vsp1_video.c 32.4 KB
Newer Older
1 2 3
/*
 * vsp1_video.c  --  R-Car VSP1 Video Node
 *
4
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/v4l2-mediabus.h>
#include <linux/videodev2.h>
20
#include <linux/wait.h>
21 22 23 24 25 26

#include <media/media-entity.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-subdev.h>
27
#include <media/videobuf2-v4l2.h>
28 29 30
#include <media/videobuf2-dma-contig.h>

#include "vsp1.h"
31
#include "vsp1_bru.h"
32
#include "vsp1_dl.h"
33
#include "vsp1_entity.h"
34
#include "vsp1_hgo.h"
35
#include "vsp1_hgt.h"
36
#include "vsp1_pipe.h"
37
#include "vsp1_rwpf.h"
38
#include "vsp1_uds.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include "vsp1_video.h"

#define VSP1_VIDEO_DEF_FORMAT		V4L2_PIX_FMT_YUYV
#define VSP1_VIDEO_DEF_WIDTH		1024
#define VSP1_VIDEO_DEF_HEIGHT		768

#define VSP1_VIDEO_MIN_WIDTH		2U
#define VSP1_VIDEO_MAX_WIDTH		8190U
#define VSP1_VIDEO_MIN_HEIGHT		2U
#define VSP1_VIDEO_MAX_HEIGHT		8190U

/* -----------------------------------------------------------------------------
 * Helper functions
 */

static struct v4l2_subdev *
vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
{
	struct media_pad *remote;

	remote = media_entity_remote_pad(local);
60
	if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
		return NULL;

	if (pad)
		*pad = remote->index;

	return media_entity_to_v4l2_subdev(remote->entity);
}

static int vsp1_video_verify_format(struct vsp1_video *video)
{
	struct v4l2_subdev_format fmt;
	struct v4l2_subdev *subdev;
	int ret;

	subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
	if (subdev == NULL)
		return -EINVAL;

	fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
	ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
	if (ret < 0)
		return ret == -ENOIOCTLCMD ? -EINVAL : ret;

84 85 86
	if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
	    video->rwpf->format.height != fmt.format.height ||
	    video->rwpf->format.width != fmt.format.width)
87 88 89 90 91 92 93 94 95
		return -EINVAL;

	return 0;
}

static int __vsp1_video_try_format(struct vsp1_video *video,
				   struct v4l2_pix_format_mplane *pix,
				   const struct vsp1_format_info **fmtinfo)
{
96 97 98 99 100 101 102
	static const u32 xrgb_formats[][2] = {
		{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
		{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
		{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
		{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
	};

103 104 105 106 107
	const struct vsp1_format_info *info;
	unsigned int width = pix->width;
	unsigned int height = pix->height;
	unsigned int i;

108 109
	/*
	 * Backward compatibility: replace deprecated RGB formats by their XRGB
110 111 112 113 114 115 116 117 118 119
	 * equivalent. This selects the format older userspace applications want
	 * while still exposing the new format.
	 */
	for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
		if (xrgb_formats[i][0] == pix->pixelformat) {
			pix->pixelformat = xrgb_formats[i][1];
			break;
		}
	}

120 121
	/*
	 * Retrieve format information and select the default format if the
122 123
	 * requested format isn't supported.
	 */
124
	info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
125
	if (info == NULL)
126
		info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
127 128 129 130

	pix->pixelformat = info->fourcc;
	pix->colorspace = V4L2_COLORSPACE_SRGB;
	pix->field = V4L2_FIELD_NONE;
131 132 133 134 135

	if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
	    info->fourcc == V4L2_PIX_FMT_HSV32)
		pix->hsv_enc = V4L2_HSV_ENC_256;

136 137 138 139 140 141 142 143 144 145 146
	memset(pix->reserved, 0, sizeof(pix->reserved));

	/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
	width = round_down(width, info->hsub);
	height = round_down(height, info->vsub);

	/* Clamp the width and height. */
	pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH);
	pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT,
			    VSP1_VIDEO_MAX_HEIGHT);

147 148
	/*
	 * Compute and clamp the stride and image size. While not documented in
149 150 151
	 * the datasheet, strides not aligned to a multiple of 128 bytes result
	 * in image corruption.
	 */
152
	for (i = 0; i < min(info->planes, 2U); ++i) {
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
		unsigned int hsub = i > 0 ? info->hsub : 1;
		unsigned int vsub = i > 0 ? info->vsub : 1;
		unsigned int align = 128;
		unsigned int bpl;

		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
			      pix->width / hsub * info->bpp[i] / 8,
			      round_down(65535U, align));

		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
					    * pix->height / vsub;
	}

	if (info->planes == 3) {
		/* The second and third planes must have the same stride. */
		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
	}

	pix->num_planes = info->planes;

	if (fmtinfo)
		*fmtinfo = info;

	return 0;
}

181 182 183 184
/* -----------------------------------------------------------------------------
 * VSP1 Partition Algorithm support
 */

185
/**
186
 * vsp1_video_calculate_partition - Calculate the active partition output window
187
 *
188 189
 * @pipe: the pipeline
 * @partition: partition that will hold the calculated values
190 191 192
 * @div_size: pre-determined maximum partition division size
 * @index: partition index
 */
193 194 195 196
static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
					   struct vsp1_partition *partition,
					   unsigned int div_size,
					   unsigned int index)
197 198 199 200
{
	const struct v4l2_mbus_framefmt *format;
	unsigned int modulus;

201 202 203 204
	/*
	 * Partitions are computed on the size before rotation, use the format
	 * at the WPF sink.
	 */
205 206
	format = vsp1_entity_get_pad_format(&pipe->output->entity,
					    pipe->output->entity.config,
207
					    RWPF_PAD_SINK);
208 209 210

	/* A single partition simply processes the output size in full. */
	if (pipe->partitions <= 1) {
211 212 213
		partition->left = 0;
		partition->width = format->width;
		return;
214 215 216
	}

	/* Initialise the partition with sane starting conditions. */
217 218
	partition->left = index * div_size;
	partition->width = div_size;
219 220 221

	modulus = format->width % div_size;

222 223
	/*
	 * We need to prevent the last partition from being smaller than the
224 225 226 227 228 229 230 231
	 * *minimum* width of the hardware capabilities.
	 *
	 * If the modulus is less than half of the partition size,
	 * the penultimate partition is reduced to half, which is added
	 * to the final partition: |1234|1234|1234|12|341|
	 * to prevents this:       |1234|1234|1234|1234|1|.
	 */
	if (modulus) {
232 233
		/*
		 * pipe->partitions is 1 based, whilst index is a 0 based index.
234 235 236 237 238 239 240
		 * Normalise this locally.
		 */
		unsigned int partitions = pipe->partitions - 1;

		if (modulus < div_size / 2) {
			if (index == partitions - 1) {
				/* Halve the penultimate partition. */
241
				partition->width = div_size / 2;
242 243
			} else if (index == partitions) {
				/* Increase the final partition. */
244 245
				partition->width = (div_size / 2) + modulus;
				partition->left -= div_size / 2;
246 247
			}
		} else if (index == partitions) {
248
			partition->width = modulus;
249 250 251 252
		}
	}
}

253
static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
254 255 256 257 258
{
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
	const struct v4l2_mbus_framefmt *format;
	struct vsp1_entity *entity;
	unsigned int div_size;
259
	unsigned int i;
260 261 262 263 264 265 266 267 268 269

	/*
	 * Partitions are computed on the size before rotation, use the format
	 * at the WPF sink.
	 */
	format = vsp1_entity_get_pad_format(&pipe->output->entity,
					    pipe->output->entity.config,
					    RWPF_PAD_SINK);
	div_size = format->width;

270 271 272 273 274 275 276
	/*
	 * Only Gen3 hardware requires image partitioning, Gen2 will operate
	 * with a single partition that covers the whole output.
	 */
	if (vsp1->info->gen == 3) {
		list_for_each_entry(entity, &pipe->entities, list_pipe) {
			unsigned int entity_max;
277

278 279
			if (!entity->ops->max_width)
				continue;
280 281 282 283 284 285 286 287

			entity_max = entity->ops->max_width(entity, pipe);
			if (entity_max)
				div_size = min(div_size, entity_max);
		}
	}

	pipe->partitions = DIV_ROUND_UP(format->width, div_size);
288 289 290 291 292 293
	pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
				   GFP_KERNEL);
	if (!pipe->part_table)
		return -ENOMEM;

	for (i = 0; i < pipe->partitions; ++i)
294 295
		vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
					       div_size, i);
296 297

	return 0;
298 299
}

300 301 302 303
/* -----------------------------------------------------------------------------
 * Pipeline Management
 */

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/*
 * vsp1_video_complete_buffer - Complete the current buffer
 * @video: the video node
 *
 * This function completes the current buffer by filling its sequence number,
 * time stamp and payload size, and hands it back to the videobuf core.
 *
 * When operating in DU output mode (deep pipeline to the DU through the LIF),
 * the VSP1 needs to constantly supply frames to the display. In that case, if
 * no other buffer is queued, reuse the one that has just been processed instead
 * of handing it back to the videobuf core.
 *
 * Return the next queued buffer or NULL if the queue is empty.
 */
static struct vsp1_vb2_buffer *
vsp1_video_complete_buffer(struct vsp1_video *video)
{
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
	struct vsp1_vb2_buffer *next = NULL;
	struct vsp1_vb2_buffer *done;
	unsigned long flags;
	unsigned int i;

	spin_lock_irqsave(&video->irqlock, flags);

	if (list_empty(&video->irqqueue)) {
		spin_unlock_irqrestore(&video->irqlock, flags);
		return NULL;
	}

	done = list_first_entry(&video->irqqueue,
				struct vsp1_vb2_buffer, queue);

	/* In DU output mode reuse the buffer if the list is singular. */
	if (pipe->lif && list_is_singular(&video->irqqueue)) {
		spin_unlock_irqrestore(&video->irqlock, flags);
		return done;
	}

	list_del(&done->queue);

	if (!list_empty(&video->irqqueue))
		next = list_first_entry(&video->irqqueue,
					struct vsp1_vb2_buffer, queue);

	spin_unlock_irqrestore(&video->irqlock, flags);

351
	done->buf.sequence = pipe->sequence;
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	done->buf.vb2_buf.timestamp = ktime_get_ns();
	for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
		vb2_set_plane_payload(&done->buf.vb2_buf, i,
				      vb2_plane_size(&done->buf.vb2_buf, i));
	vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);

	return next;
}

static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
				 struct vsp1_rwpf *rwpf)
{
	struct vsp1_video *video = rwpf->video;
	struct vsp1_vb2_buffer *buf;

	buf = vsp1_video_complete_buffer(video);
	if (buf == NULL)
		return;

	video->rwpf->mem = buf->mem;
	pipe->buffers_ready |= 1 << video->pipe_index;
}

375
static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
376 377
					      struct vsp1_dl_list *dl,
					      unsigned int partition)
378 379 380
{
	struct vsp1_entity *entity;

381
	pipe->partition = &pipe->part_table[partition];
382 383 384 385 386 387 388 389

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
		if (entity->ops->configure)
			entity->ops->configure(entity, pipe, dl,
					       VSP1_ENTITY_PARAMS_PARTITION);
	}
}

390 391
static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
{
392
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
393
	struct vsp1_entity *entity;
394
	unsigned int partition;
395 396 397 398

	if (!pipe->dl)
		pipe->dl = vsp1_dl_list_get(pipe->output->dlm);

399 400
	/*
	 * Start with the runtime parameters as the configure operation can
401 402 403
	 * compute/cache information needed when configuring partitions. This
	 * is the case with flipping in the WPF.
	 */
404
	list_for_each_entry(entity, &pipe->entities, list_pipe) {
405
		if (entity->ops->configure)
406 407
			entity->ops->configure(entity, pipe, pipe->dl,
					       VSP1_ENTITY_PARAMS_RUNTIME);
408 409 410
	}

	/* Run the first partition */
411
	vsp1_video_pipeline_run_partition(pipe, pipe->dl, 0);
412 413

	/* Process consecutive partitions as necessary */
414
	for (partition = 1; partition < pipe->partitions; ++partition) {
415 416 417 418
		struct vsp1_dl_list *dl;

		dl = vsp1_dl_list_get(pipe->output->dlm);

419 420
		/*
		 * An incomplete chain will still function, but output only
421 422 423 424 425 426
		 * the partitions that had a dl available. The frame end
		 * interrupt will be marked on the last dl in the chain.
		 */
		if (!dl) {
			dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
			break;
427
		}
428

429
		vsp1_video_pipeline_run_partition(pipe, dl, partition);
430
		vsp1_dl_list_add_chain(pipe->dl, dl);
431 432
	}

433
	/* Complete, and commit the head display list. */
434 435 436 437 438 439 440 441 442 443 444 445 446
	vsp1_dl_list_commit(pipe->dl);
	pipe->dl = NULL;

	vsp1_pipeline_run(pipe);
}

static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe)
{
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
	enum vsp1_pipeline_state state;
	unsigned long flags;
	unsigned int i;

447 448
	spin_lock_irqsave(&pipe->irqlock, flags);

449 450 451 452 453 454 455 456 457 458 459 460 461
	/* Complete buffers on all video nodes. */
	for (i = 0; i < vsp1->info->rpf_count; ++i) {
		if (!pipe->inputs[i])
			continue;

		vsp1_video_frame_end(pipe, pipe->inputs[i]);
	}

	vsp1_video_frame_end(pipe, pipe->output);

	state = pipe->state;
	pipe->state = VSP1_PIPELINE_STOPPED;

462 463
	/*
	 * If a stop has been requested, mark the pipeline as stopped and
464 465 466 467 468 469 470 471 472 473
	 * return. Otherwise restart the pipeline if ready.
	 */
	if (state == VSP1_PIPELINE_STOPPING)
		wake_up(&pipe->wq);
	else if (vsp1_pipeline_ready(pipe))
		vsp1_video_pipeline_run(pipe);

	spin_unlock_irqrestore(&pipe->irqlock, flags);
}

474 475 476
static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
					    struct vsp1_rwpf *input,
					    struct vsp1_rwpf *output)
477
{
478
	struct media_entity_enum ent_enum;
479
	struct vsp1_entity *entity;
480
	struct media_pad *pad;
481
	bool bru_found = false;
482
	int ret;
483

484 485 486
	ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
	if (ret < 0)
		return ret;
487

488 489 490 491 492 493
	/*
	 * The main data path doesn't include the HGO or HGT, use
	 * vsp1_entity_remote_pad() to traverse the graph.
	 */

	pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
494 495

	while (1) {
496
		if (pad == NULL) {
497
			ret = -EPIPE;
498 499
			goto out;
		}
500 501

		/* We've reached a video node, that shouldn't have happened. */
502
		if (!is_media_entity_v4l2_subdev(pad->entity)) {
503
			ret = -EPIPE;
504 505
			goto out;
		}
506

507 508
		entity = to_vsp1_entity(
			media_entity_to_v4l2_subdev(pad->entity));
509

510 511
		/*
		 * A BRU is present in the pipeline, store the BRU input pad
512
		 * number in the input RPF for use when configuring the RPF.
513 514 515
		 */
		if (entity->type == VSP1_ENTITY_BRU) {
			struct vsp1_bru *bru = to_bru(&entity->subdev);
516 517

			bru->inputs[pad->index].rpf = input;
518
			input->bru_input = pad->index;
519 520

			bru_found = true;
521 522
		}

523 524 525 526 527
		/* We've reached the WPF, we're done. */
		if (entity->type == VSP1_ENTITY_WPF)
			break;

		/* Ensure the branch has no loop. */
528 529
		if (media_entity_enum_test_and_set(&ent_enum,
						   &entity->subdev.entity)) {
530
			ret = -EPIPE;
531 532
			goto out;
		}
533 534 535

		/* UDS can't be chained. */
		if (entity->type == VSP1_ENTITY_UDS) {
536
			if (pipe->uds) {
537
				ret = -EPIPE;
538 539
				goto out;
			}
540 541 542 543

			pipe->uds = entity;
			pipe->uds_input = bru_found ? pipe->bru
					: &input->entity;
544 545
		}

546
		/* Follow the source link, ignoring any HGO or HGT. */
547
		pad = &entity->pads[entity->source_pad];
548
		pad = vsp1_entity_remote_pad(pad);
549 550 551 552
	}

	/* The last entity must be the output WPF. */
	if (entity != &output->entity)
553
		ret = -EPIPE;
554

555 556 557
out:
	media_entity_enum_cleanup(&ent_enum);

558
	return ret;
559 560
}

561 562
static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
				     struct vsp1_video *video)
563
{
564
	struct media_graph graph;
565
	struct media_entity *entity = &video->video.entity;
566
	struct media_device *mdev = entity->graph_obj.mdev;
567 568 569 570
	unsigned int i;
	int ret;

	/* Walk the graph to locate the entities and video nodes. */
571
	ret = media_graph_walk_init(&graph, mdev);
572
	if (ret)
573 574
		return ret;

575
	media_graph_walk_start(&graph, entity);
576

577
	while ((entity = media_graph_walk_next(&graph))) {
578 579 580 581
		struct v4l2_subdev *subdev;
		struct vsp1_rwpf *rwpf;
		struct vsp1_entity *e;

582
		if (!is_media_entity_v4l2_subdev(entity))
583 584 585 586 587 588 589 590
			continue;

		subdev = media_entity_to_v4l2_subdev(entity);
		e = to_vsp1_entity(subdev);
		list_add_tail(&e->list_pipe, &pipe->entities);

		if (e->type == VSP1_ENTITY_RPF) {
			rwpf = to_rwpf(subdev);
591 592
			pipe->inputs[rwpf->entity.index] = rwpf;
			rwpf->video->pipe_index = ++pipe->num_inputs;
593
			rwpf->pipe = pipe;
594 595
		} else if (e->type == VSP1_ENTITY_WPF) {
			rwpf = to_rwpf(subdev);
596
			pipe->output = rwpf;
597
			rwpf->video->pipe_index = 0;
598
			rwpf->pipe = pipe;
599 600
		} else if (e->type == VSP1_ENTITY_LIF) {
			pipe->lif = e;
601 602
		} else if (e->type == VSP1_ENTITY_BRU) {
			pipe->bru = e;
603 604 605 606 607
		} else if (e->type == VSP1_ENTITY_HGO) {
			struct vsp1_hgo *hgo = to_hgo(subdev);

			pipe->hgo = e;
			hgo->histo.pipe = pipe;
608 609 610 611 612
		} else if (e->type == VSP1_ENTITY_HGT) {
			struct vsp1_hgt *hgt = to_hgt(subdev);

			pipe->hgt = e;
			hgt->histo.pipe = pipe;
613 614 615
		}
	}

616
	media_graph_walk_cleanup(&graph);
617

618
	/* We need one output and at least one input. */
619 620
	if (pipe->num_inputs == 0 || !pipe->output)
		return -EPIPE;
621

622 623
	/*
	 * Follow links downstream for each input and make sure the graph
624 625
	 * contains no loop and that all branches end at the output WPF.
	 */
626
	for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
627 628 629
		if (!pipe->inputs[i])
			continue;

630 631
		ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
						       pipe->output);
632
		if (ret < 0)
633
			return ret;
634 635 636 637 638
	}

	return 0;
}

639 640
static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
				    struct vsp1_video *video)
641
{
642 643 644 645 646 647 648 649 650 651
	vsp1_pipeline_init(pipe);

	pipe->frame_end = vsp1_video_pipeline_frame_end;

	return vsp1_video_pipeline_build(pipe, video);
}

static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
{
	struct vsp1_pipeline *pipe;
652 653
	int ret;

654 655
	/*
	 * Get a pipeline object for the video node. If a pipeline has already
656 657 658 659 660 661 662 663
	 * been allocated just increment its reference count and return it.
	 * Otherwise allocate a new pipeline and initialize it, it will be freed
	 * when the last reference is released.
	 */
	if (!video->rwpf->pipe) {
		pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
		if (!pipe)
			return ERR_PTR(-ENOMEM);
664

665 666 667 668 669 670 671 672 673
		ret = vsp1_video_pipeline_init(pipe, video);
		if (ret < 0) {
			vsp1_pipeline_reset(pipe);
			kfree(pipe);
			return ERR_PTR(ret);
		}
	} else {
		pipe = video->rwpf->pipe;
		kref_get(&pipe->kref);
674 675
	}

676
	return pipe;
677 678
}

679
static void vsp1_video_pipeline_release(struct kref *kref)
680
{
681
	struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
682

683 684 685
	vsp1_pipeline_reset(pipe);
	kfree(pipe);
}
686

687 688 689 690 691 692 693
static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
{
	struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;

	mutex_lock(&mdev->graph_mutex);
	kref_put(&pipe->kref, vsp1_video_pipeline_release);
	mutex_unlock(&mdev->graph_mutex);
694 695 696 697 698 699 700
}

/* -----------------------------------------------------------------------------
 * videobuf2 Queue Operations
 */

static int
701
vsp1_video_queue_setup(struct vb2_queue *vq,
702 703
		       unsigned int *nbuffers, unsigned int *nplanes,
		       unsigned int sizes[], struct device *alloc_devs[])
704 705
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
706
	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
707 708
	unsigned int i;

709 710
	if (*nplanes) {
		if (*nplanes != format->num_planes)
711 712
			return -EINVAL;

713
		for (i = 0; i < *nplanes; i++)
714 715 716
			if (sizes[i] < format->plane_fmt[i].sizeimage)
				return -EINVAL;
		return 0;
717 718 719 720
	}

	*nplanes = format->num_planes;

721
	for (i = 0; i < format->num_planes; ++i)
722 723 724 725 726 727 728
		sizes[i] = format->plane_fmt[i].sizeimage;

	return 0;
}

static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
{
729
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
730
	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
731
	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
732
	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
733 734 735 736 737 738
	unsigned int i;

	if (vb->num_planes < format->num_planes)
		return -EINVAL;

	for (i = 0; i < vb->num_planes; ++i) {
739
		buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
740

741
		if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
742 743 744
			return -EINVAL;
	}

745
	for ( ; i < 3; ++i)
746 747
		buf->mem.addr[i] = 0;

748 749 750 751 752
	return 0;
}

static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
{
753
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
754
	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
755
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
756
	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
757 758 759 760 761 762 763 764 765 766 767 768 769
	unsigned long flags;
	bool empty;

	spin_lock_irqsave(&video->irqlock, flags);
	empty = list_empty(&video->irqqueue);
	list_add_tail(&buf->queue, &video->irqqueue);
	spin_unlock_irqrestore(&video->irqlock, flags);

	if (!empty)
		return;

	spin_lock_irqsave(&pipe->irqlock, flags);

770
	video->rwpf->mem = buf->mem;
771 772 773 774
	pipe->buffers_ready |= 1 << video->pipe_index;

	if (vb2_is_streaming(&video->queue) &&
	    vsp1_pipeline_ready(pipe))
775
		vsp1_video_pipeline_run(pipe);
776 777 778 779

	spin_unlock_irqrestore(&pipe->irqlock, flags);
}

780 781 782
static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
{
	struct vsp1_entity *entity;
783
	int ret;
784

785
	/* Determine this pipelines sizes for image partitioning support. */
786 787 788
	ret = vsp1_video_pipeline_setup_partitions(pipe);
	if (ret < 0)
		return ret;
789

790 791 792 793 794 795 796 797
	/* Prepare the display list. */
	pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
	if (!pipe->dl)
		return -ENOMEM;

	if (pipe->uds) {
		struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);

798 799
		/*
		 * If a BRU is present in the pipeline before the UDS, the alpha
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		 * component doesn't need to be scaled as the BRU output alpha
		 * value is fixed to 255. Otherwise we need to scale the alpha
		 * component only when available at the input RPF.
		 */
		if (pipe->uds_input->type == VSP1_ENTITY_BRU) {
			uds->scale_alpha = false;
		} else {
			struct vsp1_rwpf *rpf =
				to_rwpf(&pipe->uds_input->subdev);

			uds->scale_alpha = rpf->fmtinfo->alpha;
		}
	}

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
815
		vsp1_entity_route_setup(entity, pipe, pipe->dl);
816

817
		if (entity->ops->configure)
818 819
			entity->ops->configure(entity, pipe, pipe->dl,
					       VSP1_ENTITY_PARAMS_INIT);
820 821
	}

822
	return 0;
823 824
}

825 826 827 828 829 830 831 832 833 834 835 836
static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
{
	struct vsp1_video *video = pipe->output->video;
	struct vsp1_vb2_buffer *buffer;
	unsigned long flags;

	/* Remove all buffers from the IRQ queue. */
	spin_lock_irqsave(&video->irqlock, flags);
	list_for_each_entry(buffer, &video->irqqueue, queue)
		vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
	INIT_LIST_HEAD(&video->irqqueue);
	spin_unlock_irqrestore(&video->irqlock, flags);
837 838 839 840 841 842

	/* Release our partition table allocation */
	mutex_lock(&pipe->lock);
	kfree(pipe->part_table);
	pipe->part_table = NULL;
	mutex_unlock(&pipe->lock);
843 844
}

845 846 847
static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
848
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
849
	bool start_pipeline = false;
850 851 852 853
	unsigned long flags;
	int ret;

	mutex_lock(&pipe->lock);
854
	if (pipe->stream_count == pipe->num_inputs) {
855 856 857
		ret = vsp1_video_setup_pipeline(pipe);
		if (ret < 0) {
			mutex_unlock(&pipe->lock);
858
			vsp1_video_cleanup_pipeline(pipe);
859
			return ret;
860
		}
861 862

		start_pipeline = true;
863 864 865 866 867
	}

	pipe->stream_count++;
	mutex_unlock(&pipe->lock);

868 869 870 871 872 873 874 875 876 877
	/*
	 * vsp1_pipeline_ready() is not sufficient to establish that all streams
	 * are prepared and the pipeline is configured, as multiple streams
	 * can race through streamon with buffers already queued; Therefore we
	 * don't even attempt to start the pipeline until the last stream has
	 * called through here.
	 */
	if (!start_pipeline)
		return 0;

878 879
	spin_lock_irqsave(&pipe->irqlock, flags);
	if (vsp1_pipeline_ready(pipe))
880
		vsp1_video_pipeline_run(pipe);
881 882 883 884 885
	spin_unlock_irqrestore(&pipe->irqlock, flags);

	return 0;
}

886
static void vsp1_video_stop_streaming(struct vb2_queue *vq)
887 888
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
889
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
890 891 892
	unsigned long flags;
	int ret;

893 894
	/*
	 * Clear the buffers ready flag to make sure the device won't be started
895 896 897 898 899 900
	 * by a QBUF on the video node on the other side of the pipeline.
	 */
	spin_lock_irqsave(&video->irqlock, flags);
	pipe->buffers_ready &= ~(1 << video->pipe_index);
	spin_unlock_irqrestore(&video->irqlock, flags);

901
	mutex_lock(&pipe->lock);
902
	if (--pipe->stream_count == pipe->num_inputs) {
903 904 905 906
		/* Stop the pipeline. */
		ret = vsp1_pipeline_stop(pipe);
		if (ret == -ETIMEDOUT)
			dev_err(video->vsp1->dev, "pipeline stop timeout\n");
907 908 909

		vsp1_dl_list_put(pipe->dl);
		pipe->dl = NULL;
910 911 912
	}
	mutex_unlock(&pipe->lock);

913
	media_pipeline_stop(&video->video.entity);
914
	vsp1_video_cleanup_pipeline(pipe);
915
	vsp1_video_pipeline_put(pipe);
916 917
}

918
static const struct vb2_ops vsp1_video_queue_qops = {
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	.queue_setup = vsp1_video_queue_setup,
	.buf_prepare = vsp1_video_buffer_prepare,
	.buf_queue = vsp1_video_buffer_queue,
	.wait_prepare = vb2_ops_wait_prepare,
	.wait_finish = vb2_ops_wait_finish,
	.start_streaming = vsp1_video_start_streaming,
	.stop_streaming = vsp1_video_stop_streaming,
};

/* -----------------------------------------------------------------------------
 * V4L2 ioctls
 */

static int
vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
			  | V4L2_CAP_VIDEO_CAPTURE_MPLANE
			  | V4L2_CAP_VIDEO_OUTPUT_MPLANE;

	if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
		cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
				 | V4L2_CAP_STREAMING;
	else
		cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
				 | V4L2_CAP_STREAMING;

	strlcpy(cap->driver, "vsp1", sizeof(cap->driver));
	strlcpy(cap->card, video->video.name, sizeof(cap->card));
	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
		 dev_name(video->vsp1->dev));

	return 0;
}

static int
vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	if (format->type != video->queue.type)
		return -EINVAL;

	mutex_lock(&video->lock);
967
	format->fmt.pix_mp = video->rwpf->format;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	mutex_unlock(&video->lock);

	return 0;
}

static int
vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	if (format->type != video->queue.type)
		return -EINVAL;

	return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
}

static int
vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
	const struct vsp1_format_info *info;
	int ret;

	if (format->type != video->queue.type)
		return -EINVAL;

	ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
	if (ret < 0)
		return ret;

	mutex_lock(&video->lock);

	if (vb2_is_busy(&video->queue)) {
		ret = -EBUSY;
		goto done;
	}

1007 1008
	video->rwpf->format = format->fmt.pix_mp;
	video->rwpf->fmtinfo = info;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

done:
	mutex_unlock(&video->lock);
	return ret;
}

static int
vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1020
	struct media_device *mdev = &video->vsp1->media_dev;
1021 1022 1023 1024 1025 1026
	struct vsp1_pipeline *pipe;
	int ret;

	if (video->queue.owner && video->queue.owner != file->private_data)
		return -EBUSY;

1027 1028
	/*
	 * Get a pipeline for the video node and start streaming on it. No link
1029 1030
	 * touching an entity in the pipeline can be activated or deactivated
	 * once streaming is started.
1031
	 */
1032
	mutex_lock(&mdev->graph_mutex);
1033

1034 1035 1036 1037 1038 1039
	pipe = vsp1_video_pipeline_get(video);
	if (IS_ERR(pipe)) {
		mutex_unlock(&mdev->graph_mutex);
		return PTR_ERR(pipe);
	}

1040
	ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
1041 1042 1043 1044 1045 1046
	if (ret < 0) {
		mutex_unlock(&mdev->graph_mutex);
		goto err_pipe;
	}

	mutex_unlock(&mdev->graph_mutex);
1047

1048 1049
	/*
	 * Verify that the configured format matches the output of the connected
1050 1051 1052 1053 1054 1055 1056 1057 1058
	 * subdev.
	 */
	ret = vsp1_video_verify_format(video);
	if (ret < 0)
		goto err_stop;

	/* Start the queue. */
	ret = vb2_streamon(&video->queue, type);
	if (ret < 0)
1059
		goto err_stop;
1060 1061 1062 1063

	return 0;

err_stop:
1064
	media_pipeline_stop(&video->video.entity);
1065 1066
err_pipe:
	vsp1_video_pipeline_put(pipe);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	return ret;
}

static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
	.vidioc_querycap		= vsp1_video_querycap,
	.vidioc_g_fmt_vid_cap_mplane	= vsp1_video_get_format,
	.vidioc_s_fmt_vid_cap_mplane	= vsp1_video_set_format,
	.vidioc_try_fmt_vid_cap_mplane	= vsp1_video_try_format,
	.vidioc_g_fmt_vid_out_mplane	= vsp1_video_get_format,
	.vidioc_s_fmt_vid_out_mplane	= vsp1_video_set_format,
	.vidioc_try_fmt_vid_out_mplane	= vsp1_video_try_format,
	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
	.vidioc_querybuf		= vb2_ioctl_querybuf,
	.vidioc_qbuf			= vb2_ioctl_qbuf,
	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
1082
	.vidioc_expbuf			= vb2_ioctl_expbuf,
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
	.vidioc_streamon		= vsp1_video_streamon,
	.vidioc_streamoff		= vb2_ioctl_streamoff,
};

/* -----------------------------------------------------------------------------
 * V4L2 File Operations
 */

static int vsp1_video_open(struct file *file)
{
	struct vsp1_video *video = video_drvdata(file);
	struct v4l2_fh *vfh;
	int ret = 0;

	vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
	if (vfh == NULL)
		return -ENOMEM;

	v4l2_fh_init(vfh, &video->video);
	v4l2_fh_add(vfh);

	file->private_data = vfh;

1108 1109
	ret = vsp1_device_get(video->vsp1);
	if (ret < 0) {
1110
		v4l2_fh_del(vfh);
1111
		v4l2_fh_exit(vfh);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		kfree(vfh);
	}

	return ret;
}

static int vsp1_video_release(struct file *file)
{
	struct vsp1_video *video = video_drvdata(file);
	struct v4l2_fh *vfh = file->private_data;

	mutex_lock(&video->lock);
	if (video->queue.owner == vfh) {
		vb2_queue_release(&video->queue);
		video->queue.owner = NULL;
	}
	mutex_unlock(&video->lock);

	vsp1_device_put(video->vsp1);

	v4l2_fh_release(file);

	file->private_data = NULL;

	return 0;
}

1139
static const struct v4l2_file_operations vsp1_video_fops = {
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	.owner = THIS_MODULE,
	.unlocked_ioctl = video_ioctl2,
	.open = vsp1_video_open,
	.release = vsp1_video_release,
	.poll = vb2_fop_poll,
	.mmap = vb2_fop_mmap,
};

/* -----------------------------------------------------------------------------
 * Initialization and Cleanup
 */

1152 1153
struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
				     struct vsp1_rwpf *rwpf)
1154
{
1155
	struct vsp1_video *video;
1156 1157 1158
	const char *direction;
	int ret;

1159 1160 1161
	video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
	if (!video)
		return ERR_PTR(-ENOMEM);
1162

1163
	rwpf->video = video;
1164 1165 1166 1167 1168

	video->vsp1 = vsp1;
	video->rwpf = rwpf;

	if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1169
		direction = "input";
1170
		video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1171 1172
		video->pad.flags = MEDIA_PAD_FL_SOURCE;
		video->video.vfl_dir = VFL_DIR_TX;
1173 1174 1175 1176 1177
	} else {
		direction = "output";
		video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
		video->pad.flags = MEDIA_PAD_FL_SINK;
		video->video.vfl_dir = VFL_DIR_RX;
1178 1179 1180 1181 1182 1183 1184
	}

	mutex_init(&video->lock);
	spin_lock_init(&video->irqlock);
	INIT_LIST_HEAD(&video->irqqueue);

	/* Initialize the media entity... */
1185
	ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1186
	if (ret < 0)
1187
		return ERR_PTR(ret);
1188 1189

	/* ... and the format ... */
1190
	rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1191 1192
	rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
	rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1193
	__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1194 1195 1196 1197 1198

	/* ... and the video node... */
	video->video.v4l2_dev = &video->vsp1->v4l2_dev;
	video->video.fops = &vsp1_video_fops;
	snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1199
		 rwpf->entity.subdev.name, direction);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	video->video.vfl_type = VFL_TYPE_GRABBER;
	video->video.release = video_device_release_empty;
	video->video.ioctl_ops = &vsp1_video_ioctl_ops;

	video_set_drvdata(&video->video, video);

	video->queue.type = video->type;
	video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
	video->queue.lock = &video->lock;
	video->queue.drv_priv = video;
1210
	video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1211 1212
	video->queue.ops = &vsp1_video_queue_qops;
	video->queue.mem_ops = &vb2_dma_contig_memops;
1213
	video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1214
	video->queue.dev = video->vsp1->bus_master;
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	ret = vb2_queue_init(&video->queue);
	if (ret < 0) {
		dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
		goto error;
	}

	/* ... and register the video device. */
	video->video.queue = &video->queue;
	ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
	if (ret < 0) {
		dev_err(video->vsp1->dev, "failed to register video device\n");
		goto error;
	}

1229
	return video;
1230 1231 1232

error:
	vsp1_video_cleanup(video);
1233
	return ERR_PTR(ret);
1234 1235 1236 1237 1238 1239 1240 1241 1242
}

void vsp1_video_cleanup(struct vsp1_video *video)
{
	if (video_is_registered(&video->video))
		video_unregister_device(&video->video);

	media_entity_cleanup(&video->video.entity);
}