timer-fttmr010.c 10.6 KB
Newer Older
1
/*
2
 * Faraday Technology FTTMR010 timer driver
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
 *
 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
 * Copyright (C) 2001-2006 Storlink, Corp.
 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
 */
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>
17
#include <linux/clk.h>
18
#include <linux/slab.h>
19
#include <linux/bitops.h>
20
#include <linux/delay.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

/*
 * Register definitions for the timers
 */
#define TIMER1_COUNT		(0x00)
#define TIMER1_LOAD		(0x04)
#define TIMER1_MATCH1		(0x08)
#define TIMER1_MATCH2		(0x0c)
#define TIMER2_COUNT		(0x10)
#define TIMER2_LOAD		(0x14)
#define TIMER2_MATCH1		(0x18)
#define TIMER2_MATCH2		(0x1c)
#define TIMER3_COUNT		(0x20)
#define TIMER3_LOAD		(0x24)
#define TIMER3_MATCH1		(0x28)
#define TIMER3_MATCH2		(0x2c)
#define TIMER_CR		(0x30)
#define TIMER_INTR_STATE	(0x34)
#define TIMER_INTR_MASK		(0x38)

41 42 43 44 45 46 47 48 49 50 51 52
#define TIMER_1_CR_ENABLE	BIT(0)
#define TIMER_1_CR_CLOCK	BIT(1)
#define TIMER_1_CR_INT		BIT(2)
#define TIMER_2_CR_ENABLE	BIT(3)
#define TIMER_2_CR_CLOCK	BIT(4)
#define TIMER_2_CR_INT		BIT(5)
#define TIMER_3_CR_ENABLE	BIT(6)
#define TIMER_3_CR_CLOCK	BIT(7)
#define TIMER_3_CR_INT		BIT(8)
#define TIMER_1_CR_UPDOWN	BIT(9)
#define TIMER_2_CR_UPDOWN	BIT(10)
#define TIMER_3_CR_UPDOWN	BIT(11)
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*
 * The Aspeed AST2400 moves bits around in the control register
 * and lacks bits for setting the timer to count upwards.
 */
#define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
#define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
#define TIMER_1_CR_ASPEED_INT		BIT(2)
#define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
#define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
#define TIMER_2_CR_ASPEED_INT		BIT(6)
#define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
#define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
#define TIMER_3_CR_ASPEED_INT		BIT(10)

68 69 70 71 72 73 74 75 76
#define TIMER_1_INT_MATCH1	BIT(0)
#define TIMER_1_INT_MATCH2	BIT(1)
#define TIMER_1_INT_OVERFLOW	BIT(2)
#define TIMER_2_INT_MATCH1	BIT(3)
#define TIMER_2_INT_MATCH2	BIT(4)
#define TIMER_2_INT_OVERFLOW	BIT(5)
#define TIMER_3_INT_MATCH1	BIT(6)
#define TIMER_3_INT_MATCH2	BIT(7)
#define TIMER_3_INT_OVERFLOW	BIT(8)
77 78
#define TIMER_INT_ALL_MASK	0x1ff

79 80 81
struct fttmr010 {
	void __iomem *base;
	unsigned int tick_rate;
82 83
	bool count_down;
	u32 t1_enable_val;
84
	struct clock_event_device clkevt;
85 86 87
#ifdef CONFIG_ARM
	struct delay_timer delay_timer;
#endif
88 89
};

90 91 92 93
/*
 * A local singleton used by sched_clock and delay timer reads, which are
 * fast and stateless
 */
94 95 96 97 98 99
static struct fttmr010 *local_fttmr;

static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
{
	return container_of(evt, struct fttmr010, clkevt);
}
100

101
static u64 notrace fttmr010_read_sched_clock_up(void)
102
{
103
	return readl(local_fttmr->base + TIMER2_COUNT);
104 105
}

106 107 108 109 110
static u64 notrace fttmr010_read_sched_clock_down(void)
{
	return ~readl(local_fttmr->base + TIMER2_COUNT);
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124
#ifdef CONFIG_ARM

static unsigned long fttmr010_read_current_timer_up(void)
{
	return readl(local_fttmr->base + TIMER2_COUNT);
}

static unsigned long fttmr010_read_current_timer_down(void)
{
	return ~readl(local_fttmr->base + TIMER2_COUNT);
}

#endif

125
static int fttmr010_timer_set_next_event(unsigned long cycles,
126 127
				       struct clock_event_device *evt)
{
128
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
129 130
	u32 cr;

131 132 133 134 135 136
	/* Stop */
	cr = readl(fttmr010->base + TIMER_CR);
	cr &= ~fttmr010->t1_enable_val;
	writel(cr, fttmr010->base + TIMER_CR);

	/* Setup the match register forward/backward in time */
137
	cr = readl(fttmr010->base + TIMER1_COUNT);
138 139 140 141 142 143 144 145 146 147
	if (fttmr010->count_down)
		cr -= cycles;
	else
		cr += cycles;
	writel(cr, fttmr010->base + TIMER1_MATCH1);

	/* Start */
	cr = readl(fttmr010->base + TIMER_CR);
	cr |= fttmr010->t1_enable_val;
	writel(cr, fttmr010->base + TIMER_CR);
148 149 150 151

	return 0;
}

152
static int fttmr010_timer_shutdown(struct clock_event_device *evt)
153
{
154 155 156
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
	u32 cr;

157
	/* Stop */
158
	cr = readl(fttmr010->base + TIMER_CR);
159
	cr &= ~fttmr010->t1_enable_val;
160 161 162 163 164 165 166 167
	writel(cr, fttmr010->base + TIMER_CR);

	return 0;
}

static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
{
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
168 169
	u32 cr;

170
	/* Stop */
171
	cr = readl(fttmr010->base + TIMER_CR);
172
	cr &= ~fttmr010->t1_enable_val;
173
	writel(cr, fttmr010->base + TIMER_CR);
174

175
	/* Setup counter start from 0 or ~0 */
176
	writel(0, fttmr010->base + TIMER1_COUNT);
177 178 179 180
	if (fttmr010->count_down)
		writel(~0, fttmr010->base + TIMER1_LOAD);
	else
		writel(0, fttmr010->base + TIMER1_LOAD);
181

182 183
	/* Enable interrupt */
	cr = readl(fttmr010->base + TIMER_INTR_MASK);
184 185
	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
	cr |= TIMER_1_INT_MATCH1;
186
	writel(cr, fttmr010->base + TIMER_INTR_MASK);
187 188 189 190

	return 0;
}

191
static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
192
{
193 194
	struct fttmr010 *fttmr010 = to_fttmr010(evt);
	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
195 196
	u32 cr;

197
	/* Stop */
198
	cr = readl(fttmr010->base + TIMER_CR);
199
	cr &= ~fttmr010->t1_enable_val;
200
	writel(cr, fttmr010->base + TIMER_CR);
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	/* Setup timer to fire at 1/HZ intervals. */
	if (fttmr010->count_down) {
		writel(period, fttmr010->base + TIMER1_LOAD);
		writel(0, fttmr010->base + TIMER1_MATCH1);
	} else {
		cr = 0xffffffff - (period - 1);
		writel(cr, fttmr010->base + TIMER1_COUNT);
		writel(cr, fttmr010->base + TIMER1_LOAD);

		/* Enable interrupt on overflow */
		cr = readl(fttmr010->base + TIMER_INTR_MASK);
		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
		cr |= TIMER_1_INT_OVERFLOW;
		writel(cr, fttmr010->base + TIMER_INTR_MASK);
	}
217 218

	/* Start the timer */
219
	cr = readl(fttmr010->base + TIMER_CR);
220
	cr |= fttmr010->t1_enable_val;
221
	writel(cr, fttmr010->base + TIMER_CR);
222 223 224 225 226 227 228

	return 0;
}

/*
 * IRQ handler for the timer
 */
229
static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
230
{
231
	struct clock_event_device *evt = dev_id;
232 233 234 235 236

	evt->event_handler(evt);
	return IRQ_HANDLED;
}

237
static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
238
{
239
	struct fttmr010 *fttmr010;
240
	int irq;
241 242
	struct clk *clk;
	int ret;
243
	u32 val;
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

	/*
	 * These implementations require a clock reference.
	 * FIXME: we currently only support clocking using PCLK
	 * and using EXTCLK is not supported in the driver.
	 */
	clk = of_clk_get_by_name(np, "PCLK");
	if (IS_ERR(clk)) {
		pr_err("could not get PCLK\n");
		return PTR_ERR(clk);
	}
	ret = clk_prepare_enable(clk);
	if (ret) {
		pr_err("failed to enable PCLK\n");
		return ret;
	}
260

261 262 263 264 265 266 267 268 269
	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
	if (!fttmr010) {
		ret = -ENOMEM;
		goto out_disable_clock;
	}
	fttmr010->tick_rate = clk_get_rate(clk);

	fttmr010->base = of_iomap(np, 0);
	if (!fttmr010->base) {
270
		pr_err("Can't remap registers");
271 272
		ret = -ENXIO;
		goto out_free;
273 274 275 276 277
	}
	/* IRQ for timer 1 */
	irq = irq_of_parse_and_map(np, 0);
	if (irq <= 0) {
		pr_err("Can't parse IRQ");
278 279
		ret = -EINVAL;
		goto out_unmap;
280 281
	}

282 283 284 285
	/*
	 * The Aspeed AST2400 moves bits around in the control register,
	 * otherwise it works the same.
	 */
286
	if (is_aspeed) {
287 288 289 290 291 292 293 294
		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
			TIMER_1_CR_ASPEED_INT;
		/* Downward not available */
		fttmr010->count_down = true;
	} else {
		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
	}

295 296 297
	/*
	 * Reset the interrupt mask and status
	 */
298 299
	writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
	writel(0, fttmr010->base + TIMER_INTR_STATE);
300 301 302 303 304

	/*
	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
	 * where everything just counts down.
	 */
305
	if (is_aspeed)
306 307 308 309 310 311 312
		val = TIMER_2_CR_ASPEED_ENABLE;
	else {
		val = TIMER_2_CR_ENABLE;
		if (!fttmr010->count_down)
			val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
	}
	writel(val, fttmr010->base + TIMER_CR);
313 314 315 316 317

	/*
	 * Setup free-running clocksource timer (interrupts
	 * disabled.)
	 */
318
	local_fttmr = fttmr010;
319 320 321
	writel(0, fttmr010->base + TIMER2_COUNT);
	writel(0, fttmr010->base + TIMER2_MATCH1);
	writel(0, fttmr010->base + TIMER2_MATCH2);
322 323 324 325 326 327 328

	if (fttmr010->count_down) {
		writel(~0, fttmr010->base + TIMER2_LOAD);
		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
				      "FTTMR010-TIMER2",
				      fttmr010->tick_rate,
				      300, 32, clocksource_mmio_readl_down);
329 330
		sched_clock_register(fttmr010_read_sched_clock_down, 32,
				     fttmr010->tick_rate);
331 332 333 334 335 336
	} else {
		writel(0, fttmr010->base + TIMER2_LOAD);
		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
				      "FTTMR010-TIMER2",
				      fttmr010->tick_rate,
				      300, 32, clocksource_mmio_readl_up);
337 338
		sched_clock_register(fttmr010_read_sched_clock_up, 32,
				     fttmr010->tick_rate);
339
	}
340 341

	/*
342
	 * Setup clockevent timer (interrupt-driven) on timer 1.
343
	 */
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	writel(0, fttmr010->base + TIMER1_COUNT);
	writel(0, fttmr010->base + TIMER1_LOAD);
	writel(0, fttmr010->base + TIMER1_MATCH1);
	writel(0, fttmr010->base + TIMER1_MATCH2);
	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
			  "FTTMR010-TIMER1", &fttmr010->clkevt);
	if (ret) {
		pr_err("FTTMR010-TIMER1 no IRQ\n");
		goto out_unmap;
	}

	fttmr010->clkevt.name = "FTTMR010-TIMER1";
	/* Reasonably fast and accurate clock event */
	fttmr010->clkevt.rating = 300;
	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
		CLOCK_EVT_FEAT_ONESHOT;
	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
	fttmr010->clkevt.cpumask = cpumask_of(0);
	fttmr010->clkevt.irq = irq;
	clockevents_config_and_register(&fttmr010->clkevt,
					fttmr010->tick_rate,
369 370
					1, 0xffffffff);

371 372 373 374 375 376 377 378 379 380 381 382
#ifdef CONFIG_ARM
	/* Also use this timer for delays */
	if (fttmr010->count_down)
		fttmr010->delay_timer.read_current_timer =
			fttmr010_read_current_timer_down;
	else
		fttmr010->delay_timer.read_current_timer =
			fttmr010_read_current_timer_up;
	fttmr010->delay_timer.freq = fttmr010->tick_rate;
	register_current_timer_delay(&fttmr010->delay_timer);
#endif

383
	return 0;
384 385 386 387 388 389 390 391 392

out_unmap:
	iounmap(fttmr010->base);
out_free:
	kfree(fttmr010);
out_disable_clock:
	clk_disable_unprepare(clk);

	return ret;
393
}
394 395 396 397 398 399 400 401 402 403 404

static __init int aspeed_timer_init(struct device_node *np)
{
	return fttmr010_common_init(np, true);
}

static __init int fttmr010_timer_init(struct device_node *np)
{
	return fttmr010_common_init(np, false);
}

405 406 407 408 409
TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);