vsp1_video.c 31.1 KB
Newer Older
1 2 3
/*
 * vsp1_video.c  --  R-Car VSP1 Video Node
 *
4
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/v4l2-mediabus.h>
#include <linux/videodev2.h>
20
#include <linux/wait.h>
21 22 23 24 25 26

#include <media/media-entity.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-subdev.h>
27
#include <media/videobuf2-v4l2.h>
28 29 30
#include <media/videobuf2-dma-contig.h>

#include "vsp1.h"
31
#include "vsp1_bru.h"
32
#include "vsp1_dl.h"
33
#include "vsp1_entity.h"
34
#include "vsp1_pipe.h"
35
#include "vsp1_rwpf.h"
36
#include "vsp1_uds.h"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include "vsp1_video.h"

#define VSP1_VIDEO_DEF_FORMAT		V4L2_PIX_FMT_YUYV
#define VSP1_VIDEO_DEF_WIDTH		1024
#define VSP1_VIDEO_DEF_HEIGHT		768

#define VSP1_VIDEO_MIN_WIDTH		2U
#define VSP1_VIDEO_MAX_WIDTH		8190U
#define VSP1_VIDEO_MIN_HEIGHT		2U
#define VSP1_VIDEO_MAX_HEIGHT		8190U

/* -----------------------------------------------------------------------------
 * Helper functions
 */

static struct v4l2_subdev *
vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
{
	struct media_pad *remote;

	remote = media_entity_remote_pad(local);
58
	if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
		return NULL;

	if (pad)
		*pad = remote->index;

	return media_entity_to_v4l2_subdev(remote->entity);
}

static int vsp1_video_verify_format(struct vsp1_video *video)
{
	struct v4l2_subdev_format fmt;
	struct v4l2_subdev *subdev;
	int ret;

	subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
	if (subdev == NULL)
		return -EINVAL;

	fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
	ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
	if (ret < 0)
		return ret == -ENOIOCTLCMD ? -EINVAL : ret;

82 83 84
	if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
	    video->rwpf->format.height != fmt.format.height ||
	    video->rwpf->format.width != fmt.format.width)
85 86 87 88 89 90 91 92 93
		return -EINVAL;

	return 0;
}

static int __vsp1_video_try_format(struct vsp1_video *video,
				   struct v4l2_pix_format_mplane *pix,
				   const struct vsp1_format_info **fmtinfo)
{
94 95 96 97 98 99 100
	static const u32 xrgb_formats[][2] = {
		{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
		{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
		{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
		{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
	};

101 102 103 104 105
	const struct vsp1_format_info *info;
	unsigned int width = pix->width;
	unsigned int height = pix->height;
	unsigned int i;

106 107 108 109 110 111 112 113 114 115 116
	/* Backward compatibility: replace deprecated RGB formats by their XRGB
	 * equivalent. This selects the format older userspace applications want
	 * while still exposing the new format.
	 */
	for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
		if (xrgb_formats[i][0] == pix->pixelformat) {
			pix->pixelformat = xrgb_formats[i][1];
			break;
		}
	}

117 118 119
	/* Retrieve format information and select the default format if the
	 * requested format isn't supported.
	 */
120
	info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
121
	if (info == NULL)
122
		info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
123 124 125 126

	pix->pixelformat = info->fourcc;
	pix->colorspace = V4L2_COLORSPACE_SRGB;
	pix->field = V4L2_FIELD_NONE;
127 128 129 130 131

	if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
	    info->fourcc == V4L2_PIX_FMT_HSV32)
		pix->hsv_enc = V4L2_HSV_ENC_256;

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	memset(pix->reserved, 0, sizeof(pix->reserved));

	/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
	width = round_down(width, info->hsub);
	height = round_down(height, info->vsub);

	/* Clamp the width and height. */
	pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH);
	pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT,
			    VSP1_VIDEO_MAX_HEIGHT);

	/* Compute and clamp the stride and image size. While not documented in
	 * the datasheet, strides not aligned to a multiple of 128 bytes result
	 * in image corruption.
	 */
147
	for (i = 0; i < min(info->planes, 2U); ++i) {
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
		unsigned int hsub = i > 0 ? info->hsub : 1;
		unsigned int vsub = i > 0 ? info->vsub : 1;
		unsigned int align = 128;
		unsigned int bpl;

		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
			      pix->width / hsub * info->bpp[i] / 8,
			      round_down(65535U, align));

		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
					    * pix->height / vsub;
	}

	if (info->planes == 3) {
		/* The second and third planes must have the same stride. */
		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
	}

	pix->num_planes = info->planes;

	if (fmtinfo)
		*fmtinfo = info;

	return 0;
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/* -----------------------------------------------------------------------------
 * VSP1 Partition Algorithm support
 */

static void vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
{
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
	const struct v4l2_mbus_framefmt *format;
	struct vsp1_entity *entity;
	unsigned int div_size;

	format = vsp1_entity_get_pad_format(&pipe->output->entity,
					    pipe->output->entity.config,
					    RWPF_PAD_SOURCE);
	div_size = format->width;

	/* Gen2 hardware doesn't require image partitioning. */
	if (vsp1->info->gen == 2) {
		pipe->div_size = div_size;
		pipe->partitions = 1;
		return;
	}

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
		unsigned int entity_max = VSP1_VIDEO_MAX_WIDTH;

		if (entity->ops->max_width) {
			entity_max = entity->ops->max_width(entity, pipe);
			if (entity_max)
				div_size = min(div_size, entity_max);
		}
	}

	pipe->div_size = div_size;
	pipe->partitions = DIV_ROUND_UP(format->width, div_size);
}

213
/**
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
 * vsp1_video_partition - Calculate the active partition output window
 *
 * @div_size: pre-determined maximum partition division size
 * @index: partition index
 *
 * Returns a v4l2_rect describing the partition window.
 */
static struct v4l2_rect vsp1_video_partition(struct vsp1_pipeline *pipe,
					     unsigned int div_size,
					     unsigned int index)
{
	const struct v4l2_mbus_framefmt *format;
	struct v4l2_rect partition;
	unsigned int modulus;

	format = vsp1_entity_get_pad_format(&pipe->output->entity,
					    pipe->output->entity.config,
					    RWPF_PAD_SOURCE);

	/* A single partition simply processes the output size in full. */
	if (pipe->partitions <= 1) {
		partition.left = 0;
		partition.top = 0;
		partition.width = format->width;
		partition.height = format->height;
		return partition;
	}

	/* Initialise the partition with sane starting conditions. */
	partition.left = index * div_size;
	partition.top = 0;
	partition.width = div_size;
	partition.height = format->height;

	modulus = format->width % div_size;

250 251
	/*
	 * We need to prevent the last partition from being smaller than the
252 253 254 255 256 257 258 259
	 * *minimum* width of the hardware capabilities.
	 *
	 * If the modulus is less than half of the partition size,
	 * the penultimate partition is reduced to half, which is added
	 * to the final partition: |1234|1234|1234|12|341|
	 * to prevents this:       |1234|1234|1234|1234|1|.
	 */
	if (modulus) {
260 261
		/*
		 * pipe->partitions is 1 based, whilst index is a 0 based index.
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
		 * Normalise this locally.
		 */
		unsigned int partitions = pipe->partitions - 1;

		if (modulus < div_size / 2) {
			if (index == partitions - 1) {
				/* Halve the penultimate partition. */
				partition.width = div_size / 2;
			} else if (index == partitions) {
				/* Increase the final partition. */
				partition.width = (div_size / 2) + modulus;
				partition.left -= div_size / 2;
			}
		} else if (index == partitions) {
			partition.width = modulus;
		}
	}

	return partition;
}

283 284 285 286
/* -----------------------------------------------------------------------------
 * Pipeline Management
 */

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/*
 * vsp1_video_complete_buffer - Complete the current buffer
 * @video: the video node
 *
 * This function completes the current buffer by filling its sequence number,
 * time stamp and payload size, and hands it back to the videobuf core.
 *
 * When operating in DU output mode (deep pipeline to the DU through the LIF),
 * the VSP1 needs to constantly supply frames to the display. In that case, if
 * no other buffer is queued, reuse the one that has just been processed instead
 * of handing it back to the videobuf core.
 *
 * Return the next queued buffer or NULL if the queue is empty.
 */
static struct vsp1_vb2_buffer *
vsp1_video_complete_buffer(struct vsp1_video *video)
{
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
	struct vsp1_vb2_buffer *next = NULL;
	struct vsp1_vb2_buffer *done;
	unsigned long flags;
	unsigned int i;

	spin_lock_irqsave(&video->irqlock, flags);

	if (list_empty(&video->irqqueue)) {
		spin_unlock_irqrestore(&video->irqlock, flags);
		return NULL;
	}

	done = list_first_entry(&video->irqqueue,
				struct vsp1_vb2_buffer, queue);

	/* In DU output mode reuse the buffer if the list is singular. */
	if (pipe->lif && list_is_singular(&video->irqqueue)) {
		spin_unlock_irqrestore(&video->irqlock, flags);
		return done;
	}

	list_del(&done->queue);

	if (!list_empty(&video->irqqueue))
		next = list_first_entry(&video->irqqueue,
					struct vsp1_vb2_buffer, queue);

	spin_unlock_irqrestore(&video->irqlock, flags);

334
	done->buf.sequence = pipe->sequence;
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	done->buf.vb2_buf.timestamp = ktime_get_ns();
	for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
		vb2_set_plane_payload(&done->buf.vb2_buf, i,
				      vb2_plane_size(&done->buf.vb2_buf, i));
	vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);

	return next;
}

static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
				 struct vsp1_rwpf *rwpf)
{
	struct vsp1_video *video = rwpf->video;
	struct vsp1_vb2_buffer *buf;

	buf = vsp1_video_complete_buffer(video);
	if (buf == NULL)
		return;

	video->rwpf->mem = buf->mem;
	pipe->buffers_ready |= 1 << video->pipe_index;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
					      struct vsp1_dl_list *dl)
{
	struct vsp1_entity *entity;

	pipe->partition = vsp1_video_partition(pipe, pipe->div_size,
					       pipe->current_partition);

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
		if (entity->ops->configure)
			entity->ops->configure(entity, pipe, dl,
					       VSP1_ENTITY_PARAMS_PARTITION);
	}
}

373 374
static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
{
375
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
376
	struct vsp1_entity *entity;
377 378 379 380

	if (!pipe->dl)
		pipe->dl = vsp1_dl_list_get(pipe->output->dlm);

381 382
	/*
	 * Start with the runtime parameters as the configure operation can
383 384 385
	 * compute/cache information needed when configuring partitions. This
	 * is the case with flipping in the WPF.
	 */
386
	list_for_each_entry(entity, &pipe->entities, list_pipe) {
387
		if (entity->ops->configure)
388 389
			entity->ops->configure(entity, pipe, pipe->dl,
					       VSP1_ENTITY_PARAMS_RUNTIME);
390 391 392 393 394 395 396 397 398 399 400 401
	}

	/* Run the first partition */
	pipe->current_partition = 0;
	vsp1_video_pipeline_run_partition(pipe, pipe->dl);

	/* Process consecutive partitions as necessary */
	for (pipe->current_partition = 1;
	     pipe->current_partition < pipe->partitions;
	     pipe->current_partition++) {
		struct vsp1_dl_list *dl;

402 403
		/*
		 * Partition configuration operations will utilise
404 405 406 407 408
		 * the pipe->current_partition variable to determine
		 * the work they should complete.
		 */
		dl = vsp1_dl_list_get(pipe->output->dlm);

409 410
		/*
		 * An incomplete chain will still function, but output only
411 412 413 414 415 416
		 * the partitions that had a dl available. The frame end
		 * interrupt will be marked on the last dl in the chain.
		 */
		if (!dl) {
			dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
			break;
417
		}
418 419 420

		vsp1_video_pipeline_run_partition(pipe, dl);
		vsp1_dl_list_add_chain(pipe->dl, dl);
421 422
	}

423
	/* Complete, and commit the head display list. */
424 425 426 427 428 429 430 431 432 433 434 435 436
	vsp1_dl_list_commit(pipe->dl);
	pipe->dl = NULL;

	vsp1_pipeline_run(pipe);
}

static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe)
{
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
	enum vsp1_pipeline_state state;
	unsigned long flags;
	unsigned int i;

437 438
	spin_lock_irqsave(&pipe->irqlock, flags);

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	/* Complete buffers on all video nodes. */
	for (i = 0; i < vsp1->info->rpf_count; ++i) {
		if (!pipe->inputs[i])
			continue;

		vsp1_video_frame_end(pipe, pipe->inputs[i]);
	}

	vsp1_video_frame_end(pipe, pipe->output);

	state = pipe->state;
	pipe->state = VSP1_PIPELINE_STOPPED;

	/* If a stop has been requested, mark the pipeline as stopped and
	 * return. Otherwise restart the pipeline if ready.
	 */
	if (state == VSP1_PIPELINE_STOPPING)
		wake_up(&pipe->wq);
	else if (vsp1_pipeline_ready(pipe))
		vsp1_video_pipeline_run(pipe);

	spin_unlock_irqrestore(&pipe->irqlock, flags);
}

463 464 465
static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
					    struct vsp1_rwpf *input,
					    struct vsp1_rwpf *output)
466
{
467
	struct media_entity_enum ent_enum;
468
	struct vsp1_entity *entity;
469
	struct media_pad *pad;
470
	bool bru_found = false;
471
	int ret;
472

473 474 475
	ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
	if (ret < 0)
		return ret;
476

477 478 479
	pad = media_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);

	while (1) {
480
		if (pad == NULL) {
481
			ret = -EPIPE;
482 483
			goto out;
		}
484 485

		/* We've reached a video node, that shouldn't have happened. */
486
		if (!is_media_entity_v4l2_subdev(pad->entity)) {
487
			ret = -EPIPE;
488 489
			goto out;
		}
490

491 492
		entity = to_vsp1_entity(
			media_entity_to_v4l2_subdev(pad->entity));
493

494 495
		/* A BRU is present in the pipeline, store the BRU input pad
		 * number in the input RPF for use when configuring the RPF.
496 497 498
		 */
		if (entity->type == VSP1_ENTITY_BRU) {
			struct vsp1_bru *bru = to_bru(&entity->subdev);
499 500

			bru->inputs[pad->index].rpf = input;
501
			input->bru_input = pad->index;
502 503

			bru_found = true;
504 505
		}

506 507 508 509 510
		/* We've reached the WPF, we're done. */
		if (entity->type == VSP1_ENTITY_WPF)
			break;

		/* Ensure the branch has no loop. */
511 512
		if (media_entity_enum_test_and_set(&ent_enum,
						   &entity->subdev.entity)) {
513
			ret = -EPIPE;
514 515
			goto out;
		}
516 517 518

		/* UDS can't be chained. */
		if (entity->type == VSP1_ENTITY_UDS) {
519
			if (pipe->uds) {
520
				ret = -EPIPE;
521 522
				goto out;
			}
523 524 525 526

			pipe->uds = entity;
			pipe->uds_input = bru_found ? pipe->bru
					: &input->entity;
527 528 529 530 531 532 533 534 535 536 537 538 539
		}

		/* Follow the source link. The link setup operations ensure
		 * that the output fan-out can't be more than one, there is thus
		 * no need to verify here that only a single source link is
		 * activated.
		 */
		pad = &entity->pads[entity->source_pad];
		pad = media_entity_remote_pad(pad);
	}

	/* The last entity must be the output WPF. */
	if (entity != &output->entity)
540
		ret = -EPIPE;
541

542 543 544
out:
	media_entity_enum_cleanup(&ent_enum);

545
	return ret;
546 547
}

548 549
static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
				     struct vsp1_video *video)
550
{
551
	struct media_graph graph;
552
	struct media_entity *entity = &video->video.entity;
553
	struct media_device *mdev = entity->graph_obj.mdev;
554 555 556 557
	unsigned int i;
	int ret;

	/* Walk the graph to locate the entities and video nodes. */
558
	ret = media_graph_walk_init(&graph, mdev);
559
	if (ret)
560 561
		return ret;

562
	media_graph_walk_start(&graph, entity);
563

564
	while ((entity = media_graph_walk_next(&graph))) {
565 566 567 568
		struct v4l2_subdev *subdev;
		struct vsp1_rwpf *rwpf;
		struct vsp1_entity *e;

569
		if (!is_media_entity_v4l2_subdev(entity))
570 571 572 573 574 575 576 577
			continue;

		subdev = media_entity_to_v4l2_subdev(entity);
		e = to_vsp1_entity(subdev);
		list_add_tail(&e->list_pipe, &pipe->entities);

		if (e->type == VSP1_ENTITY_RPF) {
			rwpf = to_rwpf(subdev);
578 579
			pipe->inputs[rwpf->entity.index] = rwpf;
			rwpf->video->pipe_index = ++pipe->num_inputs;
580
			rwpf->pipe = pipe;
581 582
		} else if (e->type == VSP1_ENTITY_WPF) {
			rwpf = to_rwpf(subdev);
583
			pipe->output = rwpf;
584
			rwpf->video->pipe_index = 0;
585
			rwpf->pipe = pipe;
586 587
		} else if (e->type == VSP1_ENTITY_LIF) {
			pipe->lif = e;
588 589
		} else if (e->type == VSP1_ENTITY_BRU) {
			pipe->bru = e;
590 591 592
		}
	}

593
	media_graph_walk_cleanup(&graph);
594

595
	/* We need one output and at least one input. */
596 597
	if (pipe->num_inputs == 0 || !pipe->output)
		return -EPIPE;
598 599 600 601

	/* Follow links downstream for each input and make sure the graph
	 * contains no loop and that all branches end at the output WPF.
	 */
602
	for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
603 604 605
		if (!pipe->inputs[i])
			continue;

606 607
		ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
						       pipe->output);
608
		if (ret < 0)
609
			return ret;
610 611 612 613 614
	}

	return 0;
}

615 616
static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
				    struct vsp1_video *video)
617
{
618 619 620 621 622 623 624 625 626 627
	vsp1_pipeline_init(pipe);

	pipe->frame_end = vsp1_video_pipeline_frame_end;

	return vsp1_video_pipeline_build(pipe, video);
}

static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
{
	struct vsp1_pipeline *pipe;
628 629
	int ret;

630 631 632 633 634 635 636 637 638
	/* Get a pipeline object for the video node. If a pipeline has already
	 * been allocated just increment its reference count and return it.
	 * Otherwise allocate a new pipeline and initialize it, it will be freed
	 * when the last reference is released.
	 */
	if (!video->rwpf->pipe) {
		pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
		if (!pipe)
			return ERR_PTR(-ENOMEM);
639

640 641 642 643 644 645 646 647 648
		ret = vsp1_video_pipeline_init(pipe, video);
		if (ret < 0) {
			vsp1_pipeline_reset(pipe);
			kfree(pipe);
			return ERR_PTR(ret);
		}
	} else {
		pipe = video->rwpf->pipe;
		kref_get(&pipe->kref);
649 650
	}

651
	return pipe;
652 653
}

654
static void vsp1_video_pipeline_release(struct kref *kref)
655
{
656
	struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
657

658 659 660
	vsp1_pipeline_reset(pipe);
	kfree(pipe);
}
661

662 663 664 665 666 667 668
static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
{
	struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;

	mutex_lock(&mdev->graph_mutex);
	kref_put(&pipe->kref, vsp1_video_pipeline_release);
	mutex_unlock(&mdev->graph_mutex);
669 670 671 672 673 674 675
}

/* -----------------------------------------------------------------------------
 * videobuf2 Queue Operations
 */

static int
676
vsp1_video_queue_setup(struct vb2_queue *vq,
677 678
		       unsigned int *nbuffers, unsigned int *nplanes,
		       unsigned int sizes[], struct device *alloc_devs[])
679 680
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
681
	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
682 683
	unsigned int i;

684 685
	if (*nplanes) {
		if (*nplanes != format->num_planes)
686 687
			return -EINVAL;

688
		for (i = 0; i < *nplanes; i++)
689 690 691
			if (sizes[i] < format->plane_fmt[i].sizeimage)
				return -EINVAL;
		return 0;
692 693 694 695
	}

	*nplanes = format->num_planes;

696
	for (i = 0; i < format->num_planes; ++i)
697 698 699 700 701 702 703
		sizes[i] = format->plane_fmt[i].sizeimage;

	return 0;
}

static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
{
704
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
705
	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
706
	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
707
	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
708 709 710 711 712 713
	unsigned int i;

	if (vb->num_planes < format->num_planes)
		return -EINVAL;

	for (i = 0; i < vb->num_planes; ++i) {
714
		buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
715

716
		if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
717 718 719
			return -EINVAL;
	}

720
	for ( ; i < 3; ++i)
721 722
		buf->mem.addr[i] = 0;

723 724 725 726 727
	return 0;
}

static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
{
728
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
729
	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
730
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
731
	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
732 733 734 735 736 737 738 739 740 741 742 743 744
	unsigned long flags;
	bool empty;

	spin_lock_irqsave(&video->irqlock, flags);
	empty = list_empty(&video->irqqueue);
	list_add_tail(&buf->queue, &video->irqqueue);
	spin_unlock_irqrestore(&video->irqlock, flags);

	if (!empty)
		return;

	spin_lock_irqsave(&pipe->irqlock, flags);

745
	video->rwpf->mem = buf->mem;
746 747 748 749
	pipe->buffers_ready |= 1 << video->pipe_index;

	if (vb2_is_streaming(&video->queue) &&
	    vsp1_pipeline_ready(pipe))
750
		vsp1_video_pipeline_run(pipe);
751 752 753 754

	spin_unlock_irqrestore(&pipe->irqlock, flags);
}

755 756 757 758
static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
{
	struct vsp1_entity *entity;

759 760 761
	/* Determine this pipelines sizes for image partitioning support. */
	vsp1_video_pipeline_setup_partitions(pipe);

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	/* Prepare the display list. */
	pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
	if (!pipe->dl)
		return -ENOMEM;

	if (pipe->uds) {
		struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);

		/* If a BRU is present in the pipeline before the UDS, the alpha
		 * component doesn't need to be scaled as the BRU output alpha
		 * value is fixed to 255. Otherwise we need to scale the alpha
		 * component only when available at the input RPF.
		 */
		if (pipe->uds_input->type == VSP1_ENTITY_BRU) {
			uds->scale_alpha = false;
		} else {
			struct vsp1_rwpf *rpf =
				to_rwpf(&pipe->uds_input->subdev);

			uds->scale_alpha = rpf->fmtinfo->alpha;
		}
	}

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
786
		vsp1_entity_route_setup(entity, pipe->dl);
787

788
		if (entity->ops->configure)
789 790
			entity->ops->configure(entity, pipe, pipe->dl,
					       VSP1_ENTITY_PARAMS_INIT);
791 792
	}

793
	return 0;
794 795
}

796 797 798
static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
799
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
800 801 802 803
	unsigned long flags;
	int ret;

	mutex_lock(&pipe->lock);
804
	if (pipe->stream_count == pipe->num_inputs) {
805 806 807 808
		ret = vsp1_video_setup_pipeline(pipe);
		if (ret < 0) {
			mutex_unlock(&pipe->lock);
			return ret;
809 810 811 812 813 814 815 816
		}
	}

	pipe->stream_count++;
	mutex_unlock(&pipe->lock);

	spin_lock_irqsave(&pipe->irqlock, flags);
	if (vsp1_pipeline_ready(pipe))
817
		vsp1_video_pipeline_run(pipe);
818 819 820 821 822
	spin_unlock_irqrestore(&pipe->irqlock, flags);

	return 0;
}

823
static void vsp1_video_stop_streaming(struct vb2_queue *vq)
824 825
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
826
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
827
	struct vsp1_vb2_buffer *buffer;
828 829 830
	unsigned long flags;
	int ret;

831 832
	/*
	 * Clear the buffers ready flag to make sure the device won't be started
833 834 835 836 837 838
	 * by a QBUF on the video node on the other side of the pipeline.
	 */
	spin_lock_irqsave(&video->irqlock, flags);
	pipe->buffers_ready &= ~(1 << video->pipe_index);
	spin_unlock_irqrestore(&video->irqlock, flags);

839
	mutex_lock(&pipe->lock);
840
	if (--pipe->stream_count == pipe->num_inputs) {
841 842 843 844
		/* Stop the pipeline. */
		ret = vsp1_pipeline_stop(pipe);
		if (ret == -ETIMEDOUT)
			dev_err(video->vsp1->dev, "pipeline stop timeout\n");
845 846 847

		vsp1_dl_list_put(pipe->dl);
		pipe->dl = NULL;
848 849 850
	}
	mutex_unlock(&pipe->lock);

851
	media_pipeline_stop(&video->video.entity);
852
	vsp1_video_pipeline_put(pipe);
853 854 855

	/* Remove all buffers from the IRQ queue. */
	spin_lock_irqsave(&video->irqlock, flags);
856
	list_for_each_entry(buffer, &video->irqqueue, queue)
857
		vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
858 859 860 861
	INIT_LIST_HEAD(&video->irqqueue);
	spin_unlock_irqrestore(&video->irqlock, flags);
}

862
static const struct vb2_ops vsp1_video_queue_qops = {
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	.queue_setup = vsp1_video_queue_setup,
	.buf_prepare = vsp1_video_buffer_prepare,
	.buf_queue = vsp1_video_buffer_queue,
	.wait_prepare = vb2_ops_wait_prepare,
	.wait_finish = vb2_ops_wait_finish,
	.start_streaming = vsp1_video_start_streaming,
	.stop_streaming = vsp1_video_stop_streaming,
};

/* -----------------------------------------------------------------------------
 * V4L2 ioctls
 */

static int
vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
			  | V4L2_CAP_VIDEO_CAPTURE_MPLANE
			  | V4L2_CAP_VIDEO_OUTPUT_MPLANE;

	if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
		cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
				 | V4L2_CAP_STREAMING;
	else
		cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
				 | V4L2_CAP_STREAMING;

	strlcpy(cap->driver, "vsp1", sizeof(cap->driver));
	strlcpy(cap->card, video->video.name, sizeof(cap->card));
	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
		 dev_name(video->vsp1->dev));

	return 0;
}

static int
vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	if (format->type != video->queue.type)
		return -EINVAL;

	mutex_lock(&video->lock);
911
	format->fmt.pix_mp = video->rwpf->format;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	mutex_unlock(&video->lock);

	return 0;
}

static int
vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	if (format->type != video->queue.type)
		return -EINVAL;

	return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
}

static int
vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
	const struct vsp1_format_info *info;
	int ret;

	if (format->type != video->queue.type)
		return -EINVAL;

	ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
	if (ret < 0)
		return ret;

	mutex_lock(&video->lock);

	if (vb2_is_busy(&video->queue)) {
		ret = -EBUSY;
		goto done;
	}

951 952
	video->rwpf->format = format->fmt.pix_mp;
	video->rwpf->fmtinfo = info;
953 954 955 956 957 958 959 960 961 962 963

done:
	mutex_unlock(&video->lock);
	return ret;
}

static int
vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
964
	struct media_device *mdev = &video->vsp1->media_dev;
965 966 967 968 969 970
	struct vsp1_pipeline *pipe;
	int ret;

	if (video->queue.owner && video->queue.owner != file->private_data)
		return -EBUSY;

971 972 973
	/* Get a pipeline for the video node and start streaming on it. No link
	 * touching an entity in the pipeline can be activated or deactivated
	 * once streaming is started.
974
	 */
975
	mutex_lock(&mdev->graph_mutex);
976

977 978 979 980 981 982
	pipe = vsp1_video_pipeline_get(video);
	if (IS_ERR(pipe)) {
		mutex_unlock(&mdev->graph_mutex);
		return PTR_ERR(pipe);
	}

983
	ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
984 985 986 987 988 989
	if (ret < 0) {
		mutex_unlock(&mdev->graph_mutex);
		goto err_pipe;
	}

	mutex_unlock(&mdev->graph_mutex);
990 991 992 993 994 995 996 997 998 999 1000

	/* Verify that the configured format matches the output of the connected
	 * subdev.
	 */
	ret = vsp1_video_verify_format(video);
	if (ret < 0)
		goto err_stop;

	/* Start the queue. */
	ret = vb2_streamon(&video->queue, type);
	if (ret < 0)
1001
		goto err_stop;
1002 1003 1004 1005

	return 0;

err_stop:
1006
	media_pipeline_stop(&video->video.entity);
1007 1008
err_pipe:
	vsp1_video_pipeline_put(pipe);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	return ret;
}

static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
	.vidioc_querycap		= vsp1_video_querycap,
	.vidioc_g_fmt_vid_cap_mplane	= vsp1_video_get_format,
	.vidioc_s_fmt_vid_cap_mplane	= vsp1_video_set_format,
	.vidioc_try_fmt_vid_cap_mplane	= vsp1_video_try_format,
	.vidioc_g_fmt_vid_out_mplane	= vsp1_video_get_format,
	.vidioc_s_fmt_vid_out_mplane	= vsp1_video_set_format,
	.vidioc_try_fmt_vid_out_mplane	= vsp1_video_try_format,
	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
	.vidioc_querybuf		= vb2_ioctl_querybuf,
	.vidioc_qbuf			= vb2_ioctl_qbuf,
	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
1024
	.vidioc_expbuf			= vb2_ioctl_expbuf,
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
	.vidioc_streamon		= vsp1_video_streamon,
	.vidioc_streamoff		= vb2_ioctl_streamoff,
};

/* -----------------------------------------------------------------------------
 * V4L2 File Operations
 */

static int vsp1_video_open(struct file *file)
{
	struct vsp1_video *video = video_drvdata(file);
	struct v4l2_fh *vfh;
	int ret = 0;

	vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
	if (vfh == NULL)
		return -ENOMEM;

	v4l2_fh_init(vfh, &video->video);
	v4l2_fh_add(vfh);

	file->private_data = vfh;

1050 1051
	ret = vsp1_device_get(video->vsp1);
	if (ret < 0) {
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		v4l2_fh_del(vfh);
		kfree(vfh);
	}

	return ret;
}

static int vsp1_video_release(struct file *file)
{
	struct vsp1_video *video = video_drvdata(file);
	struct v4l2_fh *vfh = file->private_data;

	mutex_lock(&video->lock);
	if (video->queue.owner == vfh) {
		vb2_queue_release(&video->queue);
		video->queue.owner = NULL;
	}
	mutex_unlock(&video->lock);

	vsp1_device_put(video->vsp1);

	v4l2_fh_release(file);

	file->private_data = NULL;

	return 0;
}

1080
static const struct v4l2_file_operations vsp1_video_fops = {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	.owner = THIS_MODULE,
	.unlocked_ioctl = video_ioctl2,
	.open = vsp1_video_open,
	.release = vsp1_video_release,
	.poll = vb2_fop_poll,
	.mmap = vb2_fop_mmap,
};

/* -----------------------------------------------------------------------------
 * Initialization and Cleanup
 */

1093 1094
struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
				     struct vsp1_rwpf *rwpf)
1095
{
1096
	struct vsp1_video *video;
1097 1098 1099
	const char *direction;
	int ret;

1100 1101 1102
	video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
	if (!video)
		return ERR_PTR(-ENOMEM);
1103

1104
	rwpf->video = video;
1105 1106 1107 1108 1109

	video->vsp1 = vsp1;
	video->rwpf = rwpf;

	if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1110
		direction = "input";
1111
		video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1112 1113
		video->pad.flags = MEDIA_PAD_FL_SOURCE;
		video->video.vfl_dir = VFL_DIR_TX;
1114 1115 1116 1117 1118
	} else {
		direction = "output";
		video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
		video->pad.flags = MEDIA_PAD_FL_SINK;
		video->video.vfl_dir = VFL_DIR_RX;
1119 1120 1121 1122 1123 1124 1125
	}

	mutex_init(&video->lock);
	spin_lock_init(&video->irqlock);
	INIT_LIST_HEAD(&video->irqqueue);

	/* Initialize the media entity... */
1126
	ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1127
	if (ret < 0)
1128
		return ERR_PTR(ret);
1129 1130

	/* ... and the format ... */
1131
	rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1132 1133
	rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
	rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1134
	__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1135 1136 1137 1138 1139

	/* ... and the video node... */
	video->video.v4l2_dev = &video->vsp1->v4l2_dev;
	video->video.fops = &vsp1_video_fops;
	snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1140
		 rwpf->entity.subdev.name, direction);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	video->video.vfl_type = VFL_TYPE_GRABBER;
	video->video.release = video_device_release_empty;
	video->video.ioctl_ops = &vsp1_video_ioctl_ops;

	video_set_drvdata(&video->video, video);

	video->queue.type = video->type;
	video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
	video->queue.lock = &video->lock;
	video->queue.drv_priv = video;
1151
	video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1152 1153
	video->queue.ops = &vsp1_video_queue_qops;
	video->queue.mem_ops = &vb2_dma_contig_memops;
1154
	video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1155
	video->queue.dev = video->vsp1->dev;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	ret = vb2_queue_init(&video->queue);
	if (ret < 0) {
		dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
		goto error;
	}

	/* ... and register the video device. */
	video->video.queue = &video->queue;
	ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
	if (ret < 0) {
		dev_err(video->vsp1->dev, "failed to register video device\n");
		goto error;
	}

1170
	return video;
1171 1172 1173

error:
	vsp1_video_cleanup(video);
1174
	return ERR_PTR(ret);
1175 1176 1177 1178 1179 1180 1181 1182 1183
}

void vsp1_video_cleanup(struct vsp1_video *video)
{
	if (video_is_registered(&video->video))
		video_unregister_device(&video->video);

	media_entity_cleanup(&video->video.entity);
}