timer-fttmr010.c 7.8 KB
Newer Older
1
/*
2
 * Faraday Technology FTTMR010 timer driver
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
 *
 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
 * Copyright (C) 2001-2006 Storlink, Corp.
 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
 */
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>
17
#include <linux/clk.h>
18
#include <linux/slab.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

/*
 * Register definitions for the timers
 */
#define TIMER1_COUNT		(0x00)
#define TIMER1_LOAD		(0x04)
#define TIMER1_MATCH1		(0x08)
#define TIMER1_MATCH2		(0x0c)
#define TIMER2_COUNT		(0x10)
#define TIMER2_LOAD		(0x14)
#define TIMER2_MATCH1		(0x18)
#define TIMER2_MATCH2		(0x1c)
#define TIMER3_COUNT		(0x20)
#define TIMER3_LOAD		(0x24)
#define TIMER3_MATCH1		(0x28)
#define TIMER3_MATCH2		(0x2c)
#define TIMER_CR		(0x30)
#define TIMER_INTR_STATE	(0x34)
#define TIMER_INTR_MASK		(0x38)

#define TIMER_1_CR_ENABLE	(1 << 0)
#define TIMER_1_CR_CLOCK	(1 << 1)
#define TIMER_1_CR_INT		(1 << 2)
#define TIMER_2_CR_ENABLE	(1 << 3)
#define TIMER_2_CR_CLOCK	(1 << 4)
#define TIMER_2_CR_INT		(1 << 5)
#define TIMER_3_CR_ENABLE	(1 << 6)
#define TIMER_3_CR_CLOCK	(1 << 7)
#define TIMER_3_CR_INT		(1 << 8)
#define TIMER_1_CR_UPDOWN	(1 << 9)
#define TIMER_2_CR_UPDOWN	(1 << 10)
#define TIMER_3_CR_UPDOWN	(1 << 11)
#define TIMER_DEFAULT_FLAGS	(TIMER_1_CR_UPDOWN | \
				 TIMER_3_CR_ENABLE | \
				 TIMER_3_CR_UPDOWN)

#define TIMER_1_INT_MATCH1	(1 << 0)
#define TIMER_1_INT_MATCH2	(1 << 1)
#define TIMER_1_INT_OVERFLOW	(1 << 2)
#define TIMER_2_INT_MATCH1	(1 << 3)
#define TIMER_2_INT_MATCH2	(1 << 4)
#define TIMER_2_INT_OVERFLOW	(1 << 5)
#define TIMER_3_INT_MATCH1	(1 << 6)
#define TIMER_3_INT_MATCH2	(1 << 7)
#define TIMER_3_INT_OVERFLOW	(1 << 8)
#define TIMER_INT_ALL_MASK	0x1ff

66 67 68 69 70 71 72 73 74 75 76 77 78
struct fttmr010 {
	void __iomem *base;
	unsigned int tick_rate;
	struct clock_event_device clkevt;
};

/* A local singleton used by sched_clock, which is stateless */
static struct fttmr010 *local_fttmr;

static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
{
	return container_of(evt, struct fttmr010, clkevt);
}
79

80
static u64 notrace fttmr010_read_sched_clock(void)
81
{
82
	return readl(local_fttmr->base + TIMER3_COUNT);
83 84
}

85
static int fttmr010_timer_set_next_event(unsigned long cycles,
86 87
				       struct clock_event_device *evt)
{
88
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
89 90 91
	u32 cr;

	/* Setup the match register */
92 93 94
	cr = readl(fttmr010->base + TIMER1_COUNT);
	writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
	if (readl(fttmr010->base + TIMER1_COUNT) - cr > cycles)
95 96 97 98 99
		return -ETIME;

	return 0;
}

100
static int fttmr010_timer_shutdown(struct clock_event_device *evt)
101
{
102 103 104 105 106 107 108 109 110 111 112 113 114 115
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
	u32 cr;

	/* Stop timer and interrupt. */
	cr = readl(fttmr010->base + TIMER_CR);
	cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
	writel(cr, fttmr010->base + TIMER_CR);

	return 0;
}

static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
{
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
116 117 118
	u32 cr;

	/* Stop timer and interrupt. */
119
	cr = readl(fttmr010->base + TIMER_CR);
120
	cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
121
	writel(cr, fttmr010->base + TIMER_CR);
122 123

	/* Setup counter start from 0 */
124 125
	writel(0, fttmr010->base + TIMER1_COUNT);
	writel(0, fttmr010->base + TIMER1_LOAD);
126

127 128
	/* Enable interrupt */
	cr = readl(fttmr010->base + TIMER_INTR_MASK);
129 130
	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
	cr |= TIMER_1_INT_MATCH1;
131
	writel(cr, fttmr010->base + TIMER_INTR_MASK);
132

133 134
	/* Start the timer */
	cr = readl(fttmr010->base + TIMER_CR);
135
	cr |= TIMER_1_CR_ENABLE;
136
	writel(cr, fttmr010->base + TIMER_CR);
137 138 139 140

	return 0;
}

141
static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
142
{
143 144
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
145 146 147
	u32 cr;

	/* Stop timer and interrupt */
148
	cr = readl(fttmr010->base + TIMER_CR);
149
	cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
150
	writel(cr, fttmr010->base + TIMER_CR);
151 152 153

	/* Setup timer to fire at 1/HT intervals. */
	cr = 0xffffffff - (period - 1);
154 155
	writel(cr, fttmr010->base + TIMER1_COUNT);
	writel(cr, fttmr010->base + TIMER1_LOAD);
156 157

	/* enable interrupt on overflow */
158
	cr = readl(fttmr010->base + TIMER_INTR_MASK);
159 160
	cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
	cr |= TIMER_1_INT_OVERFLOW;
161
	writel(cr, fttmr010->base + TIMER_INTR_MASK);
162 163

	/* Start the timer */
164
	cr = readl(fttmr010->base + TIMER_CR);
165 166
	cr |= TIMER_1_CR_ENABLE;
	cr |= TIMER_1_CR_INT;
167
	writel(cr, fttmr010->base + TIMER_CR);
168 169 170 171 172 173 174

	return 0;
}

/*
 * IRQ handler for the timer
 */
175
static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
176
{
177
	struct clock_event_device *evt = dev_id;
178 179 180 181 182

	evt->event_handler(evt);
	return IRQ_HANDLED;
}

183
static int __init fttmr010_timer_init(struct device_node *np)
184
{
185
	struct fttmr010 *fttmr010;
186
	int irq;
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
	struct clk *clk;
	int ret;

	/*
	 * These implementations require a clock reference.
	 * FIXME: we currently only support clocking using PCLK
	 * and using EXTCLK is not supported in the driver.
	 */
	clk = of_clk_get_by_name(np, "PCLK");
	if (IS_ERR(clk)) {
		pr_err("could not get PCLK\n");
		return PTR_ERR(clk);
	}
	ret = clk_prepare_enable(clk);
	if (ret) {
		pr_err("failed to enable PCLK\n");
		return ret;
	}
205

206 207 208 209 210 211 212 213 214
	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
	if (!fttmr010) {
		ret = -ENOMEM;
		goto out_disable_clock;
	}
	fttmr010->tick_rate = clk_get_rate(clk);

	fttmr010->base = of_iomap(np, 0);
	if (!fttmr010->base) {
215
		pr_err("Can't remap registers");
216 217
		ret = -ENXIO;
		goto out_free;
218 219 220 221 222
	}
	/* IRQ for timer 1 */
	irq = irq_of_parse_and_map(np, 0);
	if (irq <= 0) {
		pr_err("Can't parse IRQ");
223 224
		ret = -EINVAL;
		goto out_unmap;
225 226 227 228 229
	}

	/*
	 * Reset the interrupt mask and status
	 */
230 231 232
	writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
	writel(0, fttmr010->base + TIMER_INTR_STATE);
	writel(TIMER_DEFAULT_FLAGS, fttmr010->base + TIMER_CR);
233 234 235 236 237

	/*
	 * Setup free-running clocksource timer (interrupts
	 * disabled.)
	 */
238 239 240 241 242 243 244 245
	local_fttmr = fttmr010;
	writel(0, fttmr010->base + TIMER3_COUNT);
	writel(0, fttmr010->base + TIMER3_LOAD);
	writel(0, fttmr010->base + TIMER3_MATCH1);
	writel(0, fttmr010->base + TIMER3_MATCH2);
	clocksource_mmio_init(fttmr010->base + TIMER3_COUNT,
			      "FTTMR010-TIMER3",
			      fttmr010->tick_rate,
246
			      300, 32, clocksource_mmio_readl_up);
247 248
	sched_clock_register(fttmr010_read_sched_clock, 32,
			     fttmr010->tick_rate);
249 250

	/*
251
	 * Setup clockevent timer (interrupt-driven) on timer 1.
252
	 */
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	writel(0, fttmr010->base + TIMER1_COUNT);
	writel(0, fttmr010->base + TIMER1_LOAD);
	writel(0, fttmr010->base + TIMER1_MATCH1);
	writel(0, fttmr010->base + TIMER1_MATCH2);
	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
			  "FTTMR010-TIMER1", &fttmr010->clkevt);
	if (ret) {
		pr_err("FTTMR010-TIMER1 no IRQ\n");
		goto out_unmap;
	}

	fttmr010->clkevt.name = "FTTMR010-TIMER1";
	/* Reasonably fast and accurate clock event */
	fttmr010->clkevt.rating = 300;
	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
		CLOCK_EVT_FEAT_ONESHOT;
	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
	fttmr010->clkevt.cpumask = cpumask_of(0);
	fttmr010->clkevt.irq = irq;
	clockevents_config_and_register(&fttmr010->clkevt,
					fttmr010->tick_rate,
278 279 280
					1, 0xffffffff);

	return 0;
281 282 283 284 285 286 287 288 289

out_unmap:
	iounmap(fttmr010->base);
out_free:
	kfree(fttmr010);
out_disable_clock:
	clk_disable_unprepare(clk);

	return ret;
290
}
291 292
CLOCKSOURCE_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
CLOCKSOURCE_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);