timer-fttmr010.c 10.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * Faraday Technology FTTMR010 timer driver
4 5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
 *
 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
 * Copyright (C) 2001-2006 Storlink, Corp.
 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
 */
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>
18
#include <linux/clk.h>
19
#include <linux/slab.h>
20
#include <linux/bitops.h>
21
#include <linux/delay.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

/*
 * Register definitions for the timers
 */
#define TIMER1_COUNT		(0x00)
#define TIMER1_LOAD		(0x04)
#define TIMER1_MATCH1		(0x08)
#define TIMER1_MATCH2		(0x0c)
#define TIMER2_COUNT		(0x10)
#define TIMER2_LOAD		(0x14)
#define TIMER2_MATCH1		(0x18)
#define TIMER2_MATCH2		(0x1c)
#define TIMER3_COUNT		(0x20)
#define TIMER3_LOAD		(0x24)
#define TIMER3_MATCH1		(0x28)
#define TIMER3_MATCH2		(0x2c)
#define TIMER_CR		(0x30)
#define TIMER_INTR_STATE	(0x34)
#define TIMER_INTR_MASK		(0x38)

42 43 44 45 46 47 48 49 50 51 52 53
#define TIMER_1_CR_ENABLE	BIT(0)
#define TIMER_1_CR_CLOCK	BIT(1)
#define TIMER_1_CR_INT		BIT(2)
#define TIMER_2_CR_ENABLE	BIT(3)
#define TIMER_2_CR_CLOCK	BIT(4)
#define TIMER_2_CR_INT		BIT(5)
#define TIMER_3_CR_ENABLE	BIT(6)
#define TIMER_3_CR_CLOCK	BIT(7)
#define TIMER_3_CR_INT		BIT(8)
#define TIMER_1_CR_UPDOWN	BIT(9)
#define TIMER_2_CR_UPDOWN	BIT(10)
#define TIMER_3_CR_UPDOWN	BIT(11)
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * The Aspeed AST2400 moves bits around in the control register
 * and lacks bits for setting the timer to count upwards.
 */
#define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
#define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
#define TIMER_1_CR_ASPEED_INT		BIT(2)
#define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
#define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
#define TIMER_2_CR_ASPEED_INT		BIT(6)
#define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
#define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
#define TIMER_3_CR_ASPEED_INT		BIT(10)

69 70 71 72 73 74 75 76 77
#define TIMER_1_INT_MATCH1	BIT(0)
#define TIMER_1_INT_MATCH2	BIT(1)
#define TIMER_1_INT_OVERFLOW	BIT(2)
#define TIMER_2_INT_MATCH1	BIT(3)
#define TIMER_2_INT_MATCH2	BIT(4)
#define TIMER_2_INT_OVERFLOW	BIT(5)
#define TIMER_3_INT_MATCH1	BIT(6)
#define TIMER_3_INT_MATCH2	BIT(7)
#define TIMER_3_INT_OVERFLOW	BIT(8)
78 79
#define TIMER_INT_ALL_MASK	0x1ff

80 81 82
struct fttmr010 {
	void __iomem *base;
	unsigned int tick_rate;
83 84
	bool count_down;
	u32 t1_enable_val;
85
	struct clock_event_device clkevt;
86 87 88
#ifdef CONFIG_ARM
	struct delay_timer delay_timer;
#endif
89 90
};

91 92 93 94
/*
 * A local singleton used by sched_clock and delay timer reads, which are
 * fast and stateless
 */
95 96 97 98 99 100
static struct fttmr010 *local_fttmr;

static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
{
	return container_of(evt, struct fttmr010, clkevt);
}
101

102
static unsigned long fttmr010_read_current_timer_up(void)
103
{
104
	return readl(local_fttmr->base + TIMER2_COUNT);
105 106
}

107
static unsigned long fttmr010_read_current_timer_down(void)
108 109 110 111
{
	return ~readl(local_fttmr->base + TIMER2_COUNT);
}

112
static u64 notrace fttmr010_read_sched_clock_up(void)
113
{
114
	return fttmr010_read_current_timer_up();
115 116
}

117
static u64 notrace fttmr010_read_sched_clock_down(void)
118
{
119
	return fttmr010_read_current_timer_down();
120 121
}

122
static int fttmr010_timer_set_next_event(unsigned long cycles,
123 124
				       struct clock_event_device *evt)
{
125
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
126 127
	u32 cr;

128 129 130 131 132 133
	/* Stop */
	cr = readl(fttmr010->base + TIMER_CR);
	cr &= ~fttmr010->t1_enable_val;
	writel(cr, fttmr010->base + TIMER_CR);

	/* Setup the match register forward/backward in time */
134
	cr = readl(fttmr010->base + TIMER1_COUNT);
135 136 137 138 139 140 141 142 143 144
	if (fttmr010->count_down)
		cr -= cycles;
	else
		cr += cycles;
	writel(cr, fttmr010->base + TIMER1_MATCH1);

	/* Start */
	cr = readl(fttmr010->base + TIMER_CR);
	cr |= fttmr010->t1_enable_val;
	writel(cr, fttmr010->base + TIMER_CR);
145 146 147 148

	return 0;
}

149
static int fttmr010_timer_shutdown(struct clock_event_device *evt)
150
{
151 152 153
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
	u32 cr;

154
	/* Stop */
155
	cr = readl(fttmr010->base + TIMER_CR);
156
	cr &= ~fttmr010->t1_enable_val;
157 158 159 160 161 162 163 164
	writel(cr, fttmr010->base + TIMER_CR);

	return 0;
}

static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
{
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
165 166
	u32 cr;

167
	/* Stop */
168
	cr = readl(fttmr010->base + TIMER_CR);
169
	cr &= ~fttmr010->t1_enable_val;
170
	writel(cr, fttmr010->base + TIMER_CR);
171

172
	/* Setup counter start from 0 or ~0 */
173
	writel(0, fttmr010->base + TIMER1_COUNT);
174 175 176 177
	if (fttmr010->count_down)
		writel(~0, fttmr010->base + TIMER1_LOAD);
	else
		writel(0, fttmr010->base + TIMER1_LOAD);
178

179 180
	/* Enable interrupt */
	cr = readl(fttmr010->base + TIMER_INTR_MASK);
181 182
	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
	cr |= TIMER_1_INT_MATCH1;
183
	writel(cr, fttmr010->base + TIMER_INTR_MASK);
184 185 186 187

	return 0;
}

188
static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
189
{
190 191
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
192 193
	u32 cr;

194
	/* Stop */
195
	cr = readl(fttmr010->base + TIMER_CR);
196
	cr &= ~fttmr010->t1_enable_val;
197
	writel(cr, fttmr010->base + TIMER_CR);
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
	/* Setup timer to fire at 1/HZ intervals. */
	if (fttmr010->count_down) {
		writel(period, fttmr010->base + TIMER1_LOAD);
		writel(0, fttmr010->base + TIMER1_MATCH1);
	} else {
		cr = 0xffffffff - (period - 1);
		writel(cr, fttmr010->base + TIMER1_COUNT);
		writel(cr, fttmr010->base + TIMER1_LOAD);

		/* Enable interrupt on overflow */
		cr = readl(fttmr010->base + TIMER_INTR_MASK);
		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
		cr |= TIMER_1_INT_OVERFLOW;
		writel(cr, fttmr010->base + TIMER_INTR_MASK);
	}
214 215

	/* Start the timer */
216
	cr = readl(fttmr010->base + TIMER_CR);
217
	cr |= fttmr010->t1_enable_val;
218
	writel(cr, fttmr010->base + TIMER_CR);
219 220 221 222 223 224 225

	return 0;
}

/*
 * IRQ handler for the timer
 */
226
static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
227
{
228
	struct clock_event_device *evt = dev_id;
229 230 231 232 233

	evt->event_handler(evt);
	return IRQ_HANDLED;
}

234
static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
235
{
236
	struct fttmr010 *fttmr010;
237
	int irq;
238 239
	struct clk *clk;
	int ret;
240
	u32 val;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

	/*
	 * These implementations require a clock reference.
	 * FIXME: we currently only support clocking using PCLK
	 * and using EXTCLK is not supported in the driver.
	 */
	clk = of_clk_get_by_name(np, "PCLK");
	if (IS_ERR(clk)) {
		pr_err("could not get PCLK\n");
		return PTR_ERR(clk);
	}
	ret = clk_prepare_enable(clk);
	if (ret) {
		pr_err("failed to enable PCLK\n");
		return ret;
	}
257

258 259 260 261 262 263 264 265 266
	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
	if (!fttmr010) {
		ret = -ENOMEM;
		goto out_disable_clock;
	}
	fttmr010->tick_rate = clk_get_rate(clk);

	fttmr010->base = of_iomap(np, 0);
	if (!fttmr010->base) {
267
		pr_err("Can't remap registers\n");
268 269
		ret = -ENXIO;
		goto out_free;
270 271 272 273
	}
	/* IRQ for timer 1 */
	irq = irq_of_parse_and_map(np, 0);
	if (irq <= 0) {
274
		pr_err("Can't parse IRQ\n");
275 276
		ret = -EINVAL;
		goto out_unmap;
277 278
	}

279 280 281 282
	/*
	 * The Aspeed AST2400 moves bits around in the control register,
	 * otherwise it works the same.
	 */
283
	if (is_aspeed) {
284 285 286 287 288 289 290 291
		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
			TIMER_1_CR_ASPEED_INT;
		/* Downward not available */
		fttmr010->count_down = true;
	} else {
		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
	}

292 293 294
	/*
	 * Reset the interrupt mask and status
	 */
295 296
	writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
	writel(0, fttmr010->base + TIMER_INTR_STATE);
297 298 299 300 301

	/*
	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
	 * where everything just counts down.
	 */
302
	if (is_aspeed)
303 304 305 306 307 308 309
		val = TIMER_2_CR_ASPEED_ENABLE;
	else {
		val = TIMER_2_CR_ENABLE;
		if (!fttmr010->count_down)
			val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
	}
	writel(val, fttmr010->base + TIMER_CR);
310 311 312 313 314

	/*
	 * Setup free-running clocksource timer (interrupts
	 * disabled.)
	 */
315
	local_fttmr = fttmr010;
316 317 318
	writel(0, fttmr010->base + TIMER2_COUNT);
	writel(0, fttmr010->base + TIMER2_MATCH1);
	writel(0, fttmr010->base + TIMER2_MATCH2);
319 320 321 322 323 324 325

	if (fttmr010->count_down) {
		writel(~0, fttmr010->base + TIMER2_LOAD);
		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
				      "FTTMR010-TIMER2",
				      fttmr010->tick_rate,
				      300, 32, clocksource_mmio_readl_down);
326 327
		sched_clock_register(fttmr010_read_sched_clock_down, 32,
				     fttmr010->tick_rate);
328 329 330 331 332 333
	} else {
		writel(0, fttmr010->base + TIMER2_LOAD);
		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
				      "FTTMR010-TIMER2",
				      fttmr010->tick_rate,
				      300, 32, clocksource_mmio_readl_up);
334 335
		sched_clock_register(fttmr010_read_sched_clock_up, 32,
				     fttmr010->tick_rate);
336
	}
337 338

	/*
339
	 * Setup clockevent timer (interrupt-driven) on timer 1.
340
	 */
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	writel(0, fttmr010->base + TIMER1_COUNT);
	writel(0, fttmr010->base + TIMER1_LOAD);
	writel(0, fttmr010->base + TIMER1_MATCH1);
	writel(0, fttmr010->base + TIMER1_MATCH2);
	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
			  "FTTMR010-TIMER1", &fttmr010->clkevt);
	if (ret) {
		pr_err("FTTMR010-TIMER1 no IRQ\n");
		goto out_unmap;
	}

	fttmr010->clkevt.name = "FTTMR010-TIMER1";
	/* Reasonably fast and accurate clock event */
	fttmr010->clkevt.rating = 300;
	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
		CLOCK_EVT_FEAT_ONESHOT;
	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
	fttmr010->clkevt.cpumask = cpumask_of(0);
	fttmr010->clkevt.irq = irq;
	clockevents_config_and_register(&fttmr010->clkevt,
					fttmr010->tick_rate,
366 367
					1, 0xffffffff);

368 369 370 371 372 373 374 375 376 377 378 379
#ifdef CONFIG_ARM
	/* Also use this timer for delays */
	if (fttmr010->count_down)
		fttmr010->delay_timer.read_current_timer =
			fttmr010_read_current_timer_down;
	else
		fttmr010->delay_timer.read_current_timer =
			fttmr010_read_current_timer_up;
	fttmr010->delay_timer.freq = fttmr010->tick_rate;
	register_current_timer_delay(&fttmr010->delay_timer);
#endif

380
	return 0;
381 382 383 384 385 386 387 388 389

out_unmap:
	iounmap(fttmr010->base);
out_free:
	kfree(fttmr010);
out_disable_clock:
	clk_disable_unprepare(clk);

	return ret;
390
}
391 392 393 394 395 396 397 398 399 400 401

static __init int aspeed_timer_init(struct device_node *np)
{
	return fttmr010_common_init(np, true);
}

static __init int fttmr010_timer_init(struct device_node *np)
{
	return fttmr010_common_init(np, false);
}

402 403 404 405 406
TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);