vsp1_video.c 31.0 KB
Newer Older
1 2 3
/*
 * vsp1_video.c  --  R-Car VSP1 Video Node
 *
4
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/v4l2-mediabus.h>
#include <linux/videodev2.h>
20
#include <linux/wait.h>
21 22 23 24 25 26

#include <media/media-entity.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-subdev.h>
27
#include <media/videobuf2-v4l2.h>
28 29 30
#include <media/videobuf2-dma-contig.h>

#include "vsp1.h"
31
#include "vsp1_bru.h"
32
#include "vsp1_dl.h"
33
#include "vsp1_entity.h"
34
#include "vsp1_pipe.h"
35
#include "vsp1_rwpf.h"
36
#include "vsp1_uds.h"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include "vsp1_video.h"

#define VSP1_VIDEO_DEF_FORMAT		V4L2_PIX_FMT_YUYV
#define VSP1_VIDEO_DEF_WIDTH		1024
#define VSP1_VIDEO_DEF_HEIGHT		768

#define VSP1_VIDEO_MIN_WIDTH		2U
#define VSP1_VIDEO_MAX_WIDTH		8190U
#define VSP1_VIDEO_MIN_HEIGHT		2U
#define VSP1_VIDEO_MAX_HEIGHT		8190U

/* -----------------------------------------------------------------------------
 * Helper functions
 */

static struct v4l2_subdev *
vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
{
	struct media_pad *remote;

	remote = media_entity_remote_pad(local);
58
	if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
		return NULL;

	if (pad)
		*pad = remote->index;

	return media_entity_to_v4l2_subdev(remote->entity);
}

static int vsp1_video_verify_format(struct vsp1_video *video)
{
	struct v4l2_subdev_format fmt;
	struct v4l2_subdev *subdev;
	int ret;

	subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
	if (subdev == NULL)
		return -EINVAL;

	fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
	ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
	if (ret < 0)
		return ret == -ENOIOCTLCMD ? -EINVAL : ret;

82 83 84
	if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
	    video->rwpf->format.height != fmt.format.height ||
	    video->rwpf->format.width != fmt.format.width)
85 86 87 88 89 90 91 92 93
		return -EINVAL;

	return 0;
}

static int __vsp1_video_try_format(struct vsp1_video *video,
				   struct v4l2_pix_format_mplane *pix,
				   const struct vsp1_format_info **fmtinfo)
{
94 95 96 97 98 99 100
	static const u32 xrgb_formats[][2] = {
		{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
		{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
		{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
		{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
	};

101 102 103 104 105
	const struct vsp1_format_info *info;
	unsigned int width = pix->width;
	unsigned int height = pix->height;
	unsigned int i;

106 107 108 109 110 111 112 113 114 115 116
	/* Backward compatibility: replace deprecated RGB formats by their XRGB
	 * equivalent. This selects the format older userspace applications want
	 * while still exposing the new format.
	 */
	for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
		if (xrgb_formats[i][0] == pix->pixelformat) {
			pix->pixelformat = xrgb_formats[i][1];
			break;
		}
	}

117 118 119
	/* Retrieve format information and select the default format if the
	 * requested format isn't supported.
	 */
120
	info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
121
	if (info == NULL)
122
		info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

	pix->pixelformat = info->fourcc;
	pix->colorspace = V4L2_COLORSPACE_SRGB;
	pix->field = V4L2_FIELD_NONE;
	memset(pix->reserved, 0, sizeof(pix->reserved));

	/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
	width = round_down(width, info->hsub);
	height = round_down(height, info->vsub);

	/* Clamp the width and height. */
	pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH);
	pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT,
			    VSP1_VIDEO_MAX_HEIGHT);

	/* Compute and clamp the stride and image size. While not documented in
	 * the datasheet, strides not aligned to a multiple of 128 bytes result
	 * in image corruption.
	 */
142
	for (i = 0; i < min(info->planes, 2U); ++i) {
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
		unsigned int hsub = i > 0 ? info->hsub : 1;
		unsigned int vsub = i > 0 ? info->vsub : 1;
		unsigned int align = 128;
		unsigned int bpl;

		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
			      pix->width / hsub * info->bpp[i] / 8,
			      round_down(65535U, align));

		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
					    * pix->height / vsub;
	}

	if (info->planes == 3) {
		/* The second and third planes must have the same stride. */
		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
	}

	pix->num_planes = info->planes;

	if (fmtinfo)
		*fmtinfo = info;

	return 0;
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* -----------------------------------------------------------------------------
 * VSP1 Partition Algorithm support
 */

static void vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
{
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
	const struct v4l2_mbus_framefmt *format;
	struct vsp1_entity *entity;
	unsigned int div_size;

	format = vsp1_entity_get_pad_format(&pipe->output->entity,
					    pipe->output->entity.config,
					    RWPF_PAD_SOURCE);
	div_size = format->width;

	/* Gen2 hardware doesn't require image partitioning. */
	if (vsp1->info->gen == 2) {
		pipe->div_size = div_size;
		pipe->partitions = 1;
		return;
	}

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
		unsigned int entity_max = VSP1_VIDEO_MAX_WIDTH;

		if (entity->ops->max_width) {
			entity_max = entity->ops->max_width(entity, pipe);
			if (entity_max)
				div_size = min(div_size, entity_max);
		}
	}

	pipe->div_size = div_size;
	pipe->partitions = DIV_ROUND_UP(format->width, div_size);
}

208
/**
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
 * vsp1_video_partition - Calculate the active partition output window
 *
 * @div_size: pre-determined maximum partition division size
 * @index: partition index
 *
 * Returns a v4l2_rect describing the partition window.
 */
static struct v4l2_rect vsp1_video_partition(struct vsp1_pipeline *pipe,
					     unsigned int div_size,
					     unsigned int index)
{
	const struct v4l2_mbus_framefmt *format;
	struct v4l2_rect partition;
	unsigned int modulus;

	format = vsp1_entity_get_pad_format(&pipe->output->entity,
					    pipe->output->entity.config,
					    RWPF_PAD_SOURCE);

	/* A single partition simply processes the output size in full. */
	if (pipe->partitions <= 1) {
		partition.left = 0;
		partition.top = 0;
		partition.width = format->width;
		partition.height = format->height;
		return partition;
	}

	/* Initialise the partition with sane starting conditions. */
	partition.left = index * div_size;
	partition.top = 0;
	partition.width = div_size;
	partition.height = format->height;

	modulus = format->width % div_size;

245 246
	/*
	 * We need to prevent the last partition from being smaller than the
247 248 249 250 251 252 253 254
	 * *minimum* width of the hardware capabilities.
	 *
	 * If the modulus is less than half of the partition size,
	 * the penultimate partition is reduced to half, which is added
	 * to the final partition: |1234|1234|1234|12|341|
	 * to prevents this:       |1234|1234|1234|1234|1|.
	 */
	if (modulus) {
255 256
		/*
		 * pipe->partitions is 1 based, whilst index is a 0 based index.
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
		 * Normalise this locally.
		 */
		unsigned int partitions = pipe->partitions - 1;

		if (modulus < div_size / 2) {
			if (index == partitions - 1) {
				/* Halve the penultimate partition. */
				partition.width = div_size / 2;
			} else if (index == partitions) {
				/* Increase the final partition. */
				partition.width = (div_size / 2) + modulus;
				partition.left -= div_size / 2;
			}
		} else if (index == partitions) {
			partition.width = modulus;
		}
	}

	return partition;
}

278 279 280 281
/* -----------------------------------------------------------------------------
 * Pipeline Management
 */

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/*
 * vsp1_video_complete_buffer - Complete the current buffer
 * @video: the video node
 *
 * This function completes the current buffer by filling its sequence number,
 * time stamp and payload size, and hands it back to the videobuf core.
 *
 * When operating in DU output mode (deep pipeline to the DU through the LIF),
 * the VSP1 needs to constantly supply frames to the display. In that case, if
 * no other buffer is queued, reuse the one that has just been processed instead
 * of handing it back to the videobuf core.
 *
 * Return the next queued buffer or NULL if the queue is empty.
 */
static struct vsp1_vb2_buffer *
vsp1_video_complete_buffer(struct vsp1_video *video)
{
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
	struct vsp1_vb2_buffer *next = NULL;
	struct vsp1_vb2_buffer *done;
	unsigned long flags;
	unsigned int i;

	spin_lock_irqsave(&video->irqlock, flags);

	if (list_empty(&video->irqqueue)) {
		spin_unlock_irqrestore(&video->irqlock, flags);
		return NULL;
	}

	done = list_first_entry(&video->irqqueue,
				struct vsp1_vb2_buffer, queue);

	/* In DU output mode reuse the buffer if the list is singular. */
	if (pipe->lif && list_is_singular(&video->irqqueue)) {
		spin_unlock_irqrestore(&video->irqlock, flags);
		return done;
	}

	list_del(&done->queue);

	if (!list_empty(&video->irqqueue))
		next = list_first_entry(&video->irqqueue,
					struct vsp1_vb2_buffer, queue);

	spin_unlock_irqrestore(&video->irqlock, flags);

329
	done->buf.sequence = pipe->sequence;
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	done->buf.vb2_buf.timestamp = ktime_get_ns();
	for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
		vb2_set_plane_payload(&done->buf.vb2_buf, i,
				      vb2_plane_size(&done->buf.vb2_buf, i));
	vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);

	return next;
}

static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
				 struct vsp1_rwpf *rwpf)
{
	struct vsp1_video *video = rwpf->video;
	struct vsp1_vb2_buffer *buf;

	buf = vsp1_video_complete_buffer(video);
	if (buf == NULL)
		return;

	video->rwpf->mem = buf->mem;
	pipe->buffers_ready |= 1 << video->pipe_index;
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
					      struct vsp1_dl_list *dl)
{
	struct vsp1_entity *entity;

	pipe->partition = vsp1_video_partition(pipe, pipe->div_size,
					       pipe->current_partition);

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
		if (entity->ops->configure)
			entity->ops->configure(entity, pipe, dl,
					       VSP1_ENTITY_PARAMS_PARTITION);
	}
}

368 369
static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
{
370
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
371
	struct vsp1_entity *entity;
372 373 374 375

	if (!pipe->dl)
		pipe->dl = vsp1_dl_list_get(pipe->output->dlm);

376 377
	/*
	 * Start with the runtime parameters as the configure operation can
378 379 380
	 * compute/cache information needed when configuring partitions. This
	 * is the case with flipping in the WPF.
	 */
381
	list_for_each_entry(entity, &pipe->entities, list_pipe) {
382
		if (entity->ops->configure)
383 384
			entity->ops->configure(entity, pipe, pipe->dl,
					       VSP1_ENTITY_PARAMS_RUNTIME);
385 386 387 388 389 390 391 392 393 394 395 396
	}

	/* Run the first partition */
	pipe->current_partition = 0;
	vsp1_video_pipeline_run_partition(pipe, pipe->dl);

	/* Process consecutive partitions as necessary */
	for (pipe->current_partition = 1;
	     pipe->current_partition < pipe->partitions;
	     pipe->current_partition++) {
		struct vsp1_dl_list *dl;

397 398
		/*
		 * Partition configuration operations will utilise
399 400 401 402 403
		 * the pipe->current_partition variable to determine
		 * the work they should complete.
		 */
		dl = vsp1_dl_list_get(pipe->output->dlm);

404 405
		/*
		 * An incomplete chain will still function, but output only
406 407 408 409 410 411
		 * the partitions that had a dl available. The frame end
		 * interrupt will be marked on the last dl in the chain.
		 */
		if (!dl) {
			dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
			break;
412
		}
413 414 415

		vsp1_video_pipeline_run_partition(pipe, dl);
		vsp1_dl_list_add_chain(pipe->dl, dl);
416 417
	}

418
	/* Complete, and commit the head display list. */
419 420 421 422 423 424 425 426 427 428 429 430 431
	vsp1_dl_list_commit(pipe->dl);
	pipe->dl = NULL;

	vsp1_pipeline_run(pipe);
}

static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe)
{
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
	enum vsp1_pipeline_state state;
	unsigned long flags;
	unsigned int i;

432 433
	spin_lock_irqsave(&pipe->irqlock, flags);

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	/* Complete buffers on all video nodes. */
	for (i = 0; i < vsp1->info->rpf_count; ++i) {
		if (!pipe->inputs[i])
			continue;

		vsp1_video_frame_end(pipe, pipe->inputs[i]);
	}

	vsp1_video_frame_end(pipe, pipe->output);

	state = pipe->state;
	pipe->state = VSP1_PIPELINE_STOPPED;

	/* If a stop has been requested, mark the pipeline as stopped and
	 * return. Otherwise restart the pipeline if ready.
	 */
	if (state == VSP1_PIPELINE_STOPPING)
		wake_up(&pipe->wq);
	else if (vsp1_pipeline_ready(pipe))
		vsp1_video_pipeline_run(pipe);

	spin_unlock_irqrestore(&pipe->irqlock, flags);
}

458 459 460
static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
					    struct vsp1_rwpf *input,
					    struct vsp1_rwpf *output)
461
{
462
	struct media_entity_enum ent_enum;
463
	struct vsp1_entity *entity;
464
	struct media_pad *pad;
465
	bool bru_found = false;
466
	int ret;
467

468 469 470
	ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
	if (ret < 0)
		return ret;
471

472 473 474
	pad = media_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);

	while (1) {
475
		if (pad == NULL) {
476
			ret = -EPIPE;
477 478
			goto out;
		}
479 480

		/* We've reached a video node, that shouldn't have happened. */
481
		if (!is_media_entity_v4l2_subdev(pad->entity)) {
482
			ret = -EPIPE;
483 484
			goto out;
		}
485

486 487
		entity = to_vsp1_entity(
			media_entity_to_v4l2_subdev(pad->entity));
488

489 490
		/* A BRU is present in the pipeline, store the BRU input pad
		 * number in the input RPF for use when configuring the RPF.
491 492 493
		 */
		if (entity->type == VSP1_ENTITY_BRU) {
			struct vsp1_bru *bru = to_bru(&entity->subdev);
494 495

			bru->inputs[pad->index].rpf = input;
496
			input->bru_input = pad->index;
497 498

			bru_found = true;
499 500
		}

501 502 503 504 505
		/* We've reached the WPF, we're done. */
		if (entity->type == VSP1_ENTITY_WPF)
			break;

		/* Ensure the branch has no loop. */
506 507
		if (media_entity_enum_test_and_set(&ent_enum,
						   &entity->subdev.entity)) {
508
			ret = -EPIPE;
509 510
			goto out;
		}
511 512 513

		/* UDS can't be chained. */
		if (entity->type == VSP1_ENTITY_UDS) {
514
			if (pipe->uds) {
515
				ret = -EPIPE;
516 517
				goto out;
			}
518 519 520 521

			pipe->uds = entity;
			pipe->uds_input = bru_found ? pipe->bru
					: &input->entity;
522 523 524 525 526 527 528 529 530 531 532 533 534
		}

		/* Follow the source link. The link setup operations ensure
		 * that the output fan-out can't be more than one, there is thus
		 * no need to verify here that only a single source link is
		 * activated.
		 */
		pad = &entity->pads[entity->source_pad];
		pad = media_entity_remote_pad(pad);
	}

	/* The last entity must be the output WPF. */
	if (entity != &output->entity)
535
		ret = -EPIPE;
536

537 538 539
out:
	media_entity_enum_cleanup(&ent_enum);

540
	return ret;
541 542
}

543 544
static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
				     struct vsp1_video *video)
545 546 547
{
	struct media_entity_graph graph;
	struct media_entity *entity = &video->video.entity;
548
	struct media_device *mdev = entity->graph_obj.mdev;
549 550 551 552
	unsigned int i;
	int ret;

	/* Walk the graph to locate the entities and video nodes. */
553
	ret = media_entity_graph_walk_init(&graph, mdev);
554
	if (ret)
555 556
		return ret;

557 558 559 560 561 562 563
	media_entity_graph_walk_start(&graph, entity);

	while ((entity = media_entity_graph_walk_next(&graph))) {
		struct v4l2_subdev *subdev;
		struct vsp1_rwpf *rwpf;
		struct vsp1_entity *e;

564
		if (!is_media_entity_v4l2_subdev(entity))
565 566 567 568 569 570 571 572
			continue;

		subdev = media_entity_to_v4l2_subdev(entity);
		e = to_vsp1_entity(subdev);
		list_add_tail(&e->list_pipe, &pipe->entities);

		if (e->type == VSP1_ENTITY_RPF) {
			rwpf = to_rwpf(subdev);
573 574
			pipe->inputs[rwpf->entity.index] = rwpf;
			rwpf->video->pipe_index = ++pipe->num_inputs;
575
			rwpf->pipe = pipe;
576 577
		} else if (e->type == VSP1_ENTITY_WPF) {
			rwpf = to_rwpf(subdev);
578
			pipe->output = rwpf;
579
			rwpf->video->pipe_index = 0;
580
			rwpf->pipe = pipe;
581 582
		} else if (e->type == VSP1_ENTITY_LIF) {
			pipe->lif = e;
583 584
		} else if (e->type == VSP1_ENTITY_BRU) {
			pipe->bru = e;
585 586 587
		}
	}

588 589
	media_entity_graph_walk_cleanup(&graph);

590
	/* We need one output and at least one input. */
591 592
	if (pipe->num_inputs == 0 || !pipe->output)
		return -EPIPE;
593 594 595 596

	/* Follow links downstream for each input and make sure the graph
	 * contains no loop and that all branches end at the output WPF.
	 */
597
	for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
598 599 600
		if (!pipe->inputs[i])
			continue;

601 602
		ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
						       pipe->output);
603
		if (ret < 0)
604
			return ret;
605 606 607 608 609
	}

	return 0;
}

610 611
static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
				    struct vsp1_video *video)
612
{
613 614 615 616 617 618 619 620 621 622
	vsp1_pipeline_init(pipe);

	pipe->frame_end = vsp1_video_pipeline_frame_end;

	return vsp1_video_pipeline_build(pipe, video);
}

static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
{
	struct vsp1_pipeline *pipe;
623 624
	int ret;

625 626 627 628 629 630 631 632 633
	/* Get a pipeline object for the video node. If a pipeline has already
	 * been allocated just increment its reference count and return it.
	 * Otherwise allocate a new pipeline and initialize it, it will be freed
	 * when the last reference is released.
	 */
	if (!video->rwpf->pipe) {
		pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
		if (!pipe)
			return ERR_PTR(-ENOMEM);
634

635 636 637 638 639 640 641 642 643
		ret = vsp1_video_pipeline_init(pipe, video);
		if (ret < 0) {
			vsp1_pipeline_reset(pipe);
			kfree(pipe);
			return ERR_PTR(ret);
		}
	} else {
		pipe = video->rwpf->pipe;
		kref_get(&pipe->kref);
644 645
	}

646
	return pipe;
647 648
}

649
static void vsp1_video_pipeline_release(struct kref *kref)
650
{
651
	struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
652

653 654 655
	vsp1_pipeline_reset(pipe);
	kfree(pipe);
}
656

657 658 659 660 661 662 663
static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
{
	struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;

	mutex_lock(&mdev->graph_mutex);
	kref_put(&pipe->kref, vsp1_video_pipeline_release);
	mutex_unlock(&mdev->graph_mutex);
664 665 666 667 668 669 670
}

/* -----------------------------------------------------------------------------
 * videobuf2 Queue Operations
 */

static int
671
vsp1_video_queue_setup(struct vb2_queue *vq,
672 673
		       unsigned int *nbuffers, unsigned int *nplanes,
		       unsigned int sizes[], struct device *alloc_devs[])
674 675
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
676
	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
677 678
	unsigned int i;

679 680
	if (*nplanes) {
		if (*nplanes != format->num_planes)
681 682
			return -EINVAL;

683
		for (i = 0; i < *nplanes; i++)
684 685 686
			if (sizes[i] < format->plane_fmt[i].sizeimage)
				return -EINVAL;
		return 0;
687 688 689 690
	}

	*nplanes = format->num_planes;

691
	for (i = 0; i < format->num_planes; ++i)
692 693 694 695 696 697 698
		sizes[i] = format->plane_fmt[i].sizeimage;

	return 0;
}

static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
{
699
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
700
	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
701
	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
702
	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
703 704 705 706 707 708
	unsigned int i;

	if (vb->num_planes < format->num_planes)
		return -EINVAL;

	for (i = 0; i < vb->num_planes; ++i) {
709
		buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
710

711
		if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
712 713 714
			return -EINVAL;
	}

715
	for ( ; i < 3; ++i)
716 717
		buf->mem.addr[i] = 0;

718 719 720 721 722
	return 0;
}

static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
{
723
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
724
	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
725
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
726
	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
727 728 729 730 731 732 733 734 735 736 737 738 739
	unsigned long flags;
	bool empty;

	spin_lock_irqsave(&video->irqlock, flags);
	empty = list_empty(&video->irqqueue);
	list_add_tail(&buf->queue, &video->irqqueue);
	spin_unlock_irqrestore(&video->irqlock, flags);

	if (!empty)
		return;

	spin_lock_irqsave(&pipe->irqlock, flags);

740
	video->rwpf->mem = buf->mem;
741 742 743 744
	pipe->buffers_ready |= 1 << video->pipe_index;

	if (vb2_is_streaming(&video->queue) &&
	    vsp1_pipeline_ready(pipe))
745
		vsp1_video_pipeline_run(pipe);
746 747 748 749

	spin_unlock_irqrestore(&pipe->irqlock, flags);
}

750 751 752 753
static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
{
	struct vsp1_entity *entity;

754 755 756
	/* Determine this pipelines sizes for image partitioning support. */
	vsp1_video_pipeline_setup_partitions(pipe);

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	/* Prepare the display list. */
	pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
	if (!pipe->dl)
		return -ENOMEM;

	if (pipe->uds) {
		struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);

		/* If a BRU is present in the pipeline before the UDS, the alpha
		 * component doesn't need to be scaled as the BRU output alpha
		 * value is fixed to 255. Otherwise we need to scale the alpha
		 * component only when available at the input RPF.
		 */
		if (pipe->uds_input->type == VSP1_ENTITY_BRU) {
			uds->scale_alpha = false;
		} else {
			struct vsp1_rwpf *rpf =
				to_rwpf(&pipe->uds_input->subdev);

			uds->scale_alpha = rpf->fmtinfo->alpha;
		}
	}

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
781
		vsp1_entity_route_setup(entity, pipe->dl);
782

783
		if (entity->ops->configure)
784 785
			entity->ops->configure(entity, pipe, pipe->dl,
					       VSP1_ENTITY_PARAMS_INIT);
786 787
	}

788
	return 0;
789 790
}

791 792 793
static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
794
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
795 796 797 798
	unsigned long flags;
	int ret;

	mutex_lock(&pipe->lock);
799
	if (pipe->stream_count == pipe->num_inputs) {
800 801 802 803
		ret = vsp1_video_setup_pipeline(pipe);
		if (ret < 0) {
			mutex_unlock(&pipe->lock);
			return ret;
804 805 806 807 808 809 810 811
		}
	}

	pipe->stream_count++;
	mutex_unlock(&pipe->lock);

	spin_lock_irqsave(&pipe->irqlock, flags);
	if (vsp1_pipeline_ready(pipe))
812
		vsp1_video_pipeline_run(pipe);
813 814 815 816 817
	spin_unlock_irqrestore(&pipe->irqlock, flags);

	return 0;
}

818
static void vsp1_video_stop_streaming(struct vb2_queue *vq)
819 820
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
821
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
822
	struct vsp1_vb2_buffer *buffer;
823 824 825
	unsigned long flags;
	int ret;

826 827
	/*
	 * Clear the buffers ready flag to make sure the device won't be started
828 829 830 831 832 833
	 * by a QBUF on the video node on the other side of the pipeline.
	 */
	spin_lock_irqsave(&video->irqlock, flags);
	pipe->buffers_ready &= ~(1 << video->pipe_index);
	spin_unlock_irqrestore(&video->irqlock, flags);

834
	mutex_lock(&pipe->lock);
835
	if (--pipe->stream_count == pipe->num_inputs) {
836 837 838 839
		/* Stop the pipeline. */
		ret = vsp1_pipeline_stop(pipe);
		if (ret == -ETIMEDOUT)
			dev_err(video->vsp1->dev, "pipeline stop timeout\n");
840 841 842

		vsp1_dl_list_put(pipe->dl);
		pipe->dl = NULL;
843 844 845 846
	}
	mutex_unlock(&pipe->lock);

	media_entity_pipeline_stop(&video->video.entity);
847
	vsp1_video_pipeline_put(pipe);
848 849 850

	/* Remove all buffers from the IRQ queue. */
	spin_lock_irqsave(&video->irqlock, flags);
851
	list_for_each_entry(buffer, &video->irqqueue, queue)
852
		vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
853 854 855 856
	INIT_LIST_HEAD(&video->irqqueue);
	spin_unlock_irqrestore(&video->irqlock, flags);
}

857
static const struct vb2_ops vsp1_video_queue_qops = {
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	.queue_setup = vsp1_video_queue_setup,
	.buf_prepare = vsp1_video_buffer_prepare,
	.buf_queue = vsp1_video_buffer_queue,
	.wait_prepare = vb2_ops_wait_prepare,
	.wait_finish = vb2_ops_wait_finish,
	.start_streaming = vsp1_video_start_streaming,
	.stop_streaming = vsp1_video_stop_streaming,
};

/* -----------------------------------------------------------------------------
 * V4L2 ioctls
 */

static int
vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
			  | V4L2_CAP_VIDEO_CAPTURE_MPLANE
			  | V4L2_CAP_VIDEO_OUTPUT_MPLANE;

	if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
		cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
				 | V4L2_CAP_STREAMING;
	else
		cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
				 | V4L2_CAP_STREAMING;

	strlcpy(cap->driver, "vsp1", sizeof(cap->driver));
	strlcpy(cap->card, video->video.name, sizeof(cap->card));
	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
		 dev_name(video->vsp1->dev));

	return 0;
}

static int
vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	if (format->type != video->queue.type)
		return -EINVAL;

	mutex_lock(&video->lock);
906
	format->fmt.pix_mp = video->rwpf->format;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	mutex_unlock(&video->lock);

	return 0;
}

static int
vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	if (format->type != video->queue.type)
		return -EINVAL;

	return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
}

static int
vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
	const struct vsp1_format_info *info;
	int ret;

	if (format->type != video->queue.type)
		return -EINVAL;

	ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
	if (ret < 0)
		return ret;

	mutex_lock(&video->lock);

	if (vb2_is_busy(&video->queue)) {
		ret = -EBUSY;
		goto done;
	}

946 947
	video->rwpf->format = format->fmt.pix_mp;
	video->rwpf->fmtinfo = info;
948 949 950 951 952 953 954 955 956 957 958

done:
	mutex_unlock(&video->lock);
	return ret;
}

static int
vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
959
	struct media_device *mdev = &video->vsp1->media_dev;
960 961 962 963 964 965
	struct vsp1_pipeline *pipe;
	int ret;

	if (video->queue.owner && video->queue.owner != file->private_data)
		return -EBUSY;

966 967 968
	/* Get a pipeline for the video node and start streaming on it. No link
	 * touching an entity in the pipeline can be activated or deactivated
	 * once streaming is started.
969
	 */
970
	mutex_lock(&mdev->graph_mutex);
971

972 973 974 975 976 977 978 979 980 981 982 983 984
	pipe = vsp1_video_pipeline_get(video);
	if (IS_ERR(pipe)) {
		mutex_unlock(&mdev->graph_mutex);
		return PTR_ERR(pipe);
	}

	ret = __media_entity_pipeline_start(&video->video.entity, &pipe->pipe);
	if (ret < 0) {
		mutex_unlock(&mdev->graph_mutex);
		goto err_pipe;
	}

	mutex_unlock(&mdev->graph_mutex);
985 986 987 988 989 990 991 992 993 994 995

	/* Verify that the configured format matches the output of the connected
	 * subdev.
	 */
	ret = vsp1_video_verify_format(video);
	if (ret < 0)
		goto err_stop;

	/* Start the queue. */
	ret = vb2_streamon(&video->queue, type);
	if (ret < 0)
996
		goto err_stop;
997 998 999 1000 1001

	return 0;

err_stop:
	media_entity_pipeline_stop(&video->video.entity);
1002 1003
err_pipe:
	vsp1_video_pipeline_put(pipe);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	return ret;
}

static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
	.vidioc_querycap		= vsp1_video_querycap,
	.vidioc_g_fmt_vid_cap_mplane	= vsp1_video_get_format,
	.vidioc_s_fmt_vid_cap_mplane	= vsp1_video_set_format,
	.vidioc_try_fmt_vid_cap_mplane	= vsp1_video_try_format,
	.vidioc_g_fmt_vid_out_mplane	= vsp1_video_get_format,
	.vidioc_s_fmt_vid_out_mplane	= vsp1_video_set_format,
	.vidioc_try_fmt_vid_out_mplane	= vsp1_video_try_format,
	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
	.vidioc_querybuf		= vb2_ioctl_querybuf,
	.vidioc_qbuf			= vb2_ioctl_qbuf,
	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
	.vidioc_streamon		= vsp1_video_streamon,
	.vidioc_streamoff		= vb2_ioctl_streamoff,
};

/* -----------------------------------------------------------------------------
 * V4L2 File Operations
 */

static int vsp1_video_open(struct file *file)
{
	struct vsp1_video *video = video_drvdata(file);
	struct v4l2_fh *vfh;
	int ret = 0;

	vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
	if (vfh == NULL)
		return -ENOMEM;

	v4l2_fh_init(vfh, &video->video);
	v4l2_fh_add(vfh);

	file->private_data = vfh;

1044 1045
	ret = vsp1_device_get(video->vsp1);
	if (ret < 0) {
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		v4l2_fh_del(vfh);
		kfree(vfh);
	}

	return ret;
}

static int vsp1_video_release(struct file *file)
{
	struct vsp1_video *video = video_drvdata(file);
	struct v4l2_fh *vfh = file->private_data;

	mutex_lock(&video->lock);
	if (video->queue.owner == vfh) {
		vb2_queue_release(&video->queue);
		video->queue.owner = NULL;
	}
	mutex_unlock(&video->lock);

	vsp1_device_put(video->vsp1);

	v4l2_fh_release(file);

	file->private_data = NULL;

	return 0;
}

1074
static const struct v4l2_file_operations vsp1_video_fops = {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	.owner = THIS_MODULE,
	.unlocked_ioctl = video_ioctl2,
	.open = vsp1_video_open,
	.release = vsp1_video_release,
	.poll = vb2_fop_poll,
	.mmap = vb2_fop_mmap,
};

/* -----------------------------------------------------------------------------
 * Initialization and Cleanup
 */

1087 1088
struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
				     struct vsp1_rwpf *rwpf)
1089
{
1090
	struct vsp1_video *video;
1091 1092 1093
	const char *direction;
	int ret;

1094 1095 1096
	video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
	if (!video)
		return ERR_PTR(-ENOMEM);
1097

1098
	rwpf->video = video;
1099 1100 1101 1102 1103

	video->vsp1 = vsp1;
	video->rwpf = rwpf;

	if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1104
		direction = "input";
1105
		video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1106 1107
		video->pad.flags = MEDIA_PAD_FL_SOURCE;
		video->video.vfl_dir = VFL_DIR_TX;
1108 1109 1110 1111 1112
	} else {
		direction = "output";
		video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
		video->pad.flags = MEDIA_PAD_FL_SINK;
		video->video.vfl_dir = VFL_DIR_RX;
1113 1114 1115 1116 1117 1118 1119
	}

	mutex_init(&video->lock);
	spin_lock_init(&video->irqlock);
	INIT_LIST_HEAD(&video->irqqueue);

	/* Initialize the media entity... */
1120
	ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1121
	if (ret < 0)
1122
		return ERR_PTR(ret);
1123 1124

	/* ... and the format ... */
1125
	rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1126 1127
	rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
	rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1128
	__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1129 1130 1131 1132 1133

	/* ... and the video node... */
	video->video.v4l2_dev = &video->vsp1->v4l2_dev;
	video->video.fops = &vsp1_video_fops;
	snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1134
		 rwpf->entity.subdev.name, direction);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	video->video.vfl_type = VFL_TYPE_GRABBER;
	video->video.release = video_device_release_empty;
	video->video.ioctl_ops = &vsp1_video_ioctl_ops;

	video_set_drvdata(&video->video, video);

	video->queue.type = video->type;
	video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
	video->queue.lock = &video->lock;
	video->queue.drv_priv = video;
1145
	video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1146 1147
	video->queue.ops = &vsp1_video_queue_qops;
	video->queue.mem_ops = &vb2_dma_contig_memops;
1148
	video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1149
	video->queue.dev = video->vsp1->dev;
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	ret = vb2_queue_init(&video->queue);
	if (ret < 0) {
		dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
		goto error;
	}

	/* ... and register the video device. */
	video->video.queue = &video->queue;
	ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
	if (ret < 0) {
		dev_err(video->vsp1->dev, "failed to register video device\n");
		goto error;
	}

1164
	return video;
1165 1166 1167

error:
	vsp1_video_cleanup(video);
1168
	return ERR_PTR(ret);
1169 1170 1171 1172 1173 1174 1175 1176 1177
}

void vsp1_video_cleanup(struct vsp1_video *video)
{
	if (video_is_registered(&video->video))
		video_unregister_device(&video->video);

	media_entity_cleanup(&video->video.entity);
}