252
	pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
253
	pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n",
254 255 256
		 cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1,
		 cert->valid_from.tm_mday, cert->valid_from.tm_hour,
		 cert->valid_from.tm_min,  cert->valid_from.tm_sec);
257
	pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n",
258 259 260
		 cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
		 cert->valid_to.tm_mday, cert->valid_to.tm_hour,
		 cert->valid_to.tm_min,  cert->valid_to.tm_sec);
261 262
	pr_devel("Cert Signature: %s + %s\n",
		 pkey_algo_name[cert->sig.pkey_algo],
263
		 hash_algo_name[cert->sig.pkey_hash_algo]);
264

265
	cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
266 267
	cert->pub->id_type = PKEY_ID_X509;

268 269
	/* Check the signature on the key if it appears to be self-signed */
	if (!cert->authority ||
270
	    asymmetric_key_id_same(cert->skid, cert->authority)) {
271
		ret = x509_check_signature(cert->pub, cert); /* self-signed */
272 273
		if (ret < 0)
			goto error_free_cert;
274 275 276 277
	} else if (!prep->trusted) {
		ret = x509_validate_trust(cert, get_system_trusted_keyring());
		if (!ret)
			prep->trusted = 1;
278 279 280 281
	}

	/* Propose a description */
	sulen = strlen(cert->subject);
282 283 284 285 286 287 288
	srlen = cert->raw_serial_size;
	q = cert->raw_serial;
	if (srlen > 1 && *q == 0) {
		srlen--;
		q++;
	}

289
	ret = -ENOMEM;
290
	desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
291 292
	if (!desc)
		goto error_free_cert;
293 294 295 296 297 298 299 300 301 302 303 304
	p = memcpy(desc, cert->subject, sulen);
	p += sulen;
	*p++ = ':';
	*p++ = ' ';
	p = bin2hex(p, q, srlen);
	*p = 0;

	kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
	if (!kids)
		goto error_free_desc;
	kids->id[0] = cert->id;
	kids->id[1] = cert->skid;
305 306 307 308

	/* We're pinning the module by being linked against it */
	__module_get(public_key_subtype.owner);
	prep->type_data[0] = &public_key_subtype;
309
	prep->type_data[1] = kids;
310
	prep->payload[0] = cert->pub;
311 312 313 314 315
	prep->description = desc;
	prep->quotalen = 100;

	/* We've finished with the certificate */
	cert->pub = NULL;
316 317
	cert->id = NULL;
	cert->skid = NULL;
318 319 320
	desc = NULL;
	ret = 0;

321 322
error_free_desc:
	kfree(desc);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
error_free_cert:
	x509_free_certificate(cert);
	return ret;
}

static struct asymmetric_key_parser x509_key_parser = {
	.owner	= THIS_MODULE,
	.name	= "x509",
	.parse	= x509_key_preparse,
};

/*
 * Module stuff
 */
static int __init x509_key_init(void)
{
	return register_asymmetric_key_parser(&x509_key_parser);
}

static void __exit x509_key_exit(void)
{
	unregister_asymmetric_key_parser(&x509_key_parser);
}

module_init(x509_key_init);
module_exit(x509_key_exit);
349 350 351

MODULE_DESCRIPTION("X.509 certificate parser");
MODULE_LICENSE("GPL");