futex.c 68.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60 61 62
#include <linux/pid.h>
#include <linux/nsproxy.h>

63
#include <asm/futex.h>
L
Linus Torvalds 已提交
64

65 66
#include "rtmutex_common.h"

67 68
int __read_mostly futex_cmpxchg_enabled;

L
Linus Torvalds 已提交
69 70
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

71 72 73 74 75 76 77 78
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

100 101
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
102
 * @list:		priority-sorted list of tasks waiting on this futex
103 104 105 106 107 108 109 110 111
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
112 113 114
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
115
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116
 * The order of wakeup is always to make the first condition true, then
117 118 119 120
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
121 122
 */
struct futex_q {
P
Pierre Peiffer 已提交
123
	struct plist_node list;
L
Linus Torvalds 已提交
124

125
	struct task_struct *task;
L
Linus Torvalds 已提交
126 127
	spinlock_t *lock_ptr;
	union futex_key key;
128
	struct futex_pi_state *pi_state;
129
	struct rt_mutex_waiter *rt_waiter;
130
	union futex_key *requeue_pi_key;
131
	u32 bitset;
L
Linus Torvalds 已提交
132 133
};

134 135 136 137 138 139
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
140
/*
D
Darren Hart 已提交
141 142 143
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
144 145
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
146 147
	spinlock_t lock;
	struct plist_head chain;
L
Linus Torvalds 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
168 169
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
170 171 172 173
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

174 175 176 177 178 179 180 181 182 183 184 185
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
A
Al Viro 已提交
186
		ihold(key->shared.inode);
187 188 189 190 191 192 193 194 195 196 197 198 199
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
200 201 202
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
203
		return;
204
	}
205 206 207 208 209 210 211 212 213 214 215

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
216
/**
217 218 219 220
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
E
Eric Dumazet 已提交
221 222 223
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
224
 *
225
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
226 227 228
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
229
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
230
 */
231
static int
232
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
L
Linus Torvalds 已提交
233
{
234
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
235
	struct mm_struct *mm = current->mm;
236
	struct page *page, *page_head;
L
Linus Torvalds 已提交
237 238 239 240 241
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
242
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
243
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
244
		return -EINVAL;
245
	address -= key->both.offset;
L
Linus Torvalds 已提交
246

E
Eric Dumazet 已提交
247 248 249 250 251 252 253 254
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
255
		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
E
Eric Dumazet 已提交
256 257 258
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
259
		get_futex_key_refs(key);
E
Eric Dumazet 已提交
260 261
		return 0;
	}
L
Linus Torvalds 已提交
262

263
again:
264
	err = get_user_pages_fast(address, 1, 1, &page);
265 266 267
	if (err < 0)
		return err;

268 269 270
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page_head = page;
	if (unlikely(PageTail(page))) {
271
		put_page(page);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
		/* serialize against __split_huge_page_splitting() */
		local_irq_disable();
		if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
			page_head = compound_head(page);
			/*
			 * page_head is valid pointer but we must pin
			 * it before taking the PG_lock and/or
			 * PG_compound_lock. The moment we re-enable
			 * irqs __split_huge_page_splitting() can
			 * return and the head page can be freed from
			 * under us. We can't take the PG_lock and/or
			 * PG_compound_lock on a page that could be
			 * freed from under us.
			 */
			if (page != page_head) {
				get_page(page_head);
				put_page(page);
			}
			local_irq_enable();
		} else {
			local_irq_enable();
			goto again;
		}
	}
#else
	page_head = compound_head(page);
	if (page != page_head) {
		get_page(page_head);
		put_page(page);
	}
#endif

	lock_page(page_head);
	if (!page_head->mapping) {
		unlock_page(page_head);
		put_page(page_head);
308 309
		goto again;
	}
L
Linus Torvalds 已提交
310 311 312 313 314 315

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
316
	 * the object not the particular process.
L
Linus Torvalds 已提交
317
	 */
318
	if (PageAnon(page_head)) {
319
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
320
		key->private.mm = mm;
321
		key->private.address = address;
322 323
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
324 325
		key->shared.inode = page_head->mapping->host;
		key->shared.pgoff = page_head->index;
L
Linus Torvalds 已提交
326 327
	}

328
	get_futex_key_refs(key);
L
Linus Torvalds 已提交
329

330 331
	unlock_page(page_head);
	put_page(page_head);
332
	return 0;
L
Linus Torvalds 已提交
333 334
}

335
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
336
{
337
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
338 339
}

340 341
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
342 343 344 345 346
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
347
 * We have no generic implementation of a non-destructive write to the
348 349 350 351 352 353
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
354 355 356 357 358 359 360 361
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
	ret = get_user_pages(current, mm, (unsigned long)uaddr,
			     1, 1, 0, NULL, NULL);
	up_read(&mm->mmap_sem);

362 363 364
	return ret < 0 ? ret : 0;
}

365 366
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
367 368
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

384 385
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
386
{
387
	int ret;
T
Thomas Gleixner 已提交
388 389

	pagefault_disable();
390
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
391 392
	pagefault_enable();

393
	return ret;
T
Thomas Gleixner 已提交
394 395 396
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
397 398 399
{
	int ret;

400
	pagefault_disable();
401
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
402
	pagefault_enable();
L
Linus Torvalds 已提交
403 404 405 406

	return ret ? -EFAULT : 0;
}

407 408 409 410 411 412 413 414 415 416 417

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

418
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
419 420 421 422 423 424 425 426

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
427
	pi_state->key = FUTEX_KEY_INIT;
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
454
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
455
		list_del_init(&pi_state->list);
456
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

483
	rcu_read_lock();
484
	p = find_task_by_vpid(pid);
485 486
	if (p)
		get_task_struct(p);
487

488
	rcu_read_unlock();
489 490 491 492 493 494 495 496 497 498 499 500 501

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
502
	struct futex_hash_bucket *hb;
503
	union futex_key key = FUTEX_KEY_INIT;
504

505 506
	if (!futex_cmpxchg_enabled)
		return;
507 508 509
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
510
	 * versus waiters unqueueing themselves:
511
	 */
512
	raw_spin_lock_irq(&curr->pi_lock);
513 514 515 516 517
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
518
		hb = hash_futex(&key);
519
		raw_spin_unlock_irq(&curr->pi_lock);
520 521 522

		spin_lock(&hb->lock);

523
		raw_spin_lock_irq(&curr->pi_lock);
524 525 526 527
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
528 529 530 531 532 533
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
534 535
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
536
		pi_state->owner = NULL;
537
		raw_spin_unlock_irq(&curr->pi_lock);
538 539 540 541 542

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

543
		raw_spin_lock_irq(&curr->pi_lock);
544
	}
545
	raw_spin_unlock_irq(&curr->pi_lock);
546 547 548
}

static int
P
Pierre Peiffer 已提交
549 550
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
551 552 553
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
554
	struct plist_head *head;
555
	struct task_struct *p;
556
	pid_t pid = uval & FUTEX_TID_MASK;
557 558 559

	head = &hb->chain;

P
Pierre Peiffer 已提交
560
	plist_for_each_entry_safe(this, next, head, list) {
P
Pierre Peiffer 已提交
561
		if (match_futex(&this->key, key)) {
562 563 564 565 566
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
567
			/*
568
			 * Userspace might have messed up non-PI and PI futexes
569 570 571 572
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

573
			WARN_ON(!atomic_read(&pi_state->refcount));
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

			/*
			 * When pi_state->owner is NULL then the owner died
			 * and another waiter is on the fly. pi_state->owner
			 * is fixed up by the task which acquires
			 * pi_state->rt_mutex.
			 *
			 * We do not check for pid == 0 which can happen when
			 * the owner died and robust_list_exit() cleared the
			 * TID.
			 */
			if (pid && pi_state->owner) {
				/*
				 * Bail out if user space manipulated the
				 * futex value.
				 */
				if (pid != task_pid_vnr(pi_state->owner))
					return -EINVAL;
			}
593

594
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
595
			*ps = pi_state;
596 597 598 599 600 601

			return 0;
		}
	}

	/*
602
	 * We are the first waiter - try to look up the real owner and attach
603
	 * the new pi_state to it, but bail out when TID = 0
604
	 */
605
	if (!pid)
606
		return -ESRCH;
607
	p = futex_find_get_task(pid);
608 609
	if (!p)
		return -ESRCH;
610 611 612 613 614 615 616

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
617
	raw_spin_lock_irq(&p->pi_lock);
618 619 620 621 622 623 624 625
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

626
		raw_spin_unlock_irq(&p->pi_lock);
627 628 629
		put_task_struct(p);
		return ret;
	}
630 631 632 633 634 635 636 637 638 639

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
640
	pi_state->key = *key;
641

642
	WARN_ON(!list_empty(&pi_state->list));
643 644
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
645
	raw_spin_unlock_irq(&p->pi_lock);
646 647 648

	put_task_struct(p);

P
Pierre Peiffer 已提交
649
	*ps = pi_state;
650 651 652 653

	return 0;
}

654
/**
655
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
656 657 658 659 660 661 662 663
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
664 665 666 667 668 669 670 671 672 673 674
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
675
				struct task_struct *task, int set_waiters)
676 677
{
	int lock_taken, ret, ownerdied = 0;
678
	u32 uval, newval, curval, vpid = task_pid_vnr(task);
679 680 681 682 683 684 685 686 687

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
688
	newval = vpid;
689 690
	if (set_waiters)
		newval |= FUTEX_WAITERS;
691

692
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
693 694 695 696 697
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
698
	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
	 * There are two cases, where a futex might have no owner (the
	 * owner TID is 0): OWNER_DIED. We take over the futex in this
	 * case. We also do an unconditional take over, when the owner
	 * of the futex died.
	 *
	 * This is safe as we are protected by the hash bucket lock !
	 */
	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
		/* Keep the OWNER_DIED bit */
725
		newval = (curval & ~FUTEX_TID_MASK) | vpid;
726 727 728 729
		ownerdied = 0;
		lock_taken = 1;
	}

730
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
	 * We took the lock due to owner died take over.
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
			 * No owner found for this futex. Check if the
			 * OWNER_DIED bit is set to figure out whether
			 * this is a robust futex or not.
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
			 * We simply start over in case of a robust
			 * futex. The code above will take the futex
			 * and return happy.
			 */
			if (curval & FUTEX_OWNER_DIED) {
				ownerdied = 1;
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

L
Linus Torvalds 已提交
775 776 777 778 779 780
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
781 782
	struct task_struct *p = q->task;

L
Linus Torvalds 已提交
783
	/*
T
Thomas Gleixner 已提交
784
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
785 786
	 * a non-futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non-existing task
T
Thomas Gleixner 已提交
787 788
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
789
	 */
T
Thomas Gleixner 已提交
790 791 792
	get_task_struct(p);

	plist_del(&q->list, &q->list.plist);
L
Linus Torvalds 已提交
793
	/*
T
Thomas Gleixner 已提交
794 795 796 797
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
798
	 */
799
	smp_wmb();
L
Linus Torvalds 已提交
800
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
801 802 803

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
804 805
}

806 807 808 809 810 811 812 813 814
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

815 816 817 818 819 820 821
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

822
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
823 824 825
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
826 827 828
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
829 830 831 832 833 834 835 836 837
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
838
	if (!(uval & FUTEX_OWNER_DIED)) {
839 840
		int ret = 0;

841
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
842

843
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
844
			ret = -EFAULT;
845
		else if (curval != uval)
846 847
			ret = -EINVAL;
		if (ret) {
848
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
849 850
			return ret;
		}
851
	}
852

853
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
854 855
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
856
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
857

858
	raw_spin_lock_irq(&new_owner->pi_lock);
859
	WARN_ON(!list_empty(&pi_state->list));
860 861
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
862
	raw_spin_unlock_irq(&new_owner->pi_lock);
863

864
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
865 866 867 868 869 870 871 872 873 874 875 876 877
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
878 879
	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
		return -EFAULT;
880 881 882 883 884 885
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
902 903 904
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
905
	spin_unlock(&hb1->lock);
906 907
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
908 909
}

L
Linus Torvalds 已提交
910
/*
D
Darren Hart 已提交
911
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
912
 */
913 914
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
915
{
916
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
917
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
918
	struct plist_head *head;
919
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
920 921
	int ret;

922 923 924
	if (!bitset)
		return -EINVAL;

925
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
L
Linus Torvalds 已提交
926 927 928
	if (unlikely(ret != 0))
		goto out;

929 930 931
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
932

P
Pierre Peiffer 已提交
933
	plist_for_each_entry_safe(this, next, head, list) {
L
Linus Torvalds 已提交
934
		if (match_futex (&this->key, &key)) {
935
			if (this->pi_state || this->rt_waiter) {
936 937 938
				ret = -EINVAL;
				break;
			}
939 940 941 942 943

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
944 945 946 947 948 949
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

950
	spin_unlock(&hb->lock);
951
	put_futex_key(&key);
952
out:
L
Linus Torvalds 已提交
953 954 955
	return ret;
}

956 957 958 959
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
960
static int
961
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
962
	      int nr_wake, int nr_wake2, int op)
963
{
964
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
965
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
966
	struct plist_head *head;
967
	struct futex_q *this, *next;
D
Darren Hart 已提交
968
	int ret, op_ret;
969

D
Darren Hart 已提交
970
retry:
971
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
972 973
	if (unlikely(ret != 0))
		goto out;
974
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
975
	if (unlikely(ret != 0))
976
		goto out_put_key1;
977

978 979
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
980

D
Darren Hart 已提交
981
retry_private:
T
Thomas Gleixner 已提交
982
	double_lock_hb(hb1, hb2);
983
	op_ret = futex_atomic_op_inuser(op, uaddr2);
984 985
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
986
		double_unlock_hb(hb1, hb2);
987

988
#ifndef CONFIG_MMU
989 990 991 992
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
993
		ret = op_ret;
994
		goto out_put_keys;
995 996
#endif

997 998
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
999
			goto out_put_keys;
1000 1001
		}

1002
		ret = fault_in_user_writeable(uaddr2);
1003
		if (ret)
1004
			goto out_put_keys;
1005

1006
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1007 1008
			goto retry_private;

1009 1010
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1011
		goto retry;
1012 1013
	}

1014
	head = &hb1->chain;
1015

P
Pierre Peiffer 已提交
1016
	plist_for_each_entry_safe(this, next, head, list) {
1017 1018 1019 1020 1021 1022 1023 1024
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
1025
		head = &hb2->chain;
1026 1027

		op_ret = 0;
P
Pierre Peiffer 已提交
1028
		plist_for_each_entry_safe(this, next, head, list) {
1029 1030 1031 1032 1033 1034 1035 1036 1037
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

D
Darren Hart 已提交
1038
	double_unlock_hb(hb1, hb2);
1039
out_put_keys:
1040
	put_futex_key(&key2);
1041
out_put_key1:
1042
	put_futex_key(&key1);
1043
out:
1044 1045 1046
	return ret;
}

D
Darren Hart 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
1068
		q->list.plist.spinlock = &hb2->lock;
D
Darren Hart 已提交
1069 1070 1071 1072 1073 1074
#endif
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1075 1076
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1077 1078 1079
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1080 1081 1082 1083 1084
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1085 1086 1087
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1088 1089
 */
static inline
1090 1091
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
{
	get_futex_key_refs(key);
	q->key = *key;

	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1102 1103
	q->lock_ptr = &hb->lock;
#ifdef CONFIG_DEBUG_PI_LIST
1104
	q->list.plist.spinlock = &hb->lock;
1105 1106
#endif

T
Thomas Gleixner 已提交
1107
	wake_up_state(q->task, TASK_NORMAL);
1108 1109 1110 1111
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1112 1113 1114 1115 1116 1117 1118
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1119 1120
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1121 1122 1123
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1134
				 struct futex_pi_state **ps, int set_waiters)
1135
{
1136
	struct futex_q *top_waiter = NULL;
1137 1138 1139 1140 1141 1142
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1143 1144 1145 1146 1147 1148 1149 1150
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1151 1152 1153 1154 1155 1156
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1157 1158 1159 1160
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1161
	/*
1162 1163 1164
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1165
	 */
1166 1167
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1168
	if (ret == 1)
1169
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1170 1171 1172 1173 1174 1175

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1176
 * @uaddr1:	source futex user address
1177
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1178 1179 1180 1181 1182
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1183
 *		pi futex (pi to pi requeue is not supported)
1184 1185 1186 1187 1188 1189 1190
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
L
Linus Torvalds 已提交
1191
 */
1192 1193 1194
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1195
{
1196
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1197 1198
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1199
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1200
	struct plist_head *head1;
L
Linus Torvalds 已提交
1201
	struct futex_q *this, *next;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1224

1225
retry:
1226 1227 1228 1229 1230 1231 1232 1233 1234
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1235
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
L
Linus Torvalds 已提交
1236 1237
	if (unlikely(ret != 0))
		goto out;
1238
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
L
Linus Torvalds 已提交
1239
	if (unlikely(ret != 0))
1240
		goto out_put_key1;
L
Linus Torvalds 已提交
1241

1242 1243
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1244

D
Darren Hart 已提交
1245
retry_private:
I
Ingo Molnar 已提交
1246
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1247

1248 1249
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1250

1251
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1252 1253

		if (unlikely(ret)) {
D
Darren Hart 已提交
1254
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1255

1256
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1257 1258
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1259

1260
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1261
				goto retry_private;
L
Linus Torvalds 已提交
1262

1263 1264
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1265
			goto retry;
L
Linus Torvalds 已提交
1266
		}
1267
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1268 1269 1270 1271 1272
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1273
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1274 1275 1276 1277 1278 1279
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1280
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1281
						 &key2, &pi_state, nr_requeue);
1282 1283 1284 1285 1286 1287 1288 1289 1290

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
1291
			drop_count++;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1304 1305
			put_futex_key(&key2);
			put_futex_key(&key1);
1306
			ret = fault_in_user_writeable(uaddr2);
1307 1308 1309 1310 1311 1312
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
1313 1314
			put_futex_key(&key2);
			put_futex_key(&key1);
1315 1316 1317 1318 1319 1320 1321
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1322
	head1 = &hb1->chain;
P
Pierre Peiffer 已提交
1323
	plist_for_each_entry_safe(this, next, head1, list) {
1324 1325 1326 1327
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1328
			continue;
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
		 */
		if ((requeue_pi && !this->rt_waiter) ||
		    (!requeue_pi && this->rt_waiter)) {
			ret = -EINVAL;
			break;
		}
1339 1340 1341 1342 1343 1344 1345

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1346
			wake_futex(this);
1347 1348
			continue;
		}
L
Linus Torvalds 已提交
1349

1350 1351 1352 1353 1354 1355
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1369
				requeue_pi_wake_futex(this, &key2, hb2);
1370
				drop_count++;
1371 1372 1373 1374 1375 1376 1377
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1378
		}
1379 1380
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1381 1382 1383
	}

out_unlock:
D
Darren Hart 已提交
1384
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1385

1386 1387 1388 1389 1390 1391
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1392
	while (--drop_count >= 0)
1393
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1394

1395
out_put_keys:
1396
	put_futex_key(&key2);
1397
out_put_key1:
1398
	put_futex_key(&key1);
1399
out:
1400 1401 1402
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1403 1404 1405
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1406
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1407
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1408
{
1409
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1410

1411 1412
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1413

1414 1415
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
1416 1417
}

1418 1419
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1420
	__releases(&hb->lock)
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
{
	spin_unlock(&hb->lock);
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1437
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1438
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1439
{
P
Pierre Peiffer 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
1454
	q->list.plist.spinlock = &hb->lock;
P
Pierre Peiffer 已提交
1455 1456
#endif
	plist_add(&q->list, &hb->chain);
1457
	q->task = current;
1458
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1459 1460
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
 * Returns:
 *   1 - if the futex_q was still queued (and we removed unqueued it)
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1471 1472 1473 1474
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1475
	int ret = 0;
L
Linus Torvalds 已提交
1476 1477

	/* In the common case we don't take the spinlock, which is nice. */
1478
retry:
L
Linus Torvalds 已提交
1479
	lock_ptr = q->lock_ptr;
1480
	barrier();
1481
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
P
Pierre Peiffer 已提交
1500 1501
		WARN_ON(plist_node_empty(&q->list));
		plist_del(&q->list, &q->list.plist);
1502 1503 1504

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1505 1506 1507 1508
		spin_unlock(lock_ptr);
		ret = 1;
	}

1509
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1510 1511 1512
	return ret;
}

1513 1514
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1515 1516
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1517
 */
P
Pierre Peiffer 已提交
1518
static void unqueue_me_pi(struct futex_q *q)
1519
	__releases(q->lock_ptr)
1520
{
P
Pierre Peiffer 已提交
1521 1522
	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);
1523 1524 1525 1526 1527

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1528
	spin_unlock(q->lock_ptr);
1529 1530
}

P
Pierre Peiffer 已提交
1531
/*
1532
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1533
 *
1534 1535
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1536
 */
1537
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1538
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
1539
{
1540
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1541
	struct futex_pi_state *pi_state = q->pi_state;
1542
	struct task_struct *oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
1543
	u32 uval, curval, newval;
D
Darren Hart 已提交
1544
	int ret;
P
Pierre Peiffer 已提交
1545 1546

	/* Owner died? */
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
	 * pending owner or we are the pending owner which failed to
	 * get the rtmutex. We have to replace the pending owner TID
	 * in the user space variable. This must be atomic as we have
	 * to preserve the owner died bit here.
	 *
D
Darren Hart 已提交
1557 1558 1559
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

1574
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1585
	if (pi_state->owner != NULL) {
1586
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1587 1588
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1589
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1590
	}
P
Pierre Peiffer 已提交
1591

1592
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1593

1594
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1595
	WARN_ON(!list_empty(&pi_state->list));
1596
	list_add(&pi_state->list, &newowner->pi_state_list);
1597
	raw_spin_unlock_irq(&newowner->pi_lock);
1598
	return 0;
P
Pierre Peiffer 已提交
1599 1600

	/*
1601 1602 1603 1604 1605 1606 1607 1608
	 * To handle the page fault we need to drop the hash bucket
	 * lock here. That gives the other task (either the pending
	 * owner itself or the task which stole the rtmutex) the
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1609
	 */
1610 1611
handle_fault:
	spin_unlock(q->lock_ptr);
1612

1613
	ret = fault_in_user_writeable(uaddr);
1614

1615
	spin_lock(q->lock_ptr);
1616

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1627 1628
}

N
Nick Piggin 已提交
1629
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1630

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
1646
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
1657
			ret = fixup_pi_state_owner(uaddr, q, current);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
		 * rt_mutex. Too late. We can access the rt_mutex_owner without
		 * locking, as the other task is now blocked on the hash bucket
		 * lock. Fix the state up.
		 */
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1684
		ret = fixup_pi_state_owner(uaddr, q, owner);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner, nor the pending owner, of the rt_mutex.
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1702 1703 1704 1705 1706 1707 1708
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1709
				struct hrtimer_sleeper *timeout)
1710
{
1711 1712 1713 1714 1715 1716
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
1717
	set_current_state(TASK_INTERRUPTIBLE);
1718
	queue_me(q, hb);
1719 1720 1721 1722 1723 1724 1725 1726 1727

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
1728 1729
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1743 1744 1745 1746
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
1747
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
 */
1760
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1761
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1762
{
1763 1764
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1765 1766

	/*
D
Darren Hart 已提交
1767
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1768 1769 1770 1771 1772 1773 1774
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
1775 1776
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
1777 1778
	 * cond(var) false, which would violate the guarantee.
	 *
1779 1780 1781 1782
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
1783
	 */
1784
retry:
1785
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1786
	if (unlikely(ret != 0))
1787
		return ret;
1788 1789 1790 1791

retry_private:
	*hb = queue_lock(q);

1792
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1793

1794 1795
	if (ret) {
		queue_unlock(q, *hb);
L
Linus Torvalds 已提交
1796

1797
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1798
		if (ret)
1799
			goto out;
L
Linus Torvalds 已提交
1800

1801
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1802 1803
			goto retry_private;

1804
		put_futex_key(&q->key);
D
Darren Hart 已提交
1805
		goto retry;
L
Linus Torvalds 已提交
1806
	}
1807

1808 1809 1810
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1811
	}
L
Linus Torvalds 已提交
1812

1813 1814
out:
	if (ret)
1815
		put_futex_key(&q->key);
1816 1817 1818
	return ret;
}

1819 1820
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
1821 1822 1823 1824
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
1825
	struct futex_q q = futex_q_init;
1826 1827 1828 1829 1830 1831 1832 1833 1834
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

1835 1836 1837
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
1838 1839 1840 1841 1842
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
1843
retry:
1844 1845 1846 1847
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
1848
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1849 1850 1851
	if (ret)
		goto out;

1852
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
1853
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
1854 1855

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
1856
	ret = 0;
1857
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
1858
	if (!unqueue_me(&q))
1859
		goto out;
P
Peter Zijlstra 已提交
1860
	ret = -ETIMEDOUT;
1861
	if (to && !to->task)
1862
		goto out;
N
Nick Piggin 已提交
1863

1864
	/*
T
Thomas Gleixner 已提交
1865 1866
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
1867
	 */
1868
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
1869 1870
		goto retry;

P
Peter Zijlstra 已提交
1871
	ret = -ERESTARTSYS;
1872
	if (!abs_time)
1873
		goto out;
L
Linus Torvalds 已提交
1874

P
Peter Zijlstra 已提交
1875 1876
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
1877
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
1878 1879 1880
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1881
	restart->futex.flags = flags;
1882

P
Peter Zijlstra 已提交
1883 1884
	ret = -ERESTART_RESTARTBLOCK;

1885
out:
1886 1887 1888 1889
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1890 1891 1892
	return ret;
}

N
Nick Piggin 已提交
1893 1894 1895

static long futex_wait_restart(struct restart_block *restart)
{
1896
	u32 __user *uaddr = restart->futex.uaddr;
1897
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
1898

1899 1900 1901 1902
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
1903
	restart->fn = do_no_restart_syscall;
1904 1905 1906

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
1907 1908 1909
}


1910 1911 1912 1913 1914 1915
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
1916 1917
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
			 ktime_t *time, int trylock)
1918
{
1919
	struct hrtimer_sleeper timeout, *to = NULL;
1920
	struct futex_hash_bucket *hb;
1921
	struct futex_q q = futex_q_init;
1922
	int res, ret;
1923 1924 1925 1926

	if (refill_pi_state_cache())
		return -ENOMEM;

1927
	if (time) {
1928
		to = &timeout;
1929 1930
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
1931
		hrtimer_init_sleeper(to, current);
1932
		hrtimer_set_expires(&to->timer, *time);
1933 1934
	}

1935
retry:
1936
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1937
	if (unlikely(ret != 0))
1938
		goto out;
1939

D
Darren Hart 已提交
1940
retry_private:
E
Eric Sesterhenn 已提交
1941
	hb = queue_lock(&q);
1942

1943
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1944
	if (unlikely(ret)) {
1945
		switch (ret) {
1946 1947 1948 1949 1950 1951
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
1952 1953 1954 1955 1956 1957
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
1958
			put_futex_key(&q.key);
1959 1960 1961
			cond_resched();
			goto retry;
		default:
1962
			goto out_unlock_put_key;
1963 1964 1965 1966 1967 1968
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
1969
	queue_me(&q, hb);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

1983
	spin_lock(q.lock_ptr);
1984 1985 1986 1987
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
1988
	res = fixup_owner(uaddr, &q, !ret);
1989 1990 1991 1992 1993 1994
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
1995

1996
	/*
1997 1998
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
1999 2000 2001 2002
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2003 2004
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2005

2006
	goto out_put_key;
2007

2008
out_unlock_put_key:
2009 2010
	queue_unlock(&q, hb);

2011
out_put_key:
2012
	put_futex_key(&q.key);
2013
out:
2014 2015
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2016
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2017

2018
uaddr_faulted:
2019 2020
	queue_unlock(&q, hb);

2021
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2022 2023
	if (ret)
		goto out_put_key;
2024

2025
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2026 2027
		goto retry_private;

2028
	put_futex_key(&q.key);
D
Darren Hart 已提交
2029
	goto retry;
2030 2031 2032 2033 2034 2035 2036
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2037
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2038 2039 2040
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
2041
	struct plist_head *head;
2042
	union futex_key key = FUTEX_KEY_INIT;
2043
	u32 uval, vpid = task_pid_vnr(current);
D
Darren Hart 已提交
2044
	int ret;
2045 2046 2047 2048 2049 2050 2051

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2052
	if ((uval & FUTEX_TID_MASK) != vpid)
2053 2054
		return -EPERM;

2055
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
2067 2068
	if (!(uval & FUTEX_OWNER_DIED) &&
	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2069 2070 2071 2072 2073
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2074
	if (unlikely(uval == vpid))
2075 2076 2077 2078 2079 2080 2081 2082
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

P
Pierre Peiffer 已提交
2083
	plist_for_each_entry_safe(this, next, head, list) {
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2099 2100 2101 2102 2103
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2104 2105 2106

out_unlock:
	spin_unlock(&hb->lock);
2107
	put_futex_key(&key);
2108

2109
out:
2110 2111 2112
	return ret;

pi_faulted:
2113
	spin_unlock(&hb->lock);
2114
	put_futex_key(&key);
2115

2116
	ret = fault_in_user_writeable(uaddr);
2117
	if (!ret)
2118 2119
		goto retry;

L
Linus Torvalds 已提交
2120 2121 2122
	return ret;
}

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2137
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
		plist_del(&q->list, &q->list.plist);

T
Thomas Gleixner 已提交
2161
		/* Handle spurious wakeups gracefully */
2162
		ret = -EWOULDBLOCK;
2163 2164
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2165
		else if (signal_pending(current))
2166
			ret = -ERESTARTNOINTR;
2167 2168 2169 2170 2171 2172
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2173
 * @uaddr:	the futex we initially wait on (non-pi)
2174
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2175 2176 2177
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2178
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
 * complete the acquisition of the rt_mutex prior to returning to userspace.
 * This ensures the rt_mutex maintains an owner when it has waiters; without
 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
 * need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2192 2193 2194
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2195
 *
2196
 * If 3, cleanup and return -ERESTARTNOINTR.
2197 2198 2199 2200 2201 2202 2203
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2204
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2205 2206 2207 2208 2209 2210 2211
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
2212
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2213
				 u32 val, ktime_t *abs_time, u32 bitset,
2214
				 u32 __user *uaddr2)
2215 2216 2217 2218 2219
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2220 2221
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2222 2223 2224 2225 2226 2227 2228
	int res, ret;

	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2229 2230 2231
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

2244
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2245 2246 2247
	if (unlikely(ret != 0))
		goto out;

2248 2249 2250 2251
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2252 2253 2254 2255
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2256
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2257 2258
	if (ret)
		goto out_key2;
2259 2260

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2261
	futex_wait_queue_me(hb, &q, to);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2273 2274 2275
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2286
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!&q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2305
		res = fixup_owner(uaddr2, &q, !ret);
2306 2307
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2308
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
		if (rt_mutex_owner(pi_mutex) == current)
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2326 2327 2328 2329 2330
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2331
		 */
2332
		ret = -EWOULDBLOCK;
2333 2334 2335
	}

out_put_keys:
2336
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2337
out_key2:
2338
	put_futex_key(&key2);
2339 2340 2341 2342 2343 2344 2345 2346 2347

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2348 2349 2350 2351 2352 2353 2354
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2355
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2356 2357 2358 2359 2360 2361 2362 2363
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2364 2365 2366
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2367
 */
2368 2369
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2370
{
2371 2372
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2385 2386 2387 2388
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2389
 */
2390 2391 2392
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2393
{
A
Al Viro 已提交
2394
	struct robust_list_head __user *head;
2395
	unsigned long ret;
2396
	const struct cred *cred = current_cred(), *pcred;
2397

2398 2399 2400
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2401 2402 2403 2404 2405 2406
	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
2407
		rcu_read_lock();
2408
		p = find_task_by_vpid(pid);
2409 2410 2411
		if (!p)
			goto err_unlock;
		ret = -EPERM;
2412 2413 2414
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid &&
2415
		    !capable(CAP_SYS_PTRACE))
2416 2417
			goto err_unlock;
		head = p->robust_list;
2418
		rcu_read_unlock();
2419 2420 2421 2422 2423 2424 2425
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2426
	rcu_read_unlock();
2427 2428 2429 2430 2431 2432 2433 2434

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2435
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2436
{
2437
	u32 uval, nval, mval;
2438

2439 2440
retry:
	if (get_user(uval, uaddr))
2441 2442
		return -1;

2443
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2454
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2455
		if (futex_atomic_cmpxchg_inatomic(&nval, uaddr, uval, mval))
2456 2457 2458
			return -1;

		if (nval != uval)
2459
			goto retry;
2460

2461 2462 2463 2464
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2465
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2466
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2467 2468 2469 2470
	}
	return 0;
}

2471 2472 2473 2474
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2475
				     struct robust_list __user * __user *head,
2476
				     unsigned int *pi)
2477 2478 2479
{
	unsigned long uentry;

A
Al Viro 已提交
2480
	if (get_user(uentry, (unsigned long __user *)head))
2481 2482
		return -EFAULT;

A
Al Viro 已提交
2483
	*entry = (void __user *)(uentry & ~1UL);
2484 2485 2486 2487 2488
	*pi = uentry & 1;

	return 0;
}

2489 2490 2491 2492 2493 2494 2495 2496 2497
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2498
	struct robust_list __user *entry, *next_entry, *pending;
2499 2500
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2501
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2502
	int rc;
2503

2504 2505 2506
	if (!futex_cmpxchg_enabled)
		return;

2507 2508 2509 2510
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2511
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2522
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2523
		return;
2524

M
Martin Schwidefsky 已提交
2525
	next_entry = NULL;	/* avoid warning with gcc */
2526
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2527 2528 2529 2530 2531
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2532 2533
		/*
		 * A pending lock might already be on the list, so
2534
		 * don't process it twice:
2535 2536
		 */
		if (entry != pending)
A
Al Viro 已提交
2537
			if (handle_futex_death((void __user *)entry + futex_offset,
2538
						curr, pi))
2539
				return;
M
Martin Schwidefsky 已提交
2540
		if (rc)
2541
			return;
M
Martin Schwidefsky 已提交
2542 2543
		entry = next_entry;
		pi = next_pi;
2544 2545 2546 2547 2548 2549 2550 2551
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2552 2553 2554 2555

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2556 2557
}

2558
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2559
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2560
{
2561 2562
	int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
	unsigned int flags = 0;
E
Eric Dumazet 已提交
2563 2564

	if (!(op & FUTEX_PRIVATE_FLAG))
2565
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
2566

2567 2568 2569 2570 2571
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
2572

E
Eric Dumazet 已提交
2573
	switch (cmd) {
L
Linus Torvalds 已提交
2574
	case FUTEX_WAIT:
2575 2576
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
2577
		ret = futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
2578 2579
		break;
	case FUTEX_WAKE:
2580 2581
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
2582
		ret = futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
2583 2584
		break;
	case FUTEX_REQUEUE:
2585
		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2586 2587
		break;
	case FUTEX_CMP_REQUEUE:
2588
		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
L
Linus Torvalds 已提交
2589
		break;
2590
	case FUTEX_WAKE_OP:
2591
		ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2592
		break;
2593
	case FUTEX_LOCK_PI:
2594
		if (futex_cmpxchg_enabled)
2595
			ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2596 2597
		break;
	case FUTEX_UNLOCK_PI:
2598
		if (futex_cmpxchg_enabled)
2599
			ret = futex_unlock_pi(uaddr, flags);
2600 2601
		break;
	case FUTEX_TRYLOCK_PI:
2602
		if (futex_cmpxchg_enabled)
2603
			ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2604
		break;
2605 2606
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
2607 2608
		ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					    uaddr2);
2609 2610
		break;
	case FUTEX_CMP_REQUEUE_PI:
2611
		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2612
		break;
L
Linus Torvalds 已提交
2613 2614 2615 2616 2617 2618 2619
	default:
		ret = -ENOSYS;
	}
	return ret;
}


2620 2621 2622
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2623
{
2624 2625
	struct timespec ts;
	ktime_t t, *tp = NULL;
2626
	u32 val2 = 0;
E
Eric Dumazet 已提交
2627
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2628

2629
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2630 2631
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2632
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2633
			return -EFAULT;
2634
		if (!timespec_valid(&ts))
2635
			return -EINVAL;
2636 2637

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2638
		if (cmd == FUTEX_WAIT)
2639
			t = ktime_add_safe(ktime_get(), t);
2640
		tp = &t;
L
Linus Torvalds 已提交
2641 2642
	}
	/*
2643
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2644
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2645
	 */
2646
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2647
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2648
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2649

2650
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2651 2652
}

2653
static int __init futex_init(void)
L
Linus Torvalds 已提交
2654
{
2655
	u32 curval;
T
Thomas Gleixner 已提交
2656
	int i;
A
Akinobu Mita 已提交
2657

2658 2659 2660 2661 2662 2663 2664
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
2665
	 * implementation, the non-functional ones will return
2666 2667
	 * -ENOSYS.
	 */
2668
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2669 2670
		futex_cmpxchg_enabled = 1;

T
Thomas Gleixner 已提交
2671 2672 2673 2674 2675
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2676 2677
	return 0;
}
2678
__initcall(futex_init);