vsp1_video.c 32.0 KB
Newer Older
1 2 3
/*
 * vsp1_video.c  --  R-Car VSP1 Video Node
 *
4
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/v4l2-mediabus.h>
#include <linux/videodev2.h>
20
#include <linux/wait.h>
21 22 23 24 25 26

#include <media/media-entity.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-subdev.h>
27
#include <media/videobuf2-v4l2.h>
28 29 30
#include <media/videobuf2-dma-contig.h>

#include "vsp1.h"
31
#include "vsp1_bru.h"
32
#include "vsp1_dl.h"
33
#include "vsp1_entity.h"
34
#include "vsp1_hgo.h"
35
#include "vsp1_hgt.h"
36
#include "vsp1_pipe.h"
37
#include "vsp1_rwpf.h"
38
#include "vsp1_uds.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include "vsp1_video.h"

#define VSP1_VIDEO_DEF_FORMAT		V4L2_PIX_FMT_YUYV
#define VSP1_VIDEO_DEF_WIDTH		1024
#define VSP1_VIDEO_DEF_HEIGHT		768

#define VSP1_VIDEO_MIN_WIDTH		2U
#define VSP1_VIDEO_MAX_WIDTH		8190U
#define VSP1_VIDEO_MIN_HEIGHT		2U
#define VSP1_VIDEO_MAX_HEIGHT		8190U

/* -----------------------------------------------------------------------------
 * Helper functions
 */

static struct v4l2_subdev *
vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
{
	struct media_pad *remote;

	remote = media_entity_remote_pad(local);
60
	if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
		return NULL;

	if (pad)
		*pad = remote->index;

	return media_entity_to_v4l2_subdev(remote->entity);
}

static int vsp1_video_verify_format(struct vsp1_video *video)
{
	struct v4l2_subdev_format fmt;
	struct v4l2_subdev *subdev;
	int ret;

	subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
	if (subdev == NULL)
		return -EINVAL;

	fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
	ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
	if (ret < 0)
		return ret == -ENOIOCTLCMD ? -EINVAL : ret;

84 85 86
	if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
	    video->rwpf->format.height != fmt.format.height ||
	    video->rwpf->format.width != fmt.format.width)
87 88 89 90 91 92 93 94 95
		return -EINVAL;

	return 0;
}

static int __vsp1_video_try_format(struct vsp1_video *video,
				   struct v4l2_pix_format_mplane *pix,
				   const struct vsp1_format_info **fmtinfo)
{
96 97 98 99 100 101 102
	static const u32 xrgb_formats[][2] = {
		{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
		{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
		{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
		{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
	};

103 104 105 106 107
	const struct vsp1_format_info *info;
	unsigned int width = pix->width;
	unsigned int height = pix->height;
	unsigned int i;

108 109
	/*
	 * Backward compatibility: replace deprecated RGB formats by their XRGB
110 111 112 113 114 115 116 117 118 119
	 * equivalent. This selects the format older userspace applications want
	 * while still exposing the new format.
	 */
	for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
		if (xrgb_formats[i][0] == pix->pixelformat) {
			pix->pixelformat = xrgb_formats[i][1];
			break;
		}
	}

120 121
	/*
	 * Retrieve format information and select the default format if the
122 123
	 * requested format isn't supported.
	 */
124
	info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
125
	if (info == NULL)
126
		info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
127 128 129 130

	pix->pixelformat = info->fourcc;
	pix->colorspace = V4L2_COLORSPACE_SRGB;
	pix->field = V4L2_FIELD_NONE;
131 132 133 134 135

	if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
	    info->fourcc == V4L2_PIX_FMT_HSV32)
		pix->hsv_enc = V4L2_HSV_ENC_256;

136 137 138 139 140 141 142 143 144 145 146
	memset(pix->reserved, 0, sizeof(pix->reserved));

	/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
	width = round_down(width, info->hsub);
	height = round_down(height, info->vsub);

	/* Clamp the width and height. */
	pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH);
	pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT,
			    VSP1_VIDEO_MAX_HEIGHT);

147 148
	/*
	 * Compute and clamp the stride and image size. While not documented in
149 150 151
	 * the datasheet, strides not aligned to a multiple of 128 bytes result
	 * in image corruption.
	 */
152
	for (i = 0; i < min(info->planes, 2U); ++i) {
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
		unsigned int hsub = i > 0 ? info->hsub : 1;
		unsigned int vsub = i > 0 ? info->vsub : 1;
		unsigned int align = 128;
		unsigned int bpl;

		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
			      pix->width / hsub * info->bpp[i] / 8,
			      round_down(65535U, align));

		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
					    * pix->height / vsub;
	}

	if (info->planes == 3) {
		/* The second and third planes must have the same stride. */
		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
	}

	pix->num_planes = info->planes;

	if (fmtinfo)
		*fmtinfo = info;

	return 0;
}

181 182 183 184 185 186 187 188 189 190 191
/* -----------------------------------------------------------------------------
 * VSP1 Partition Algorithm support
 */

static void vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
{
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
	const struct v4l2_mbus_framefmt *format;
	struct vsp1_entity *entity;
	unsigned int div_size;

192 193 194 195
	/*
	 * Partitions are computed on the size before rotation, use the format
	 * at the WPF sink.
	 */
196 197
	format = vsp1_entity_get_pad_format(&pipe->output->entity,
					    pipe->output->entity.config,
198
					    RWPF_PAD_SINK);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	div_size = format->width;

	/* Gen2 hardware doesn't require image partitioning. */
	if (vsp1->info->gen == 2) {
		pipe->div_size = div_size;
		pipe->partitions = 1;
		return;
	}

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
		unsigned int entity_max = VSP1_VIDEO_MAX_WIDTH;

		if (entity->ops->max_width) {
			entity_max = entity->ops->max_width(entity, pipe);
			if (entity_max)
				div_size = min(div_size, entity_max);
		}
	}

	pipe->div_size = div_size;
	pipe->partitions = DIV_ROUND_UP(format->width, div_size);
}

222
/**
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
 * vsp1_video_partition - Calculate the active partition output window
 *
 * @div_size: pre-determined maximum partition division size
 * @index: partition index
 *
 * Returns a v4l2_rect describing the partition window.
 */
static struct v4l2_rect vsp1_video_partition(struct vsp1_pipeline *pipe,
					     unsigned int div_size,
					     unsigned int index)
{
	const struct v4l2_mbus_framefmt *format;
	struct v4l2_rect partition;
	unsigned int modulus;

238 239 240 241
	/*
	 * Partitions are computed on the size before rotation, use the format
	 * at the WPF sink.
	 */
242 243
	format = vsp1_entity_get_pad_format(&pipe->output->entity,
					    pipe->output->entity.config,
244
					    RWPF_PAD_SINK);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

	/* A single partition simply processes the output size in full. */
	if (pipe->partitions <= 1) {
		partition.left = 0;
		partition.top = 0;
		partition.width = format->width;
		partition.height = format->height;
		return partition;
	}

	/* Initialise the partition with sane starting conditions. */
	partition.left = index * div_size;
	partition.top = 0;
	partition.width = div_size;
	partition.height = format->height;

	modulus = format->width % div_size;

263 264
	/*
	 * We need to prevent the last partition from being smaller than the
265 266 267 268 269 270 271 272
	 * *minimum* width of the hardware capabilities.
	 *
	 * If the modulus is less than half of the partition size,
	 * the penultimate partition is reduced to half, which is added
	 * to the final partition: |1234|1234|1234|12|341|
	 * to prevents this:       |1234|1234|1234|1234|1|.
	 */
	if (modulus) {
273 274
		/*
		 * pipe->partitions is 1 based, whilst index is a 0 based index.
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		 * Normalise this locally.
		 */
		unsigned int partitions = pipe->partitions - 1;

		if (modulus < div_size / 2) {
			if (index == partitions - 1) {
				/* Halve the penultimate partition. */
				partition.width = div_size / 2;
			} else if (index == partitions) {
				/* Increase the final partition. */
				partition.width = (div_size / 2) + modulus;
				partition.left -= div_size / 2;
			}
		} else if (index == partitions) {
			partition.width = modulus;
		}
	}

	return partition;
}

296 297 298 299
/* -----------------------------------------------------------------------------
 * Pipeline Management
 */

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
/*
 * vsp1_video_complete_buffer - Complete the current buffer
 * @video: the video node
 *
 * This function completes the current buffer by filling its sequence number,
 * time stamp and payload size, and hands it back to the videobuf core.
 *
 * When operating in DU output mode (deep pipeline to the DU through the LIF),
 * the VSP1 needs to constantly supply frames to the display. In that case, if
 * no other buffer is queued, reuse the one that has just been processed instead
 * of handing it back to the videobuf core.
 *
 * Return the next queued buffer or NULL if the queue is empty.
 */
static struct vsp1_vb2_buffer *
vsp1_video_complete_buffer(struct vsp1_video *video)
{
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
	struct vsp1_vb2_buffer *next = NULL;
	struct vsp1_vb2_buffer *done;
	unsigned long flags;
	unsigned int i;

	spin_lock_irqsave(&video->irqlock, flags);

	if (list_empty(&video->irqqueue)) {
		spin_unlock_irqrestore(&video->irqlock, flags);
		return NULL;
	}

	done = list_first_entry(&video->irqqueue,
				struct vsp1_vb2_buffer, queue);

	/* In DU output mode reuse the buffer if the list is singular. */
	if (pipe->lif && list_is_singular(&video->irqqueue)) {
		spin_unlock_irqrestore(&video->irqlock, flags);
		return done;
	}

	list_del(&done->queue);

	if (!list_empty(&video->irqqueue))
		next = list_first_entry(&video->irqqueue,
					struct vsp1_vb2_buffer, queue);

	spin_unlock_irqrestore(&video->irqlock, flags);

347
	done->buf.sequence = pipe->sequence;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	done->buf.vb2_buf.timestamp = ktime_get_ns();
	for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
		vb2_set_plane_payload(&done->buf.vb2_buf, i,
				      vb2_plane_size(&done->buf.vb2_buf, i));
	vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);

	return next;
}

static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
				 struct vsp1_rwpf *rwpf)
{
	struct vsp1_video *video = rwpf->video;
	struct vsp1_vb2_buffer *buf;

	buf = vsp1_video_complete_buffer(video);
	if (buf == NULL)
		return;

	video->rwpf->mem = buf->mem;
	pipe->buffers_ready |= 1 << video->pipe_index;
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
					      struct vsp1_dl_list *dl)
{
	struct vsp1_entity *entity;

	pipe->partition = vsp1_video_partition(pipe, pipe->div_size,
					       pipe->current_partition);

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
		if (entity->ops->configure)
			entity->ops->configure(entity, pipe, dl,
					       VSP1_ENTITY_PARAMS_PARTITION);
	}
}

386 387
static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
{
388
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
389
	struct vsp1_entity *entity;
390 391 392 393

	if (!pipe->dl)
		pipe->dl = vsp1_dl_list_get(pipe->output->dlm);

394 395
	/*
	 * Start with the runtime parameters as the configure operation can
396 397 398
	 * compute/cache information needed when configuring partitions. This
	 * is the case with flipping in the WPF.
	 */
399
	list_for_each_entry(entity, &pipe->entities, list_pipe) {
400
		if (entity->ops->configure)
401 402
			entity->ops->configure(entity, pipe, pipe->dl,
					       VSP1_ENTITY_PARAMS_RUNTIME);
403 404 405 406 407 408 409 410 411 412 413 414
	}

	/* Run the first partition */
	pipe->current_partition = 0;
	vsp1_video_pipeline_run_partition(pipe, pipe->dl);

	/* Process consecutive partitions as necessary */
	for (pipe->current_partition = 1;
	     pipe->current_partition < pipe->partitions;
	     pipe->current_partition++) {
		struct vsp1_dl_list *dl;

415 416
		/*
		 * Partition configuration operations will utilise
417 418 419 420 421
		 * the pipe->current_partition variable to determine
		 * the work they should complete.
		 */
		dl = vsp1_dl_list_get(pipe->output->dlm);

422 423
		/*
		 * An incomplete chain will still function, but output only
424 425 426 427 428 429
		 * the partitions that had a dl available. The frame end
		 * interrupt will be marked on the last dl in the chain.
		 */
		if (!dl) {
			dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
			break;
430
		}
431 432 433

		vsp1_video_pipeline_run_partition(pipe, dl);
		vsp1_dl_list_add_chain(pipe->dl, dl);
434 435
	}

436
	/* Complete, and commit the head display list. */
437 438 439 440 441 442 443 444 445 446 447 448 449
	vsp1_dl_list_commit(pipe->dl);
	pipe->dl = NULL;

	vsp1_pipeline_run(pipe);
}

static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe)
{
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
	enum vsp1_pipeline_state state;
	unsigned long flags;
	unsigned int i;

450 451
	spin_lock_irqsave(&pipe->irqlock, flags);

452 453 454 455 456 457 458 459 460 461 462 463 464
	/* Complete buffers on all video nodes. */
	for (i = 0; i < vsp1->info->rpf_count; ++i) {
		if (!pipe->inputs[i])
			continue;

		vsp1_video_frame_end(pipe, pipe->inputs[i]);
	}

	vsp1_video_frame_end(pipe, pipe->output);

	state = pipe->state;
	pipe->state = VSP1_PIPELINE_STOPPED;

465 466
	/*
	 * If a stop has been requested, mark the pipeline as stopped and
467 468 469 470 471 472 473 474 475 476
	 * return. Otherwise restart the pipeline if ready.
	 */
	if (state == VSP1_PIPELINE_STOPPING)
		wake_up(&pipe->wq);
	else if (vsp1_pipeline_ready(pipe))
		vsp1_video_pipeline_run(pipe);

	spin_unlock_irqrestore(&pipe->irqlock, flags);
}

477 478 479
static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
					    struct vsp1_rwpf *input,
					    struct vsp1_rwpf *output)
480
{
481
	struct media_entity_enum ent_enum;
482
	struct vsp1_entity *entity;
483
	struct media_pad *pad;
484
	bool bru_found = false;
485
	int ret;
486

487 488 489
	ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
	if (ret < 0)
		return ret;
490

491 492 493 494 495 496
	/*
	 * The main data path doesn't include the HGO or HGT, use
	 * vsp1_entity_remote_pad() to traverse the graph.
	 */

	pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
497 498

	while (1) {
499
		if (pad == NULL) {
500
			ret = -EPIPE;
501 502
			goto out;
		}
503 504

		/* We've reached a video node, that shouldn't have happened. */
505
		if (!is_media_entity_v4l2_subdev(pad->entity)) {
506
			ret = -EPIPE;
507 508
			goto out;
		}
509

510 511
		entity = to_vsp1_entity(
			media_entity_to_v4l2_subdev(pad->entity));
512

513 514
		/*
		 * A BRU is present in the pipeline, store the BRU input pad
515
		 * number in the input RPF for use when configuring the RPF.
516 517 518
		 */
		if (entity->type == VSP1_ENTITY_BRU) {
			struct vsp1_bru *bru = to_bru(&entity->subdev);
519 520

			bru->inputs[pad->index].rpf = input;
521
			input->bru_input = pad->index;
522 523

			bru_found = true;
524 525
		}

526 527 528 529 530
		/* We've reached the WPF, we're done. */
		if (entity->type == VSP1_ENTITY_WPF)
			break;

		/* Ensure the branch has no loop. */
531 532
		if (media_entity_enum_test_and_set(&ent_enum,
						   &entity->subdev.entity)) {
533
			ret = -EPIPE;
534 535
			goto out;
		}
536 537 538

		/* UDS can't be chained. */
		if (entity->type == VSP1_ENTITY_UDS) {
539
			if (pipe->uds) {
540
				ret = -EPIPE;
541 542
				goto out;
			}
543 544 545 546

			pipe->uds = entity;
			pipe->uds_input = bru_found ? pipe->bru
					: &input->entity;
547 548
		}

549
		/* Follow the source link, ignoring any HGO or HGT. */
550
		pad = &entity->pads[entity->source_pad];
551
		pad = vsp1_entity_remote_pad(pad);
552 553 554 555
	}

	/* The last entity must be the output WPF. */
	if (entity != &output->entity)
556
		ret = -EPIPE;
557

558 559 560
out:
	media_entity_enum_cleanup(&ent_enum);

561
	return ret;
562 563
}

564 565
static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
				     struct vsp1_video *video)
566
{
567
	struct media_graph graph;
568
	struct media_entity *entity = &video->video.entity;
569
	struct media_device *mdev = entity->graph_obj.mdev;
570 571 572 573
	unsigned int i;
	int ret;

	/* Walk the graph to locate the entities and video nodes. */
574
	ret = media_graph_walk_init(&graph, mdev);
575
	if (ret)
576 577
		return ret;

578
	media_graph_walk_start(&graph, entity);
579

580
	while ((entity = media_graph_walk_next(&graph))) {
581 582 583 584
		struct v4l2_subdev *subdev;
		struct vsp1_rwpf *rwpf;
		struct vsp1_entity *e;

585
		if (!is_media_entity_v4l2_subdev(entity))
586 587 588 589 590 591 592 593
			continue;

		subdev = media_entity_to_v4l2_subdev(entity);
		e = to_vsp1_entity(subdev);
		list_add_tail(&e->list_pipe, &pipe->entities);

		if (e->type == VSP1_ENTITY_RPF) {
			rwpf = to_rwpf(subdev);
594 595
			pipe->inputs[rwpf->entity.index] = rwpf;
			rwpf->video->pipe_index = ++pipe->num_inputs;
596
			rwpf->pipe = pipe;
597 598
		} else if (e->type == VSP1_ENTITY_WPF) {
			rwpf = to_rwpf(subdev);
599
			pipe->output = rwpf;
600
			rwpf->video->pipe_index = 0;
601
			rwpf->pipe = pipe;
602 603
		} else if (e->type == VSP1_ENTITY_LIF) {
			pipe->lif = e;
604 605
		} else if (e->type == VSP1_ENTITY_BRU) {
			pipe->bru = e;
606 607 608 609 610
		} else if (e->type == VSP1_ENTITY_HGO) {
			struct vsp1_hgo *hgo = to_hgo(subdev);

			pipe->hgo = e;
			hgo->histo.pipe = pipe;
611 612 613 614 615
		} else if (e->type == VSP1_ENTITY_HGT) {
			struct vsp1_hgt *hgt = to_hgt(subdev);

			pipe->hgt = e;
			hgt->histo.pipe = pipe;
616 617 618
		}
	}

619
	media_graph_walk_cleanup(&graph);
620

621
	/* We need one output and at least one input. */
622 623
	if (pipe->num_inputs == 0 || !pipe->output)
		return -EPIPE;
624

625 626
	/*
	 * Follow links downstream for each input and make sure the graph
627 628
	 * contains no loop and that all branches end at the output WPF.
	 */
629
	for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
630 631 632
		if (!pipe->inputs[i])
			continue;

633 634
		ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
						       pipe->output);
635
		if (ret < 0)
636
			return ret;
637 638 639 640 641
	}

	return 0;
}

642 643
static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
				    struct vsp1_video *video)
644
{
645 646 647 648 649 650 651 652 653 654
	vsp1_pipeline_init(pipe);

	pipe->frame_end = vsp1_video_pipeline_frame_end;

	return vsp1_video_pipeline_build(pipe, video);
}

static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
{
	struct vsp1_pipeline *pipe;
655 656
	int ret;

657 658
	/*
	 * Get a pipeline object for the video node. If a pipeline has already
659 660 661 662 663 664 665 666
	 * been allocated just increment its reference count and return it.
	 * Otherwise allocate a new pipeline and initialize it, it will be freed
	 * when the last reference is released.
	 */
	if (!video->rwpf->pipe) {
		pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
		if (!pipe)
			return ERR_PTR(-ENOMEM);
667

668 669 670 671 672 673 674 675 676
		ret = vsp1_video_pipeline_init(pipe, video);
		if (ret < 0) {
			vsp1_pipeline_reset(pipe);
			kfree(pipe);
			return ERR_PTR(ret);
		}
	} else {
		pipe = video->rwpf->pipe;
		kref_get(&pipe->kref);
677 678
	}

679
	return pipe;
680 681
}

682
static void vsp1_video_pipeline_release(struct kref *kref)
683
{
684
	struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
685

686 687 688
	vsp1_pipeline_reset(pipe);
	kfree(pipe);
}
689

690 691 692 693 694 695 696
static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
{
	struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;

	mutex_lock(&mdev->graph_mutex);
	kref_put(&pipe->kref, vsp1_video_pipeline_release);
	mutex_unlock(&mdev->graph_mutex);
697 698 699 700 701 702 703
}

/* -----------------------------------------------------------------------------
 * videobuf2 Queue Operations
 */

static int
704
vsp1_video_queue_setup(struct vb2_queue *vq,
705 706
		       unsigned int *nbuffers, unsigned int *nplanes,
		       unsigned int sizes[], struct device *alloc_devs[])
707 708
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
709
	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
710 711
	unsigned int i;

712 713
	if (*nplanes) {
		if (*nplanes != format->num_planes)
714 715
			return -EINVAL;

716
		for (i = 0; i < *nplanes; i++)
717 718 719
			if (sizes[i] < format->plane_fmt[i].sizeimage)
				return -EINVAL;
		return 0;
720 721 722 723
	}

	*nplanes = format->num_planes;

724
	for (i = 0; i < format->num_planes; ++i)
725 726 727 728 729 730 731
		sizes[i] = format->plane_fmt[i].sizeimage;

	return 0;
}

static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
{
732
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
733
	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
734
	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
735
	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
736 737 738 739 740 741
	unsigned int i;

	if (vb->num_planes < format->num_planes)
		return -EINVAL;

	for (i = 0; i < vb->num_planes; ++i) {
742
		buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
743

744
		if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
745 746 747
			return -EINVAL;
	}

748
	for ( ; i < 3; ++i)
749 750
		buf->mem.addr[i] = 0;

751 752 753 754 755
	return 0;
}

static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
{
756
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
757
	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
758
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
759
	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
760 761 762 763 764 765 766 767 768 769 770 771 772
	unsigned long flags;
	bool empty;

	spin_lock_irqsave(&video->irqlock, flags);
	empty = list_empty(&video->irqqueue);
	list_add_tail(&buf->queue, &video->irqqueue);
	spin_unlock_irqrestore(&video->irqlock, flags);

	if (!empty)
		return;

	spin_lock_irqsave(&pipe->irqlock, flags);

773
	video->rwpf->mem = buf->mem;
774 775 776 777
	pipe->buffers_ready |= 1 << video->pipe_index;

	if (vb2_is_streaming(&video->queue) &&
	    vsp1_pipeline_ready(pipe))
778
		vsp1_video_pipeline_run(pipe);
779 780 781 782

	spin_unlock_irqrestore(&pipe->irqlock, flags);
}

783 784 785 786
static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
{
	struct vsp1_entity *entity;

787 788 789
	/* Determine this pipelines sizes for image partitioning support. */
	vsp1_video_pipeline_setup_partitions(pipe);

790 791 792 793 794 795 796 797
	/* Prepare the display list. */
	pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
	if (!pipe->dl)
		return -ENOMEM;

	if (pipe->uds) {
		struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);

798 799
		/*
		 * If a BRU is present in the pipeline before the UDS, the alpha
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		 * component doesn't need to be scaled as the BRU output alpha
		 * value is fixed to 255. Otherwise we need to scale the alpha
		 * component only when available at the input RPF.
		 */
		if (pipe->uds_input->type == VSP1_ENTITY_BRU) {
			uds->scale_alpha = false;
		} else {
			struct vsp1_rwpf *rpf =
				to_rwpf(&pipe->uds_input->subdev);

			uds->scale_alpha = rpf->fmtinfo->alpha;
		}
	}

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
815
		vsp1_entity_route_setup(entity, pipe, pipe->dl);
816

817
		if (entity->ops->configure)
818 819
			entity->ops->configure(entity, pipe, pipe->dl,
					       VSP1_ENTITY_PARAMS_INIT);
820 821
	}

822
	return 0;
823 824
}

825 826 827
static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
828
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
829
	bool start_pipeline = false;
830 831 832 833
	unsigned long flags;
	int ret;

	mutex_lock(&pipe->lock);
834
	if (pipe->stream_count == pipe->num_inputs) {
835 836 837 838
		ret = vsp1_video_setup_pipeline(pipe);
		if (ret < 0) {
			mutex_unlock(&pipe->lock);
			return ret;
839
		}
840 841

		start_pipeline = true;
842 843 844 845 846
	}

	pipe->stream_count++;
	mutex_unlock(&pipe->lock);

847 848 849 850 851 852 853 854 855 856
	/*
	 * vsp1_pipeline_ready() is not sufficient to establish that all streams
	 * are prepared and the pipeline is configured, as multiple streams
	 * can race through streamon with buffers already queued; Therefore we
	 * don't even attempt to start the pipeline until the last stream has
	 * called through here.
	 */
	if (!start_pipeline)
		return 0;

857 858
	spin_lock_irqsave(&pipe->irqlock, flags);
	if (vsp1_pipeline_ready(pipe))
859
		vsp1_video_pipeline_run(pipe);
860 861 862 863 864
	spin_unlock_irqrestore(&pipe->irqlock, flags);

	return 0;
}

865
static void vsp1_video_stop_streaming(struct vb2_queue *vq)
866 867
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
868
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
869
	struct vsp1_vb2_buffer *buffer;
870 871 872
	unsigned long flags;
	int ret;

873 874
	/*
	 * Clear the buffers ready flag to make sure the device won't be started
875 876 877 878 879 880
	 * by a QBUF on the video node on the other side of the pipeline.
	 */
	spin_lock_irqsave(&video->irqlock, flags);
	pipe->buffers_ready &= ~(1 << video->pipe_index);
	spin_unlock_irqrestore(&video->irqlock, flags);

881
	mutex_lock(&pipe->lock);
882
	if (--pipe->stream_count == pipe->num_inputs) {
883 884 885 886
		/* Stop the pipeline. */
		ret = vsp1_pipeline_stop(pipe);
		if (ret == -ETIMEDOUT)
			dev_err(video->vsp1->dev, "pipeline stop timeout\n");
887 888 889

		vsp1_dl_list_put(pipe->dl);
		pipe->dl = NULL;
890 891 892
	}
	mutex_unlock(&pipe->lock);

893
	media_pipeline_stop(&video->video.entity);
894
	vsp1_video_pipeline_put(pipe);
895 896 897

	/* Remove all buffers from the IRQ queue. */
	spin_lock_irqsave(&video->irqlock, flags);
898
	list_for_each_entry(buffer, &video->irqqueue, queue)
899
		vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
900 901 902 903
	INIT_LIST_HEAD(&video->irqqueue);
	spin_unlock_irqrestore(&video->irqlock, flags);
}

904
static const struct vb2_ops vsp1_video_queue_qops = {
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	.queue_setup = vsp1_video_queue_setup,
	.buf_prepare = vsp1_video_buffer_prepare,
	.buf_queue = vsp1_video_buffer_queue,
	.wait_prepare = vb2_ops_wait_prepare,
	.wait_finish = vb2_ops_wait_finish,
	.start_streaming = vsp1_video_start_streaming,
	.stop_streaming = vsp1_video_stop_streaming,
};

/* -----------------------------------------------------------------------------
 * V4L2 ioctls
 */

static int
vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
			  | V4L2_CAP_VIDEO_CAPTURE_MPLANE
			  | V4L2_CAP_VIDEO_OUTPUT_MPLANE;

	if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
		cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
				 | V4L2_CAP_STREAMING;
	else
		cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
				 | V4L2_CAP_STREAMING;

	strlcpy(cap->driver, "vsp1", sizeof(cap->driver));
	strlcpy(cap->card, video->video.name, sizeof(cap->card));
	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
		 dev_name(video->vsp1->dev));

	return 0;
}

static int
vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	if (format->type != video->queue.type)
		return -EINVAL;

	mutex_lock(&video->lock);
953
	format->fmt.pix_mp = video->rwpf->format;
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	mutex_unlock(&video->lock);

	return 0;
}

static int
vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	if (format->type != video->queue.type)
		return -EINVAL;

	return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
}

static int
vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
	const struct vsp1_format_info *info;
	int ret;

	if (format->type != video->queue.type)
		return -EINVAL;

	ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
	if (ret < 0)
		return ret;

	mutex_lock(&video->lock);

	if (vb2_is_busy(&video->queue)) {
		ret = -EBUSY;
		goto done;
	}

993 994
	video->rwpf->format = format->fmt.pix_mp;
	video->rwpf->fmtinfo = info;
995 996 997 998 999 1000 1001 1002 1003 1004 1005

done:
	mutex_unlock(&video->lock);
	return ret;
}

static int
vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1006
	struct media_device *mdev = &video->vsp1->media_dev;
1007 1008 1009 1010 1011 1012
	struct vsp1_pipeline *pipe;
	int ret;

	if (video->queue.owner && video->queue.owner != file->private_data)
		return -EBUSY;

1013 1014
	/*
	 * Get a pipeline for the video node and start streaming on it. No link
1015 1016
	 * touching an entity in the pipeline can be activated or deactivated
	 * once streaming is started.
1017
	 */
1018
	mutex_lock(&mdev->graph_mutex);
1019

1020 1021 1022 1023 1024 1025
	pipe = vsp1_video_pipeline_get(video);
	if (IS_ERR(pipe)) {
		mutex_unlock(&mdev->graph_mutex);
		return PTR_ERR(pipe);
	}

1026
	ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
1027 1028 1029 1030 1031 1032
	if (ret < 0) {
		mutex_unlock(&mdev->graph_mutex);
		goto err_pipe;
	}

	mutex_unlock(&mdev->graph_mutex);
1033

1034 1035
	/*
	 * Verify that the configured format matches the output of the connected
1036 1037 1038 1039 1040 1041 1042 1043 1044
	 * subdev.
	 */
	ret = vsp1_video_verify_format(video);
	if (ret < 0)
		goto err_stop;

	/* Start the queue. */
	ret = vb2_streamon(&video->queue, type);
	if (ret < 0)
1045
		goto err_stop;
1046 1047 1048 1049

	return 0;

err_stop:
1050
	media_pipeline_stop(&video->video.entity);
1051 1052
err_pipe:
	vsp1_video_pipeline_put(pipe);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	return ret;
}

static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
	.vidioc_querycap		= vsp1_video_querycap,
	.vidioc_g_fmt_vid_cap_mplane	= vsp1_video_get_format,
	.vidioc_s_fmt_vid_cap_mplane	= vsp1_video_set_format,
	.vidioc_try_fmt_vid_cap_mplane	= vsp1_video_try_format,
	.vidioc_g_fmt_vid_out_mplane	= vsp1_video_get_format,
	.vidioc_s_fmt_vid_out_mplane	= vsp1_video_set_format,
	.vidioc_try_fmt_vid_out_mplane	= vsp1_video_try_format,
	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
	.vidioc_querybuf		= vb2_ioctl_querybuf,
	.vidioc_qbuf			= vb2_ioctl_qbuf,
	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
1068
	.vidioc_expbuf			= vb2_ioctl_expbuf,
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
	.vidioc_streamon		= vsp1_video_streamon,
	.vidioc_streamoff		= vb2_ioctl_streamoff,
};

/* -----------------------------------------------------------------------------
 * V4L2 File Operations
 */

static int vsp1_video_open(struct file *file)
{
	struct vsp1_video *video = video_drvdata(file);
	struct v4l2_fh *vfh;
	int ret = 0;

	vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
	if (vfh == NULL)
		return -ENOMEM;

	v4l2_fh_init(vfh, &video->video);
	v4l2_fh_add(vfh);

	file->private_data = vfh;

1094 1095
	ret = vsp1_device_get(video->vsp1);
	if (ret < 0) {
1096
		v4l2_fh_del(vfh);
1097
		v4l2_fh_exit(vfh);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		kfree(vfh);
	}

	return ret;
}

static int vsp1_video_release(struct file *file)
{
	struct vsp1_video *video = video_drvdata(file);
	struct v4l2_fh *vfh = file->private_data;

	mutex_lock(&video->lock);
	if (video->queue.owner == vfh) {
		vb2_queue_release(&video->queue);
		video->queue.owner = NULL;
	}
	mutex_unlock(&video->lock);

	vsp1_device_put(video->vsp1);

	v4l2_fh_release(file);

	file->private_data = NULL;

	return 0;
}

1125
static const struct v4l2_file_operations vsp1_video_fops = {
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	.owner = THIS_MODULE,
	.unlocked_ioctl = video_ioctl2,
	.open = vsp1_video_open,
	.release = vsp1_video_release,
	.poll = vb2_fop_poll,
	.mmap = vb2_fop_mmap,
};

/* -----------------------------------------------------------------------------
 * Initialization and Cleanup
 */

1138 1139
struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
				     struct vsp1_rwpf *rwpf)
1140
{
1141
	struct vsp1_video *video;
1142 1143 1144
	const char *direction;
	int ret;

1145 1146 1147
	video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
	if (!video)
		return ERR_PTR(-ENOMEM);
1148

1149
	rwpf->video = video;
1150 1151 1152 1153 1154

	video->vsp1 = vsp1;
	video->rwpf = rwpf;

	if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1155
		direction = "input";
1156
		video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1157 1158
		video->pad.flags = MEDIA_PAD_FL_SOURCE;
		video->video.vfl_dir = VFL_DIR_TX;
1159 1160 1161 1162 1163
	} else {
		direction = "output";
		video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
		video->pad.flags = MEDIA_PAD_FL_SINK;
		video->video.vfl_dir = VFL_DIR_RX;
1164 1165 1166 1167 1168 1169 1170
	}

	mutex_init(&video->lock);
	spin_lock_init(&video->irqlock);
	INIT_LIST_HEAD(&video->irqqueue);

	/* Initialize the media entity... */
1171
	ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1172
	if (ret < 0)
1173
		return ERR_PTR(ret);
1174 1175

	/* ... and the format ... */
1176
	rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1177 1178
	rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
	rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1179
	__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1180 1181 1182 1183 1184

	/* ... and the video node... */
	video->video.v4l2_dev = &video->vsp1->v4l2_dev;
	video->video.fops = &vsp1_video_fops;
	snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1185
		 rwpf->entity.subdev.name, direction);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	video->video.vfl_type = VFL_TYPE_GRABBER;
	video->video.release = video_device_release_empty;
	video->video.ioctl_ops = &vsp1_video_ioctl_ops;

	video_set_drvdata(&video->video, video);

	video->queue.type = video->type;
	video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
	video->queue.lock = &video->lock;
	video->queue.drv_priv = video;
1196
	video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1197 1198
	video->queue.ops = &vsp1_video_queue_qops;
	video->queue.mem_ops = &vb2_dma_contig_memops;
1199
	video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1200
	video->queue.dev = video->vsp1->bus_master;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	ret = vb2_queue_init(&video->queue);
	if (ret < 0) {
		dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
		goto error;
	}

	/* ... and register the video device. */
	video->video.queue = &video->queue;
	ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
	if (ret < 0) {
		dev_err(video->vsp1->dev, "failed to register video device\n");
		goto error;
	}

1215
	return video;
1216 1217 1218

error:
	vsp1_video_cleanup(video);
1219
	return ERR_PTR(ret);
1220 1221 1222 1223 1224 1225 1226 1227 1228
}

void vsp1_video_cleanup(struct vsp1_video *video)
{
	if (video_is_registered(&video->video))
		video_unregister_device(&video->video);

	media_entity_cleanup(&video->video.entity);
}