spi-atmel.c 44.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Driver for Atmel AT32 and AT91 SPI Controllers
 *
 * Copyright (C) 2006 Atmel Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
17
#include <linux/dmaengine.h>
18 19 20
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
21
#include <linux/slab.h>
22
#include <linux/platform_data/dma-atmel.h>
23
#include <linux/of.h>
24

25 26
#include <linux/io.h>
#include <linux/gpio.h>
W
Wenyou Yang 已提交
27
#include <linux/pinctrl/consumer.h>
28
#include <linux/pm_runtime.h>
29

G
Grant Likely 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42
/* SPI register offsets */
#define SPI_CR					0x0000
#define SPI_MR					0x0004
#define SPI_RDR					0x0008
#define SPI_TDR					0x000c
#define SPI_SR					0x0010
#define SPI_IER					0x0014
#define SPI_IDR					0x0018
#define SPI_IMR					0x001c
#define SPI_CSR0				0x0030
#define SPI_CSR1				0x0034
#define SPI_CSR2				0x0038
#define SPI_CSR3				0x003c
43 44
#define SPI_FMR					0x0040
#define SPI_FLR					0x0044
45
#define SPI_VERSION				0x00fc
G
Grant Likely 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
#define SPI_RPR					0x0100
#define SPI_RCR					0x0104
#define SPI_TPR					0x0108
#define SPI_TCR					0x010c
#define SPI_RNPR				0x0110
#define SPI_RNCR				0x0114
#define SPI_TNPR				0x0118
#define SPI_TNCR				0x011c
#define SPI_PTCR				0x0120
#define SPI_PTSR				0x0124

/* Bitfields in CR */
#define SPI_SPIEN_OFFSET			0
#define SPI_SPIEN_SIZE				1
#define SPI_SPIDIS_OFFSET			1
#define SPI_SPIDIS_SIZE				1
#define SPI_SWRST_OFFSET			7
#define SPI_SWRST_SIZE				1
#define SPI_LASTXFER_OFFSET			24
#define SPI_LASTXFER_SIZE			1
66 67 68 69 70 71 72 73
#define SPI_TXFCLR_OFFSET			16
#define SPI_TXFCLR_SIZE				1
#define SPI_RXFCLR_OFFSET			17
#define SPI_RXFCLR_SIZE				1
#define SPI_FIFOEN_OFFSET			30
#define SPI_FIFOEN_SIZE				1
#define SPI_FIFODIS_OFFSET			31
#define SPI_FIFODIS_SIZE			1
G
Grant Likely 已提交
74 75 76 77 78 79 80 81 82 83 84 85

/* Bitfields in MR */
#define SPI_MSTR_OFFSET				0
#define SPI_MSTR_SIZE				1
#define SPI_PS_OFFSET				1
#define SPI_PS_SIZE				1
#define SPI_PCSDEC_OFFSET			2
#define SPI_PCSDEC_SIZE				1
#define SPI_FDIV_OFFSET				3
#define SPI_FDIV_SIZE				1
#define SPI_MODFDIS_OFFSET			4
#define SPI_MODFDIS_SIZE			1
86 87
#define SPI_WDRBT_OFFSET			5
#define SPI_WDRBT_SIZE				1
G
Grant Likely 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define SPI_LLB_OFFSET				7
#define SPI_LLB_SIZE				1
#define SPI_PCS_OFFSET				16
#define SPI_PCS_SIZE				4
#define SPI_DLYBCS_OFFSET			24
#define SPI_DLYBCS_SIZE				8

/* Bitfields in RDR */
#define SPI_RD_OFFSET				0
#define SPI_RD_SIZE				16

/* Bitfields in TDR */
#define SPI_TD_OFFSET				0
#define SPI_TD_SIZE				16

/* Bitfields in SR */
#define SPI_RDRF_OFFSET				0
#define SPI_RDRF_SIZE				1
#define SPI_TDRE_OFFSET				1
#define SPI_TDRE_SIZE				1
#define SPI_MODF_OFFSET				2
#define SPI_MODF_SIZE				1
#define SPI_OVRES_OFFSET			3
#define SPI_OVRES_SIZE				1
#define SPI_ENDRX_OFFSET			4
#define SPI_ENDRX_SIZE				1
#define SPI_ENDTX_OFFSET			5
#define SPI_ENDTX_SIZE				1
#define SPI_RXBUFF_OFFSET			6
#define SPI_RXBUFF_SIZE				1
#define SPI_TXBUFE_OFFSET			7
#define SPI_TXBUFE_SIZE				1
#define SPI_NSSR_OFFSET				8
#define SPI_NSSR_SIZE				1
#define SPI_TXEMPTY_OFFSET			9
#define SPI_TXEMPTY_SIZE			1
#define SPI_SPIENS_OFFSET			16
#define SPI_SPIENS_SIZE				1
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#define SPI_TXFEF_OFFSET			24
#define SPI_TXFEF_SIZE				1
#define SPI_TXFFF_OFFSET			25
#define SPI_TXFFF_SIZE				1
#define SPI_TXFTHF_OFFSET			26
#define SPI_TXFTHF_SIZE				1
#define SPI_RXFEF_OFFSET			27
#define SPI_RXFEF_SIZE				1
#define SPI_RXFFF_OFFSET			28
#define SPI_RXFFF_SIZE				1
#define SPI_RXFTHF_OFFSET			29
#define SPI_RXFTHF_SIZE				1
#define SPI_TXFPTEF_OFFSET			30
#define SPI_TXFPTEF_SIZE			1
#define SPI_RXFPTEF_OFFSET			31
#define SPI_RXFPTEF_SIZE			1
G
Grant Likely 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

/* Bitfields in CSR0 */
#define SPI_CPOL_OFFSET				0
#define SPI_CPOL_SIZE				1
#define SPI_NCPHA_OFFSET			1
#define SPI_NCPHA_SIZE				1
#define SPI_CSAAT_OFFSET			3
#define SPI_CSAAT_SIZE				1
#define SPI_BITS_OFFSET				4
#define SPI_BITS_SIZE				4
#define SPI_SCBR_OFFSET				8
#define SPI_SCBR_SIZE				8
#define SPI_DLYBS_OFFSET			16
#define SPI_DLYBS_SIZE				8
#define SPI_DLYBCT_OFFSET			24
#define SPI_DLYBCT_SIZE				8

/* Bitfields in RCR */
#define SPI_RXCTR_OFFSET			0
#define SPI_RXCTR_SIZE				16

/* Bitfields in TCR */
#define SPI_TXCTR_OFFSET			0
#define SPI_TXCTR_SIZE				16

/* Bitfields in RNCR */
#define SPI_RXNCR_OFFSET			0
#define SPI_RXNCR_SIZE				16

/* Bitfields in TNCR */
#define SPI_TXNCR_OFFSET			0
#define SPI_TXNCR_SIZE				16

/* Bitfields in PTCR */
#define SPI_RXTEN_OFFSET			0
#define SPI_RXTEN_SIZE				1
#define SPI_RXTDIS_OFFSET			1
#define SPI_RXTDIS_SIZE				1
#define SPI_TXTEN_OFFSET			8
#define SPI_TXTEN_SIZE				1
#define SPI_TXTDIS_OFFSET			9
#define SPI_TXTDIS_SIZE				1

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/* Bitfields in FMR */
#define SPI_TXRDYM_OFFSET			0
#define SPI_TXRDYM_SIZE				2
#define SPI_RXRDYM_OFFSET			4
#define SPI_RXRDYM_SIZE				2
#define SPI_TXFTHRES_OFFSET			16
#define SPI_TXFTHRES_SIZE			6
#define SPI_RXFTHRES_OFFSET			24
#define SPI_RXFTHRES_SIZE			6

/* Bitfields in FLR */
#define SPI_TXFL_OFFSET				0
#define SPI_TXFL_SIZE				6
#define SPI_RXFL_OFFSET				16
#define SPI_RXFL_SIZE				6

G
Grant Likely 已提交
201 202 203 204 205 206 207 208 209 210
/* Constants for BITS */
#define SPI_BITS_8_BPT				0
#define SPI_BITS_9_BPT				1
#define SPI_BITS_10_BPT				2
#define SPI_BITS_11_BPT				3
#define SPI_BITS_12_BPT				4
#define SPI_BITS_13_BPT				5
#define SPI_BITS_14_BPT				6
#define SPI_BITS_15_BPT				7
#define SPI_BITS_16_BPT				8
211 212 213
#define SPI_ONE_DATA				0
#define SPI_TWO_DATA				1
#define SPI_FOUR_DATA				2
G
Grant Likely 已提交
214 215 216 217

/* Bit manipulation macros */
#define SPI_BIT(name) \
	(1 << SPI_##name##_OFFSET)
218
#define SPI_BF(name, value) \
G
Grant Likely 已提交
219
	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
220
#define SPI_BFEXT(name, value) \
G
Grant Likely 已提交
221
	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
222 223 224
#define SPI_BFINS(name, value, old) \
	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
	  | SPI_BF(name, value))
G
Grant Likely 已提交
225 226

/* Register access macros */
B
Ben Dooks 已提交
227
#ifdef CONFIG_AVR32
228
#define spi_readl(port, reg) \
G
Grant Likely 已提交
229
	__raw_readl((port)->regs + SPI_##reg)
230
#define spi_writel(port, reg, value) \
G
Grant Likely 已提交
231
	__raw_writel((value), (port)->regs + SPI_##reg)
232 233 234 235 236 237 238 239 240 241

#define spi_readw(port, reg) \
	__raw_readw((port)->regs + SPI_##reg)
#define spi_writew(port, reg, value) \
	__raw_writew((value), (port)->regs + SPI_##reg)

#define spi_readb(port, reg) \
	__raw_readb((port)->regs + SPI_##reg)
#define spi_writeb(port, reg, value) \
	__raw_writeb((value), (port)->regs + SPI_##reg)
B
Ben Dooks 已提交
242 243 244 245 246
#else
#define spi_readl(port, reg) \
	readl_relaxed((port)->regs + SPI_##reg)
#define spi_writel(port, reg, value) \
	writel_relaxed((value), (port)->regs + SPI_##reg)
247 248 249 250 251 252 253 254 255 256

#define spi_readw(port, reg) \
	readw_relaxed((port)->regs + SPI_##reg)
#define spi_writew(port, reg, value) \
	writew_relaxed((value), (port)->regs + SPI_##reg)

#define spi_readb(port, reg) \
	readb_relaxed((port)->regs + SPI_##reg)
#define spi_writeb(port, reg, value) \
	writeb_relaxed((value), (port)->regs + SPI_##reg)
B
Ben Dooks 已提交
257
#endif
258 259 260 261 262
/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 * cache operations; better heuristics consider wordsize and bitrate.
 */
#define DMA_MIN_BYTES	16

263 264
#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))

265 266
#define AUTOSUSPEND_TIMEOUT	2000

267 268 269 270 271 272 273 274 275 276 277
struct atmel_spi_dma {
	struct dma_chan			*chan_rx;
	struct dma_chan			*chan_tx;
	struct scatterlist		sgrx;
	struct scatterlist		sgtx;
	struct dma_async_tx_descriptor	*data_desc_rx;
	struct dma_async_tx_descriptor	*data_desc_tx;

	struct at_dma_slave	dma_slave;
};

278 279 280 281 282
struct atmel_spi_caps {
	bool	is_spi2;
	bool	has_wdrbt;
	bool	has_dma_support;
};
283 284 285 286 287 288 289 290

/*
 * The core SPI transfer engine just talks to a register bank to set up
 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 * framework provides the base clock, subdivided for each spi_device.
 */
struct atmel_spi {
	spinlock_t		lock;
291
	unsigned long		flags;
292

293
	phys_addr_t		phybase;
294 295 296 297 298 299
	void __iomem		*regs;
	int			irq;
	struct clk		*clk;
	struct platform_device	*pdev;

	struct spi_transfer	*current_transfer;
300
	int			current_remaining_bytes;
301
	int			done_status;
302

303 304
	struct completion	xfer_completion;

305
	/* scratch buffer */
306 307
	void			*buffer;
	dma_addr_t		buffer_dma;
308 309

	struct atmel_spi_caps	caps;
310 311 312

	bool			use_dma;
	bool			use_pdc;
313
	bool			use_cs_gpios;
314 315
	/* dmaengine data */
	struct atmel_spi_dma	dma;
316 317 318

	bool			keep_cs;
	bool			cs_active;
319 320

	u32			fifo_size;
321 322
};

323 324 325 326 327 328
/* Controller-specific per-slave state */
struct atmel_spi_device {
	unsigned int		npcs_pin;
	u32			csr;
};

329 330 331
#define BUFFER_SIZE		PAGE_SIZE
#define INVALID_DMA_ADDRESS	0xffffffff

332 333 334 335 336 337 338 339
/*
 * Version 2 of the SPI controller has
 *  - CR.LASTXFER
 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 *  - SPI_CSRx.CSAAT
 *  - SPI_CSRx.SBCR allows faster clocking
 */
340
static bool atmel_spi_is_v2(struct atmel_spi *as)
341
{
342
	return as->caps.is_spi2;
343 344
}

345 346 347
/*
 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 * they assume that spi slave device state will not change on deselect, so
348 349 350
 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 * controllers have CSAAT and friends.
351
 *
352 353 354 355 356 357 358 359 360 361 362
 * Since the CSAAT functionality is a bit weird on newer controllers as
 * well, we use GPIO to control nCSx pins on all controllers, updating
 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 * support active-high chipselects despite the controller's belief that
 * only active-low devices/systems exists.
 *
 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 * Master on Chip Select 0.")  No workaround exists for that ... so for
 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 * and (c) will trigger that first erratum in some cases.
363 364
 */

365
static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
366
{
367
	struct atmel_spi_device *asd = spi->controller_state;
368
	unsigned active = spi->mode & SPI_CS_HIGH;
369 370
	u32 mr;

371
	if (atmel_spi_is_v2(as)) {
372 373 374
		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
		/* For the low SPI version, there is a issue that PDC transfer
		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
375 376
		 */
		spi_writel(as, CSR0, asd->csr);
377
		if (as->caps.has_wdrbt) {
378 379 380 381 382
			spi_writel(as, MR,
					SPI_BF(PCS, ~(0x01 << spi->chip_select))
					| SPI_BIT(WDRBT)
					| SPI_BIT(MODFDIS)
					| SPI_BIT(MSTR));
383
		} else {
384 385 386 387
			spi_writel(as, MR,
					SPI_BF(PCS, ~(0x01 << spi->chip_select))
					| SPI_BIT(MODFDIS)
					| SPI_BIT(MSTR));
388
		}
389

390
		mr = spi_readl(as, MR);
391 392
		if (as->use_cs_gpios)
			gpio_set_value(asd->npcs_pin, active);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	} else {
		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
		int i;
		u32 csr;

		/* Make sure clock polarity is correct */
		for (i = 0; i < spi->master->num_chipselect; i++) {
			csr = spi_readl(as, CSR0 + 4 * i);
			if ((csr ^ cpol) & SPI_BIT(CPOL))
				spi_writel(as, CSR0 + 4 * i,
						csr ^ SPI_BIT(CPOL));
		}

		mr = spi_readl(as, MR);
		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
408
		if (as->use_cs_gpios && spi->chip_select != 0)
409 410 411
			gpio_set_value(asd->npcs_pin, active);
		spi_writel(as, MR, mr);
	}
412 413

	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
414
			asd->npcs_pin, active ? " (high)" : "",
415
			mr);
416 417
}

418
static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
419
{
420
	struct atmel_spi_device *asd = spi->controller_state;
421
	unsigned active = spi->mode & SPI_CS_HIGH;
422 423 424 425 426 427 428 429 430 431
	u32 mr;

	/* only deactivate *this* device; sometimes transfers to
	 * another device may be active when this routine is called.
	 */
	mr = spi_readl(as, MR);
	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
		mr = SPI_BFINS(PCS, 0xf, mr);
		spi_writel(as, MR, mr);
	}
432

433
	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
434
			asd->npcs_pin, active ? " (low)" : "",
435 436
			mr);

437 438 439
	if (!as->use_cs_gpios)
		spi_writel(as, CR, SPI_BIT(LASTXFER));
	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
440
		gpio_set_value(asd->npcs_pin, !active);
441 442
}

443
static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
444 445 446 447
{
	spin_lock_irqsave(&as->lock, as->flags);
}

448
static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
449 450 451 452
{
	spin_unlock_irqrestore(&as->lock, as->flags);
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static inline bool atmel_spi_use_dma(struct atmel_spi *as,
				struct spi_transfer *xfer)
{
	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
}

static int atmel_spi_dma_slave_config(struct atmel_spi *as,
				struct dma_slave_config *slave_config,
				u8 bits_per_word)
{
	int err = 0;

	if (bits_per_word > 8) {
		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
	} else {
		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
	}

	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
	slave_config->src_maxburst = 1;
	slave_config->dst_maxburst = 1;
	slave_config->device_fc = false;

479 480 481 482 483 484 485 486 487 488 489 490 491 492
	/*
	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
	 * the Mode Register).
	 * So according to the datasheet, when FIFOs are available (and
	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
	 * In this mode, up to 2 data, not 4, can be written into the Transmit
	 * Data Register in a single access.
	 * However, the first data has to be written into the lowest 16 bits and
	 * the second data into the highest 16 bits of the Transmit
	 * Data Register. For 8bit data (the most frequent case), it would
	 * require to rework tx_buf so each data would actualy fit 16 bits.
	 * So we'd rather write only one data at the time. Hence the transmit
	 * path works the same whether FIFOs are available (and enabled) or not.
	 */
493 494 495 496 497 498 499
	slave_config->direction = DMA_MEM_TO_DEV;
	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
		dev_err(&as->pdev->dev,
			"failed to configure tx dma channel\n");
		err = -EINVAL;
	}

500 501 502 503 504 505 506 507
	/*
	 * This driver configures the spi controller for master mode (MSTR bit
	 * set to '1' in the Mode Register).
	 * So according to the datasheet, when FIFOs are available (and
	 * enabled), the Receive FIFO operates in Single Data Mode.
	 * So the receive path works the same whether FIFOs are available (and
	 * enabled) or not.
	 */
508 509 510 511 512 513 514 515 516 517 518 519 520
	slave_config->direction = DMA_DEV_TO_MEM;
	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
		dev_err(&as->pdev->dev,
			"failed to configure rx dma channel\n");
		err = -EINVAL;
	}

	return err;
}

static int atmel_spi_configure_dma(struct atmel_spi *as)
{
	struct dma_slave_config	slave_config;
521
	struct device *dev = &as->pdev->dev;
522 523
	int err;

524 525 526
	dma_cap_mask_t mask;
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
527

528 529 530 531 532 533 534
	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
	if (IS_ERR(as->dma.chan_tx)) {
		err = PTR_ERR(as->dma.chan_tx);
		if (err == -EPROBE_DEFER) {
			dev_warn(dev, "no DMA channel available at the moment\n");
			return err;
		}
535 536 537 538
		dev_err(dev,
			"DMA TX channel not available, SPI unable to use DMA\n");
		err = -EBUSY;
		goto error;
539
	}
540

541 542 543 544
	/*
	 * No reason to check EPROBE_DEFER here since we have already requested
	 * tx channel. If it fails here, it's for another reason.
	 */
545
	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
546 547 548 549

	if (!as->dma.chan_rx) {
		dev_err(dev,
			"DMA RX channel not available, SPI unable to use DMA\n");
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		err = -EBUSY;
		goto error;
	}

	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
	if (err)
		goto error;

	dev_info(&as->pdev->dev,
			"Using %s (tx) and %s (rx) for DMA transfers\n",
			dma_chan_name(as->dma.chan_tx),
			dma_chan_name(as->dma.chan_rx));
	return 0;
error:
	if (as->dma.chan_rx)
		dma_release_channel(as->dma.chan_rx);
566
	if (!IS_ERR(as->dma.chan_tx))
567 568 569 570 571 572 573
		dma_release_channel(as->dma.chan_tx);
	return err;
}

static void atmel_spi_stop_dma(struct atmel_spi *as)
{
	if (as->dma.chan_rx)
574
		dmaengine_terminate_all(as->dma.chan_rx);
575
	if (as->dma.chan_tx)
576
		dmaengine_terminate_all(as->dma.chan_tx);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
}

static void atmel_spi_release_dma(struct atmel_spi *as)
{
	if (as->dma.chan_rx)
		dma_release_channel(as->dma.chan_rx);
	if (as->dma.chan_tx)
		dma_release_channel(as->dma.chan_tx);
}

/* This function is called by the DMA driver from tasklet context */
static void dma_callback(void *data)
{
	struct spi_master	*master = data;
	struct atmel_spi	*as = spi_master_get_devdata(master);

593
	complete(&as->xfer_completion);
594 595 596
}

/*
597
 * Next transfer using PIO without FIFO.
598
 */
599 600
static void atmel_spi_next_xfer_single(struct spi_master *master,
				       struct spi_transfer *xfer)
601 602
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
603
	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
604 605 606 607 608 609 610 611 612 613

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");

	/* Make sure data is not remaining in RDR */
	spi_readl(as, RDR);
	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
		spi_readl(as, RDR);
		cpu_relax();
	}

614
	if (xfer->tx_buf) {
615
		if (xfer->bits_per_word > 8)
616
			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
617
		else
618 619
			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
	} else {
620
		spi_writel(as, TDR, 0);
621
	}
622 623

	dev_dbg(master->dev.parent,
624 625 626
		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
		xfer->bits_per_word);
627 628 629 630 631

	/* Enable relevant interrupts */
	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
/*
 * Next transfer using PIO with FIFO.
 */
static void atmel_spi_next_xfer_fifo(struct spi_master *master,
				     struct spi_transfer *xfer)
{
	struct atmel_spi *as = spi_master_get_devdata(master);
	u32 current_remaining_data, num_data;
	u32 offset = xfer->len - as->current_remaining_bytes;
	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
	u16 td0, td1;
	u32 fifomr;

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");

	/* Compute the number of data to transfer in the current iteration */
	current_remaining_data = ((xfer->bits_per_word > 8) ?
				  ((u32)as->current_remaining_bytes >> 1) :
				  (u32)as->current_remaining_bytes);
	num_data = min(current_remaining_data, as->fifo_size);

	/* Flush RX and TX FIFOs */
	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
	while (spi_readl(as, FLR))
		cpu_relax();

	/* Set RX FIFO Threshold to the number of data to transfer */
	fifomr = spi_readl(as, FMR);
	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));

	/* Clear FIFO flags in the Status Register, especially RXFTHF */
	(void)spi_readl(as, SR);

	/* Fill TX FIFO */
	while (num_data >= 2) {
		if (xfer->tx_buf) {
			if (xfer->bits_per_word > 8) {
				td0 = *words++;
				td1 = *words++;
			} else {
				td0 = *bytes++;
				td1 = *bytes++;
			}
		} else {
			td0 = 0;
			td1 = 0;
		}

		spi_writel(as, TDR, (td1 << 16) | td0);
		num_data -= 2;
	}

	if (num_data) {
		if (xfer->tx_buf) {
			if (xfer->bits_per_word > 8)
				td0 = *words++;
			else
				td0 = *bytes++;
		} else {
			td0 = 0;
		}

		spi_writew(as, TDR, td0);
		num_data--;
	}

	dev_dbg(master->dev.parent,
		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
		xfer->bits_per_word);

	/*
	 * Enable RX FIFO Threshold Flag interrupt to be notified about
	 * transfer completion.
	 */
	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
}

/*
 * Next transfer using PIO.
 */
static void atmel_spi_next_xfer_pio(struct spi_master *master,
				    struct spi_transfer *xfer)
{
	struct atmel_spi *as = spi_master_get_devdata(master);

	if (as->fifo_size)
		atmel_spi_next_xfer_fifo(master, xfer);
	else
		atmel_spi_next_xfer_single(master, xfer);
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/*
 * Submit next transfer for DMA.
 */
static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
				struct spi_transfer *xfer,
				u32 *plen)
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
	struct dma_chan		*rxchan = as->dma.chan_rx;
	struct dma_chan		*txchan = as->dma.chan_tx;
	struct dma_async_tx_descriptor *rxdesc;
	struct dma_async_tx_descriptor *txdesc;
	struct dma_slave_config	slave_config;
	dma_cookie_t		cookie;
	u32	len = *plen;

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");

	/* Check that the channels are available */
	if (!rxchan || !txchan)
		return -ENODEV;

	/* release lock for DMA operations */
	atmel_spi_unlock(as);

	/* prepare the RX dma transfer */
	sg_init_table(&as->dma.sgrx, 1);
	if (xfer->rx_buf) {
		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
	} else {
		as->dma.sgrx.dma_address = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
	}

	/* prepare the TX dma transfer */
	sg_init_table(&as->dma.sgtx, 1);
	if (xfer->tx_buf) {
		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
	} else {
		as->dma.sgtx.dma_address = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
		memset(as->buffer, 0, len);
	}

	sg_dma_len(&as->dma.sgtx) = len;
	sg_dma_len(&as->dma.sgrx) = len;

	*plen = len;

	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
		goto err_exit;

	/* Send both scatterlists */
780 781 782
	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
					 DMA_FROM_DEVICE,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
783 784 785
	if (!rxdesc)
		goto err_dma;

786 787 788
	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
					 DMA_TO_DEVICE,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
789 790 791 792
	if (!txdesc)
		goto err_dma;

	dev_dbg(master->dev.parent,
793 794 795
		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

	/* Enable relevant interrupts */
	spi_writel(as, IER, SPI_BIT(OVRES));

	/* Put the callback on the RX transfer only, that should finish last */
	rxdesc->callback = dma_callback;
	rxdesc->callback_param = master;

	/* Submit and fire RX and TX with TX last so we're ready to read! */
	cookie = rxdesc->tx_submit(rxdesc);
	if (dma_submit_error(cookie))
		goto err_dma;
	cookie = txdesc->tx_submit(txdesc);
	if (dma_submit_error(cookie))
		goto err_dma;
	rxchan->device->device_issue_pending(rxchan);
	txchan->device->device_issue_pending(txchan);

	/* take back lock */
	atmel_spi_lock(as);
	return 0;

err_dma:
	spi_writel(as, IDR, SPI_BIT(OVRES));
	atmel_spi_stop_dma(as);
err_exit:
	atmel_spi_lock(as);
	return -ENOMEM;
}

S
Silvester Erdeg 已提交
826 827 828 829 830 831 832 833 834 835 836
static void atmel_spi_next_xfer_data(struct spi_master *master,
				struct spi_transfer *xfer,
				dma_addr_t *tx_dma,
				dma_addr_t *rx_dma,
				u32 *plen)
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			len = *plen;

	/* use scratch buffer only when rx or tx data is unspecified */
	if (xfer->rx_buf)
837
		*rx_dma = xfer->rx_dma + xfer->len - *plen;
S
Silvester Erdeg 已提交
838 839 840 841 842
	else {
		*rx_dma = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
	}
843

S
Silvester Erdeg 已提交
844
	if (xfer->tx_buf)
845
		*tx_dma = xfer->tx_dma + xfer->len - *plen;
S
Silvester Erdeg 已提交
846 847 848 849 850 851 852 853 854 855 856 857
	else {
		*tx_dma = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
		memset(as->buffer, 0, len);
		dma_sync_single_for_device(&as->pdev->dev,
				as->buffer_dma, len, DMA_TO_DEVICE);
	}

	*plen = len;
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
				    struct spi_device *spi,
				    struct spi_transfer *xfer)
{
	u32			scbr, csr;
	unsigned long		bus_hz;

	/* v1 chips start out at half the peripheral bus speed. */
	bus_hz = clk_get_rate(as->clk);
	if (!atmel_spi_is_v2(as))
		bus_hz /= 2;

	/*
	 * Calculate the lowest divider that satisfies the
	 * constraint, assuming div32/fdiv/mbz == 0.
	 */
874
	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898

	/*
	 * If the resulting divider doesn't fit into the
	 * register bitfield, we can't satisfy the constraint.
	 */
	if (scbr >= (1 << SPI_SCBR_SIZE)) {
		dev_err(&spi->dev,
			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
			xfer->speed_hz, scbr, bus_hz/255);
		return -EINVAL;
	}
	if (scbr == 0) {
		dev_err(&spi->dev,
			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
			xfer->speed_hz, scbr, bus_hz);
		return -EINVAL;
	}
	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
	csr = SPI_BFINS(SCBR, scbr, csr);
	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);

	return 0;
}

899
/*
900
 * Submit next transfer for PDC.
901 902
 * lock is held, spi irq is blocked
 */
903
static void atmel_spi_pdc_next_xfer(struct spi_master *master,
904 905
					struct spi_message *msg,
					struct spi_transfer *xfer)
906 907
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
908
	u32			len;
909 910
	dma_addr_t		tx_dma, rx_dma;

911
	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
912

913 914 915
	len = as->current_remaining_bytes;
	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
	as->current_remaining_bytes -= len;
916

917 918
	spi_writel(as, RPR, rx_dma);
	spi_writel(as, TPR, tx_dma);
919

920 921 922 923
	if (msg->spi->bits_per_word > 8)
		len >>= 1;
	spi_writel(as, RCR, len);
	spi_writel(as, TCR, len);
924

925 926 927 928 929
	dev_dbg(&msg->spi->dev,
		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
		xfer, xfer->len, xfer->tx_buf,
		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
		(unsigned long long)xfer->rx_dma);
930

931 932
	if (as->current_remaining_bytes) {
		len = as->current_remaining_bytes;
S
Silvester Erdeg 已提交
933
		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
934
		as->current_remaining_bytes -= len;
935

S
Silvester Erdeg 已提交
936 937
		spi_writel(as, RNPR, rx_dma);
		spi_writel(as, TNPR, tx_dma);
938

S
Silvester Erdeg 已提交
939 940 941 942
		if (msg->spi->bits_per_word > 8)
			len >>= 1;
		spi_writel(as, RNCR, len);
		spi_writel(as, TNCR, len);
943 944

		dev_dbg(&msg->spi->dev,
945 946 947 948
			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
			xfer, xfer->len, xfer->tx_buf,
			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
			(unsigned long long)xfer->rx_dma);
S
Silvester Erdeg 已提交
949 950
	}

951
	/* REVISIT: We're waiting for RXBUFF before we start the next
952
	 * transfer because we need to handle some difficult timing
953 954 955 956
	 * issues otherwise. If we wait for TXBUFE in one transfer and
	 * then starts waiting for RXBUFF in the next, it's difficult
	 * to tell the difference between the RXBUFF interrupt we're
	 * actually waiting for and the RXBUFF interrupt of the
957 958 959 960
	 * previous transfer.
	 *
	 * It should be doable, though. Just not now...
	 */
961
	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
962 963 964
	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
}

D
David Brownell 已提交
965 966 967
/*
 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 *  - The buffer is either valid for CPU access, else NULL
968
 *  - If the buffer is valid, so is its DMA address
D
David Brownell 已提交
969
 *
970
 * This driver manages the dma address unless message->is_dma_mapped.
D
David Brownell 已提交
971 972
 */
static int
973 974
atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
{
D
David Brownell 已提交
975 976
	struct device	*dev = &as->pdev->dev;

977
	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
D
David Brownell 已提交
978
	if (xfer->tx_buf) {
979 980 981 982
		/* tx_buf is a const void* where we need a void * for the dma
		 * mapping */
		void *nonconst_tx = (void *)xfer->tx_buf;

D
David Brownell 已提交
983
		xfer->tx_dma = dma_map_single(dev,
984
				nonconst_tx, xfer->len,
985
				DMA_TO_DEVICE);
986
		if (dma_mapping_error(dev, xfer->tx_dma))
D
David Brownell 已提交
987 988 989 990
			return -ENOMEM;
	}
	if (xfer->rx_buf) {
		xfer->rx_dma = dma_map_single(dev,
991 992
				xfer->rx_buf, xfer->len,
				DMA_FROM_DEVICE);
993
		if (dma_mapping_error(dev, xfer->rx_dma)) {
D
David Brownell 已提交
994 995 996 997 998 999 1000 1001
			if (xfer->tx_buf)
				dma_unmap_single(dev,
						xfer->tx_dma, xfer->len,
						DMA_TO_DEVICE);
			return -ENOMEM;
		}
	}
	return 0;
1002 1003 1004 1005 1006 1007
}

static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
				     struct spi_transfer *xfer)
{
	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
T
Tony Jones 已提交
1008
		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1009 1010
				 xfer->len, DMA_TO_DEVICE);
	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
T
Tony Jones 已提交
1011
		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1012 1013 1014
				 xfer->len, DMA_FROM_DEVICE);
}

1015 1016 1017 1018 1019 1020
static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
{
	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
}

static void
1021
atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1022 1023
{
	u8		*rxp;
1024
	u16		*rxp16;
1025 1026 1027
	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;

	if (xfer->rx_buf) {
1028 1029 1030 1031 1032 1033 1034
		if (xfer->bits_per_word > 8) {
			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
			*rxp16 = spi_readl(as, RDR);
		} else {
			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
			*rxp = spi_readl(as, RDR);
		}
1035 1036 1037
	} else {
		spi_readl(as, RDR);
	}
1038
	if (xfer->bits_per_word > 8) {
1039 1040 1041
		if (as->current_remaining_bytes > 2)
			as->current_remaining_bytes -= 2;
		else
1042 1043 1044 1045
			as->current_remaining_bytes = 0;
	} else {
		as->current_remaining_bytes--;
	}
1046 1047
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
static void
atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
	u32 fifolr = spi_readl(as, FLR);
	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
	u32 offset = xfer->len - as->current_remaining_bytes;
	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
	u16 rd; /* RD field is the lowest 16 bits of RDR */

	/* Update the number of remaining bytes to transfer */
	num_bytes = ((xfer->bits_per_word > 8) ?
		     (num_data << 1) :
		     num_data);

	if (as->current_remaining_bytes > num_bytes)
		as->current_remaining_bytes -= num_bytes;
	else
		as->current_remaining_bytes = 0;

	/* Handle odd number of bytes when data are more than 8bit width */
	if (xfer->bits_per_word > 8)
		as->current_remaining_bytes &= ~0x1;

	/* Read data */
	while (num_data) {
		rd = spi_readl(as, RDR);
		if (xfer->rx_buf) {
			if (xfer->bits_per_word > 8)
				*words++ = rd;
			else
				*bytes++ = rd;
		}
		num_data--;
	}
}

/* Called from IRQ
 *
 * Must update "current_remaining_bytes" to keep track of data
 * to transfer.
 */
static void
atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
	if (as->fifo_size)
		atmel_spi_pump_fifo_data(as, xfer);
	else
		atmel_spi_pump_single_data(as, xfer);
}

1099 1100 1101
/* Interrupt
 *
 * No need for locking in this Interrupt handler: done_status is the
1102
 * only information modified.
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
 */
static irqreturn_t
atmel_spi_pio_interrupt(int irq, void *dev_id)
{
	struct spi_master	*master = dev_id;
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			status, pending, imr;
	struct spi_transfer	*xfer;
	int			ret = IRQ_NONE;

	imr = spi_readl(as, IMR);
	status = spi_readl(as, SR);
	pending = status & imr;

	if (pending & SPI_BIT(OVRES)) {
		ret = IRQ_HANDLED;
		spi_writel(as, IDR, SPI_BIT(OVRES));
		dev_warn(master->dev.parent, "overrun\n");

		/*
		 * When we get an overrun, we disregard the current
		 * transfer. Data will not be copied back from any
		 * bounce buffer and msg->actual_len will not be
		 * updated with the last xfer.
		 *
		 * We will also not process any remaning transfers in
		 * the message.
		 */
		as->done_status = -EIO;
		smp_wmb();

		/* Clear any overrun happening while cleaning up */
		spi_readl(as, SR);

1137
		complete(&as->xfer_completion);
1138

1139
	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1140 1141 1142 1143 1144 1145
		atmel_spi_lock(as);

		if (as->current_remaining_bytes) {
			ret = IRQ_HANDLED;
			xfer = as->current_transfer;
			atmel_spi_pump_pio_data(as, xfer);
1146
			if (!as->current_remaining_bytes)
1147
				spi_writel(as, IDR, pending);
1148 1149

			complete(&as->xfer_completion);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		}

		atmel_spi_unlock(as);
	} else {
		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
		ret = IRQ_HANDLED;
		spi_writel(as, IDR, pending);
	}

	return ret;
1160 1161 1162
}

static irqreturn_t
1163
atmel_spi_pdc_interrupt(int irq, void *dev_id)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
{
	struct spi_master	*master = dev_id;
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			status, pending, imr;
	int			ret = IRQ_NONE;

	imr = spi_readl(as, IMR);
	status = spi_readl(as, SR);
	pending = status & imr;

	if (pending & SPI_BIT(OVRES)) {

		ret = IRQ_HANDLED;

1178
		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1179 1180 1181 1182 1183
				     | SPI_BIT(OVRES)));

		/* Clear any overrun happening while cleaning up */
		spi_readl(as, SR);

1184
		as->done_status = -EIO;
1185 1186 1187

		complete(&as->xfer_completion);

1188
	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1189 1190 1191 1192
		ret = IRQ_HANDLED;

		spi_writel(as, IDR, pending);

1193
		complete(&as->xfer_completion);
1194 1195 1196 1197 1198 1199 1200 1201
	}

	return ret;
}

static int atmel_spi_setup(struct spi_device *spi)
{
	struct atmel_spi	*as;
1202
	struct atmel_spi_device	*asd;
1203
	u32			csr;
1204 1205 1206 1207 1208 1209
	unsigned int		bits = spi->bits_per_word;
	unsigned int		npcs_pin;
	int			ret;

	as = spi_master_get_devdata(spi->master);

1210
	/* see notes above re chipselect */
1211
	if (!atmel_spi_is_v2(as)
1212 1213 1214 1215 1216 1217
			&& spi->chip_select == 0
			&& (spi->mode & SPI_CS_HIGH)) {
		dev_dbg(&spi->dev, "setup: can't be active-high\n");
		return -EINVAL;
	}

1218
	csr = SPI_BF(BITS, bits - 8);
1219 1220 1221 1222
	if (spi->mode & SPI_CPOL)
		csr |= SPI_BIT(CPOL);
	if (!(spi->mode & SPI_CPHA))
		csr |= SPI_BIT(NCPHA);
1223 1224
	if (!as->use_cs_gpios)
		csr |= SPI_BIT(CSAAT);
1225

1226 1227 1228 1229 1230 1231 1232 1233
	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
	 *
	 * DLYBCT would add delays between words, slowing down transfers.
	 * It could potentially be useful to cope with DMA bottlenecks, but
	 * in those cases it's probably best to just use a lower bitrate.
	 */
	csr |= SPI_BF(DLYBS, 0);
	csr |= SPI_BF(DLYBCT, 0);
1234 1235

	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1236
	npcs_pin = (unsigned long)spi->controller_data;
1237

1238 1239 1240
	if (!as->use_cs_gpios)
		npcs_pin = spi->chip_select;
	else if (gpio_is_valid(spi->cs_gpio))
1241 1242
		npcs_pin = spi->cs_gpio;

1243 1244 1245 1246 1247 1248
	asd = spi->controller_state;
	if (!asd) {
		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
		if (!asd)
			return -ENOMEM;

1249 1250 1251 1252 1253 1254 1255 1256 1257
		if (as->use_cs_gpios) {
			ret = gpio_request(npcs_pin, dev_name(&spi->dev));
			if (ret) {
				kfree(asd);
				return ret;
			}

			gpio_direction_output(npcs_pin,
					      !(spi->mode & SPI_CS_HIGH));
1258 1259 1260 1261
		}

		asd->npcs_pin = npcs_pin;
		spi->controller_state = asd;
1262 1263
	}

1264 1265
	asd->csr = csr;

1266
	dev_dbg(&spi->dev,
1267 1268
		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
		bits, spi->mode, spi->chip_select, csr);
1269

1270
	if (!atmel_spi_is_v2(as))
1271
		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1272 1273 1274 1275

	return 0;
}

1276 1277 1278
static int atmel_spi_one_transfer(struct spi_master *master,
					struct spi_message *msg,
					struct spi_transfer *xfer)
1279 1280
{
	struct atmel_spi	*as;
1281
	struct spi_device	*spi = msg->spi;
1282
	u8			bits;
1283
	u32			len;
1284
	struct atmel_spi_device	*asd;
1285 1286
	int			timeout;
	int			ret;
1287
	unsigned long		dma_timeout;
1288

1289
	as = spi_master_get_devdata(master);
1290

1291 1292
	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1293
		return -EINVAL;
1294
	}
1295

1296 1297 1298 1299
	asd = spi->controller_state;
	bits = (asd->csr >> 4) & 0xf;
	if (bits != xfer->bits_per_word - 8) {
		dev_dbg(&spi->dev,
1300
			"you can't yet change bits_per_word in transfers\n");
1301
		return -ENOPROTOOPT;
1302
	}
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	/*
	 * DMA map early, for performance (empties dcache ASAP) and
	 * better fault reporting.
	 */
	if ((!msg->is_dma_mapped)
		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
			return -ENOMEM;
	}

	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	as->done_status = 0;
	as->current_transfer = xfer;
	as->current_remaining_bytes = xfer->len;
	while (as->current_remaining_bytes) {
		reinit_completion(&as->xfer_completion);

		if (as->use_pdc) {
			atmel_spi_pdc_next_xfer(master, msg, xfer);
		} else if (atmel_spi_use_dma(as, xfer)) {
			len = as->current_remaining_bytes;
			ret = atmel_spi_next_xfer_dma_submit(master,
								xfer, &len);
			if (ret) {
				dev_err(&spi->dev,
					"unable to use DMA, fallback to PIO\n");
				atmel_spi_next_xfer_pio(master, xfer);
			} else {
				as->current_remaining_bytes -= len;
1334 1335
				if (as->current_remaining_bytes < 0)
					as->current_remaining_bytes = 0;
1336
			}
1337 1338
		} else {
			atmel_spi_next_xfer_pio(master, xfer);
1339 1340
		}

1341 1342
		/* interrupts are disabled, so free the lock for schedule */
		atmel_spi_unlock(as);
1343 1344
		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
							  SPI_DMA_TIMEOUT);
1345
		atmel_spi_lock(as);
1346 1347
		if (WARN_ON(dma_timeout == 0)) {
			dev_err(&spi->dev, "spi transfer timeout\n");
1348
			as->done_status = -EIO;
1349 1350
		}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		if (as->done_status)
			break;
	}

	if (as->done_status) {
		if (as->use_pdc) {
			dev_warn(master->dev.parent,
				"overrun (%u/%u remaining)\n",
				spi_readl(as, TCR), spi_readl(as, RCR));

			/*
			 * Clean up DMA registers and make sure the data
			 * registers are empty.
			 */
			spi_writel(as, RNCR, 0);
			spi_writel(as, TNCR, 0);
			spi_writel(as, RCR, 0);
			spi_writel(as, TCR, 0);
			for (timeout = 1000; timeout; timeout--)
				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
					break;
			if (!timeout)
				dev_warn(master->dev.parent,
					 "timeout waiting for TXEMPTY");
			while (spi_readl(as, SR) & SPI_BIT(RDRF))
				spi_readl(as, RDR);

			/* Clear any overrun happening while cleaning up */
			spi_readl(as, SR);

		} else if (atmel_spi_use_dma(as, xfer)) {
			atmel_spi_stop_dma(as);
		}

		if (!msg->is_dma_mapped
			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
			atmel_spi_dma_unmap_xfer(master, xfer);

		return 0;

	} else {
		/* only update length if no error */
		msg->actual_length += xfer->len;
	}

	if (!msg->is_dma_mapped
		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
		atmel_spi_dma_unmap_xfer(master, xfer);

	if (xfer->delay_usecs)
		udelay(xfer->delay_usecs);

	if (xfer->cs_change) {
		if (list_is_last(&xfer->transfer_list,
				 &msg->transfers)) {
			as->keep_cs = true;
		} else {
			as->cs_active = !as->cs_active;
			if (as->cs_active)
				cs_activate(as, msg->spi);
			else
				cs_deactivate(as, msg->spi);
D
David Brownell 已提交
1413
		}
1414 1415
	}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	return 0;
}

static int atmel_spi_transfer_one_message(struct spi_master *master,
						struct spi_message *msg)
{
	struct atmel_spi *as;
	struct spi_transfer *xfer;
	struct spi_device *spi = msg->spi;
	int ret = 0;

	as = spi_master_get_devdata(master);

	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
					msg, dev_name(&spi->dev));

	atmel_spi_lock(as);
	cs_activate(as, spi);

	as->cs_active = true;
	as->keep_cs = false;

	msg->status = 0;
	msg->actual_length = 0;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		ret = atmel_spi_one_transfer(master, msg, xfer);
		if (ret)
			goto msg_done;
	}

	if (as->use_pdc)
		atmel_spi_disable_pdc_transfer(as);

1450
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1451
		dev_dbg(&spi->dev,
1452
			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1453
			xfer, xfer->len,
1454 1455
			xfer->tx_buf, &xfer->tx_dma,
			xfer->rx_buf, &xfer->rx_dma);
1456 1457
	}

1458 1459 1460
msg_done:
	if (!as->keep_cs)
		cs_deactivate(as, msg->spi);
1461

1462
	atmel_spi_unlock(as);
1463

1464 1465 1466 1467
	msg->status = as->done_status;
	spi_finalize_current_message(spi->master);

	return ret;
1468 1469
}

1470
static void atmel_spi_cleanup(struct spi_device *spi)
1471
{
1472
	struct atmel_spi_device	*asd = spi->controller_state;
1473
	unsigned		gpio = (unsigned long) spi->controller_data;
1474

1475
	if (!asd)
1476 1477
		return;

1478
	spi->controller_state = NULL;
1479
	gpio_free(gpio);
1480
	kfree(asd);
1481 1482
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
static inline unsigned int atmel_get_version(struct atmel_spi *as)
{
	return spi_readl(as, VERSION) & 0x00000fff;
}

static void atmel_get_caps(struct atmel_spi *as)
{
	unsigned int version;

	version = atmel_get_version(as);
	dev_info(&as->pdev->dev, "version: 0x%x\n", version);

	as->caps.is_spi2 = version > 0x121;
	as->caps.has_wdrbt = version >= 0x210;
	as->caps.has_dma_support = version >= 0x212;
}

1500 1501
/*-------------------------------------------------------------------------*/

1502
static int atmel_spi_probe(struct platform_device *pdev)
1503 1504 1505 1506 1507 1508 1509 1510
{
	struct resource		*regs;
	int			irq;
	struct clk		*clk;
	int			ret;
	struct spi_master	*master;
	struct atmel_spi	*as;

W
Wenyou Yang 已提交
1511 1512 1513
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

1514 1515 1516 1517 1518 1519 1520 1521
	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!regs)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

J
Jingoo Han 已提交
1522
	clk = devm_clk_get(&pdev->dev, "spi_clk");
1523 1524 1525 1526 1527
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	/* setup spi core then atmel-specific driver state */
	ret = -ENOMEM;
1528
	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1529 1530 1531
	if (!master)
		goto out_free;

1532 1533
	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1534
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1535
	master->dev.of_node = pdev->dev.of_node;
1536
	master->bus_num = pdev->id;
1537
	master->num_chipselect = master->dev.of_node ? 0 : 4;
1538
	master->setup = atmel_spi_setup;
1539
	master->transfer_one_message = atmel_spi_transfer_one_message;
1540
	master->cleanup = atmel_spi_cleanup;
1541
	master->auto_runtime_pm = true;
1542 1543 1544 1545
	platform_set_drvdata(pdev, master);

	as = spi_master_get_devdata(master);

D
David Brownell 已提交
1546 1547 1548 1549
	/*
	 * Scratch buffer is used for throwaway rx and tx data.
	 * It's coherent to minimize dcache pollution.
	 */
1550 1551 1552 1553 1554 1555
	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
					&as->buffer_dma, GFP_KERNEL);
	if (!as->buffer)
		goto out_free;

	spin_lock_init(&as->lock);
1556

1557
	as->pdev = pdev;
1558
	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1559 1560
	if (IS_ERR(as->regs)) {
		ret = PTR_ERR(as->regs);
1561
		goto out_free_buffer;
1562
	}
1563
	as->phybase = regs->start;
1564 1565 1566
	as->irq = irq;
	as->clk = clk;

1567 1568
	init_completion(&as->xfer_completion);

1569 1570
	atmel_get_caps(as);

1571 1572 1573 1574 1575 1576 1577
	as->use_cs_gpios = true;
	if (atmel_spi_is_v2(as) &&
	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
		as->use_cs_gpios = false;
		master->num_chipselect = 4;
	}

1578 1579 1580
	as->use_dma = false;
	as->use_pdc = false;
	if (as->caps.has_dma_support) {
1581 1582
		ret = atmel_spi_configure_dma(as);
		if (ret == 0)
1583
			as->use_dma = true;
1584 1585
		else if (ret == -EPROBE_DEFER)
			return ret;
1586 1587 1588 1589 1590 1591 1592 1593
	} else {
		as->use_pdc = true;
	}

	if (as->caps.has_dma_support && !as->use_dma)
		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");

	if (as->use_pdc) {
J
Jingoo Han 已提交
1594 1595
		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
					0, dev_name(&pdev->dev), master);
1596
	} else {
J
Jingoo Han 已提交
1597 1598
		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
					0, dev_name(&pdev->dev), master);
1599
	}
1600 1601 1602 1603
	if (ret)
		goto out_unmap_regs;

	/* Initialize the hardware */
1604 1605
	ret = clk_prepare_enable(clk);
	if (ret)
1606
		goto out_free_irq;
1607
	spi_writel(as, CR, SPI_BIT(SWRST));
1608
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1609 1610 1611 1612 1613 1614
	if (as->caps.has_wdrbt) {
		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
				| SPI_BIT(MSTR));
	} else {
		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
	}
1615 1616 1617

	if (as->use_pdc)
		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1618 1619
	spi_writel(as, CR, SPI_BIT(SPIEN));

1620 1621 1622 1623 1624 1625 1626
	as->fifo_size = 0;
	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
				  &as->fifo_size)) {
		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
		spi_writel(as, CR, SPI_BIT(FIFOEN));
	}

1627 1628 1629 1630
	/* go! */
	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
			(unsigned long)regs->start, irq);

1631 1632 1633 1634 1635
	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

J
Jingoo Han 已提交
1636
	ret = devm_spi_register_master(&pdev->dev, master);
1637
	if (ret)
1638
		goto out_free_dma;
1639 1640 1641

	return 0;

1642
out_free_dma:
1643 1644 1645
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);

1646 1647 1648
	if (as->use_dma)
		atmel_spi_release_dma(as);

1649
	spi_writel(as, CR, SPI_BIT(SWRST));
1650
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1651
	clk_disable_unprepare(clk);
1652
out_free_irq:
1653 1654 1655 1656 1657 1658 1659 1660 1661
out_unmap_regs:
out_free_buffer:
	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
			as->buffer_dma);
out_free:
	spi_master_put(master);
	return ret;
}

1662
static int atmel_spi_remove(struct platform_device *pdev)
1663 1664 1665 1666
{
	struct spi_master	*master = platform_get_drvdata(pdev);
	struct atmel_spi	*as = spi_master_get_devdata(master);

1667 1668
	pm_runtime_get_sync(&pdev->dev);

1669 1670
	/* reset the hardware and block queue progress */
	spin_lock_irq(&as->lock);
1671 1672 1673 1674 1675
	if (as->use_dma) {
		atmel_spi_stop_dma(as);
		atmel_spi_release_dma(as);
	}

1676
	spi_writel(as, CR, SPI_BIT(SWRST));
1677
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1678 1679 1680 1681 1682 1683
	spi_readl(as, SR);
	spin_unlock_irq(&as->lock);

	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
			as->buffer_dma);

1684
	clk_disable_unprepare(as->clk);
1685

1686 1687 1688
	pm_runtime_put_noidle(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

1689 1690 1691
	return 0;
}

1692
#ifdef CONFIG_PM
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
static int atmel_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct atmel_spi *as = spi_master_get_devdata(master);

	clk_disable_unprepare(as->clk);
	pinctrl_pm_select_sleep_state(dev);

	return 0;
}

static int atmel_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct atmel_spi *as = spi_master_get_devdata(master);

	pinctrl_pm_select_default_state(dev);

	return clk_prepare_enable(as->clk);
}

1714
static int atmel_spi_suspend(struct device *dev)
1715
{
1716
	struct spi_master *master = dev_get_drvdata(dev);
1717 1718 1719 1720 1721 1722 1723 1724
	int ret;

	/* Stop the queue running */
	ret = spi_master_suspend(master);
	if (ret) {
		dev_warn(dev, "cannot suspend master\n");
		return ret;
	}
1725

1726 1727
	if (!pm_runtime_suspended(dev))
		atmel_spi_runtime_suspend(dev);
W
Wenyou Yang 已提交
1728

1729 1730 1731
	return 0;
}

1732
static int atmel_spi_resume(struct device *dev)
1733
{
1734
	struct spi_master *master = dev_get_drvdata(dev);
1735
	int ret;
1736

1737
	if (!pm_runtime_suspended(dev)) {
1738
		ret = atmel_spi_runtime_resume(dev);
1739 1740 1741
		if (ret)
			return ret;
	}
1742 1743 1744 1745 1746 1747 1748

	/* Start the queue running */
	ret = spi_master_resume(master);
	if (ret)
		dev_err(dev, "problem starting queue (%d)\n", ret);

	return ret;
1749
}
1750 1751 1752 1753 1754 1755

static const struct dev_pm_ops atmel_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
			   atmel_spi_runtime_resume, NULL)
};
1756
#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1757
#else
1758
#define ATMEL_SPI_PM_OPS	NULL
1759 1760
#endif

1761 1762 1763 1764 1765 1766 1767 1768
#if defined(CONFIG_OF)
static const struct of_device_id atmel_spi_dt_ids[] = {
	{ .compatible = "atmel,at91rm9200-spi" },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
#endif
1769 1770 1771 1772

static struct platform_driver atmel_spi_driver = {
	.driver		= {
		.name	= "atmel_spi",
1773
		.pm	= ATMEL_SPI_PM_OPS,
1774
		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1775
	},
1776
	.probe		= atmel_spi_probe,
1777
	.remove		= atmel_spi_remove,
1778
};
1779
module_platform_driver(atmel_spi_driver);
1780 1781

MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
J
Jean Delvare 已提交
1782
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1783
MODULE_LICENSE("GPL");
1784
MODULE_ALIAS("platform:atmel_spi");