timer-fttmr010.c 7.8 KB
Newer Older
1
/*
2
 * Faraday Technology FTTMR010 timer driver
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
 *
 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
 * Copyright (C) 2001-2006 Storlink, Corp.
 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
 */
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>
17
#include <linux/clk.h>
18
#include <linux/slab.h>
19
#include <linux/bitops.h>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

/*
 * Register definitions for the timers
 */
#define TIMER1_COUNT		(0x00)
#define TIMER1_LOAD		(0x04)
#define TIMER1_MATCH1		(0x08)
#define TIMER1_MATCH2		(0x0c)
#define TIMER2_COUNT		(0x10)
#define TIMER2_LOAD		(0x14)
#define TIMER2_MATCH1		(0x18)
#define TIMER2_MATCH2		(0x1c)
#define TIMER3_COUNT		(0x20)
#define TIMER3_LOAD		(0x24)
#define TIMER3_MATCH1		(0x28)
#define TIMER3_MATCH2		(0x2c)
#define TIMER_CR		(0x30)
#define TIMER_INTR_STATE	(0x34)
#define TIMER_INTR_MASK		(0x38)

40 41 42 43 44 45 46 47 48 49 50 51
#define TIMER_1_CR_ENABLE	BIT(0)
#define TIMER_1_CR_CLOCK	BIT(1)
#define TIMER_1_CR_INT		BIT(2)
#define TIMER_2_CR_ENABLE	BIT(3)
#define TIMER_2_CR_CLOCK	BIT(4)
#define TIMER_2_CR_INT		BIT(5)
#define TIMER_3_CR_ENABLE	BIT(6)
#define TIMER_3_CR_CLOCK	BIT(7)
#define TIMER_3_CR_INT		BIT(8)
#define TIMER_1_CR_UPDOWN	BIT(9)
#define TIMER_2_CR_UPDOWN	BIT(10)
#define TIMER_3_CR_UPDOWN	BIT(11)
52

53 54 55 56 57 58 59 60 61
#define TIMER_1_INT_MATCH1	BIT(0)
#define TIMER_1_INT_MATCH2	BIT(1)
#define TIMER_1_INT_OVERFLOW	BIT(2)
#define TIMER_2_INT_MATCH1	BIT(3)
#define TIMER_2_INT_MATCH2	BIT(4)
#define TIMER_2_INT_OVERFLOW	BIT(5)
#define TIMER_3_INT_MATCH1	BIT(6)
#define TIMER_3_INT_MATCH2	BIT(7)
#define TIMER_3_INT_OVERFLOW	BIT(8)
62 63
#define TIMER_INT_ALL_MASK	0x1ff

64 65 66 67 68 69 70 71 72 73 74 75 76
struct fttmr010 {
	void __iomem *base;
	unsigned int tick_rate;
	struct clock_event_device clkevt;
};

/* A local singleton used by sched_clock, which is stateless */
static struct fttmr010 *local_fttmr;

static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
{
	return container_of(evt, struct fttmr010, clkevt);
}
77

78
static u64 notrace fttmr010_read_sched_clock(void)
79
{
80
	return readl(local_fttmr->base + TIMER2_COUNT);
81 82
}

83
static int fttmr010_timer_set_next_event(unsigned long cycles,
84 85
				       struct clock_event_device *evt)
{
86
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
87 88 89
	u32 cr;

	/* Setup the match register */
90 91 92
	cr = readl(fttmr010->base + TIMER1_COUNT);
	writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
	if (readl(fttmr010->base + TIMER1_COUNT) - cr > cycles)
93 94 95 96 97
		return -ETIME;

	return 0;
}

98
static int fttmr010_timer_shutdown(struct clock_event_device *evt)
99
{
100 101 102 103 104 105 106 107 108 109 110 111 112 113
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
	u32 cr;

	/* Stop timer and interrupt. */
	cr = readl(fttmr010->base + TIMER_CR);
	cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
	writel(cr, fttmr010->base + TIMER_CR);

	return 0;
}

static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
{
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
114 115 116
	u32 cr;

	/* Stop timer and interrupt. */
117
	cr = readl(fttmr010->base + TIMER_CR);
118
	cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
119
	writel(cr, fttmr010->base + TIMER_CR);
120 121

	/* Setup counter start from 0 */
122 123
	writel(0, fttmr010->base + TIMER1_COUNT);
	writel(0, fttmr010->base + TIMER1_LOAD);
124

125 126
	/* Enable interrupt */
	cr = readl(fttmr010->base + TIMER_INTR_MASK);
127 128
	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
	cr |= TIMER_1_INT_MATCH1;
129
	writel(cr, fttmr010->base + TIMER_INTR_MASK);
130

131 132
	/* Start the timer */
	cr = readl(fttmr010->base + TIMER_CR);
133
	cr |= TIMER_1_CR_ENABLE;
134
	writel(cr, fttmr010->base + TIMER_CR);
135 136 137 138

	return 0;
}

139
static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
140
{
141 142
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
143 144 145
	u32 cr;

	/* Stop timer and interrupt */
146
	cr = readl(fttmr010->base + TIMER_CR);
147
	cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
148
	writel(cr, fttmr010->base + TIMER_CR);
149 150 151

	/* Setup timer to fire at 1/HT intervals. */
	cr = 0xffffffff - (period - 1);
152 153
	writel(cr, fttmr010->base + TIMER1_COUNT);
	writel(cr, fttmr010->base + TIMER1_LOAD);
154 155

	/* enable interrupt on overflow */
156
	cr = readl(fttmr010->base + TIMER_INTR_MASK);
157 158
	cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
	cr |= TIMER_1_INT_OVERFLOW;
159
	writel(cr, fttmr010->base + TIMER_INTR_MASK);
160 161

	/* Start the timer */
162
	cr = readl(fttmr010->base + TIMER_CR);
163 164
	cr |= TIMER_1_CR_ENABLE;
	cr |= TIMER_1_CR_INT;
165
	writel(cr, fttmr010->base + TIMER_CR);
166 167 168 169 170 171 172

	return 0;
}

/*
 * IRQ handler for the timer
 */
173
static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
174
{
175
	struct clock_event_device *evt = dev_id;
176 177 178 179 180

	evt->event_handler(evt);
	return IRQ_HANDLED;
}

181
static int __init fttmr010_timer_init(struct device_node *np)
182
{
183
	struct fttmr010 *fttmr010;
184
	int irq;
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	struct clk *clk;
	int ret;

	/*
	 * These implementations require a clock reference.
	 * FIXME: we currently only support clocking using PCLK
	 * and using EXTCLK is not supported in the driver.
	 */
	clk = of_clk_get_by_name(np, "PCLK");
	if (IS_ERR(clk)) {
		pr_err("could not get PCLK\n");
		return PTR_ERR(clk);
	}
	ret = clk_prepare_enable(clk);
	if (ret) {
		pr_err("failed to enable PCLK\n");
		return ret;
	}
203

204 205 206 207 208 209 210 211 212
	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
	if (!fttmr010) {
		ret = -ENOMEM;
		goto out_disable_clock;
	}
	fttmr010->tick_rate = clk_get_rate(clk);

	fttmr010->base = of_iomap(np, 0);
	if (!fttmr010->base) {
213
		pr_err("Can't remap registers");
214 215
		ret = -ENXIO;
		goto out_free;
216 217 218 219 220
	}
	/* IRQ for timer 1 */
	irq = irq_of_parse_and_map(np, 0);
	if (irq <= 0) {
		pr_err("Can't parse IRQ");
221 222
		ret = -EINVAL;
		goto out_unmap;
223 224 225 226 227
	}

	/*
	 * Reset the interrupt mask and status
	 */
228 229
	writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
	writel(0, fttmr010->base + TIMER_INTR_STATE);
230 231 232
	/* Enable timer 1 count up, timer 2 count up */
	writel((TIMER_1_CR_UPDOWN | TIMER_2_CR_ENABLE | TIMER_2_CR_UPDOWN),
	       fttmr010->base + TIMER_CR);
233 234 235 236 237

	/*
	 * Setup free-running clocksource timer (interrupts
	 * disabled.)
	 */
238
	local_fttmr = fttmr010;
239 240 241 242 243 244
	writel(0, fttmr010->base + TIMER2_COUNT);
	writel(0, fttmr010->base + TIMER2_LOAD);
	writel(0, fttmr010->base + TIMER2_MATCH1);
	writel(0, fttmr010->base + TIMER2_MATCH2);
	clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
			      "FTTMR010-TIMER2",
245
			      fttmr010->tick_rate,
246
			      300, 32, clocksource_mmio_readl_up);
247 248
	sched_clock_register(fttmr010_read_sched_clock, 32,
			     fttmr010->tick_rate);
249 250

	/*
251
	 * Setup clockevent timer (interrupt-driven) on timer 1.
252
	 */
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	writel(0, fttmr010->base + TIMER1_COUNT);
	writel(0, fttmr010->base + TIMER1_LOAD);
	writel(0, fttmr010->base + TIMER1_MATCH1);
	writel(0, fttmr010->base + TIMER1_MATCH2);
	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
			  "FTTMR010-TIMER1", &fttmr010->clkevt);
	if (ret) {
		pr_err("FTTMR010-TIMER1 no IRQ\n");
		goto out_unmap;
	}

	fttmr010->clkevt.name = "FTTMR010-TIMER1";
	/* Reasonably fast and accurate clock event */
	fttmr010->clkevt.rating = 300;
	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
		CLOCK_EVT_FEAT_ONESHOT;
	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
	fttmr010->clkevt.cpumask = cpumask_of(0);
	fttmr010->clkevt.irq = irq;
	clockevents_config_and_register(&fttmr010->clkevt,
					fttmr010->tick_rate,
278 279 280
					1, 0xffffffff);

	return 0;
281 282 283 284 285 286 287 288 289

out_unmap:
	iounmap(fttmr010->base);
out_free:
	kfree(fttmr010);
out_disable_clock:
	clk_disable_unprepare(clk);

	return ret;
290
}
291 292
CLOCKSOURCE_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
CLOCKSOURCE_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);