time.c 32.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36
#include <linux/sched.h>
37
#include <linux/sched/clock.h>
L
Linus Torvalds 已提交
38 39 40 41 42 43 44 45
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
46
#include <linux/clockchips.h>
L
Linus Torvalds 已提交
47 48 49 50
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
51 52
#include <linux/percpu.h>
#include <linux/rtc.h>
53
#include <linux/jiffies.h>
54
#include <linux/posix-timers.h>
55
#include <linux/irq.h>
56
#include <linux/delay.h>
57
#include <linux/irq_work.h>
58
#include <linux/clk-provider.h>
59
#include <linux/suspend.h>
60
#include <linux/rtc.h>
61
#include <linux/sched/cputime.h>
62
#include <linux/processor.h>
63
#include <asm/trace.h>
L
Linus Torvalds 已提交
64 65 66 67 68

#include <asm/io.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
69
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
70 71
#include <asm/time.h>
#include <asm/prom.h>
72 73
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
74
#include <asm/smp.h>
75
#include <asm/vdso_datapage.h>
76
#include <asm/firmware.h>
77
#include <asm/asm-prototypes.h>
L
Linus Torvalds 已提交
78

79 80
/* powerpc clocksource/clockevent code */

81
#include <linux/clockchips.h>
82
#include <linux/timekeeper_internal.h>
83

84
static u64 rtc_read(struct clocksource *);
85 86 87 88 89 90 91 92
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

93
static u64 timebase_read(struct clocksource *);
94 95 96 97 98 99 100 101
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

102 103
#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
104 105 106

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
107
static int decrementer_shutdown(struct clock_event_device *evt);
108

109
struct clock_event_device decrementer_clockevent = {
110 111 112 113 114 115 116 117
	.name			= "decrementer",
	.rating			= 200,
	.irq			= 0,
	.set_next_event		= decrementer_set_next_event,
	.set_state_shutdown	= decrementer_shutdown,
	.tick_resume		= decrementer_shutdown,
	.features		= CLOCK_EVT_FEAT_ONESHOT |
				  CLOCK_EVT_FEAT_C3STOP,
118
};
119
EXPORT_SYMBOL(decrementer_clockevent);
120

121 122
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
123

L
Linus Torvalds 已提交
124 125
#define XSEC_PER_SEC (1024*1024)

126 127 128 129 130 131 132
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
133 134 135 136
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
137
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
138

L
Linus Torvalds 已提交
139
DEFINE_SPINLOCK(rtc_lock);
140
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
141

142 143
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
144
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
145 146

extern struct timezone sys_tz;
147
static long timezone_offset;
L
Linus Torvalds 已提交
148

149
unsigned long ppc_proc_freq;
150
EXPORT_SYMBOL_GPL(ppc_proc_freq);
151
unsigned long ppc_tb_freq;
152
EXPORT_SYMBOL_GPL(ppc_tb_freq);
153

154
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
155
/*
156 157
 * Factor for converting from cputime_t (timebase ticks) to
 * microseconds. This is stored as 0.64 fixed-point binary fraction.
158
 */
159 160
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
161

162
#ifdef CONFIG_PPC_SPLPAR
163
void (*dtl_consumer)(struct dtl_entry *, u64);
164 165 166 167 168 169 170
#endif

#ifdef CONFIG_PPC64
#define get_accounting(tsk)	(&get_paca()->accounting)
#else
#define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
#endif
171

172 173 174 175
static void calc_cputime_factors(void)
{
	struct div_result res;

176 177
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
178 179 180
}

/*
181 182
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
183
 */
184
static unsigned long read_spurr(unsigned long tb)
185
{
186 187
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
188 189
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
190
	return tb;
191 192
}

193 194
#ifdef CONFIG_PPC_SPLPAR

195
/*
196 197
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
198
 */
199
static u64 scan_dispatch_log(u64 stop_tb)
200
{
201
	u64 i = local_paca->dtl_ridx;
202 203 204 205 206 207 208
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

209 210 211
	if (!dtl)
		return 0;

212
	if (i == be64_to_cpu(vpa->dtl_idx))
213
		return 0;
214 215 216 217
	while (i < be64_to_cpu(vpa->dtl_idx)) {
		dtb = be64_to_cpu(dtl->timebase);
		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
			be32_to_cpu(dtl->ready_to_enqueue_time);
218
		barrier();
219
		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
220
			/* buffer has overflowed */
221
			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
222 223 224 225 226
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
227 228
		if (dtl_consumer)
			dtl_consumer(dtl, i);
229 230 231 232 233 234 235 236 237
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
238 239
}

240 241 242 243 244 245 246
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;
247
	unsigned long save_irq_soft_mask = irq_soft_mask_return();
248
	struct cpu_accounting_data *acct = &local_paca->accounting;
249 250 251 252 253 254 255

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
256
	irq_soft_mask_set(IRQS_DISABLED);
257

258 259
	sst = scan_dispatch_log(acct->starttime_user);
	ust = scan_dispatch_log(acct->starttime);
260 261
	acct->stime -= sst;
	acct->utime -= ust;
262
	acct->steal_time += ust + sst;
263

264
	irq_soft_mask_set(save_irq_soft_mask);
265 266 267 268
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
269 270 271
	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
		return 0;

272 273
	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
		return scan_dispatch_log(stop_tb);
274

275
	return 0;
276 277
}

278 279 280 281 282 283 284 285
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

286 287 288 289
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
290
static unsigned long vtime_delta(struct task_struct *tsk,
291 292
				 unsigned long *stime_scaled,
				 unsigned long *steal_time)
293
{
294
	unsigned long now, nowscaled, deltascaled;
295 296
	unsigned long stime;
	unsigned long utime, utime_scaled;
297
	struct cpu_accounting_data *acct = get_accounting(tsk);
298

299 300
	WARN_ON_ONCE(!irqs_disabled());

301
	now = mftb();
302
	nowscaled = read_spurr(now);
303
	stime = now - acct->starttime;
304 305 306
	acct->starttime = now;
	deltascaled = nowscaled - acct->startspurr;
	acct->startspurr = nowscaled;
307

308
	*steal_time = calculate_stolen_time(now);
309

310
	utime = acct->utime - acct->utime_sspurr;
311
	acct->utime_sspurr = acct->utime;
312 313 314 315 316 317 318 319 320 321 322

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
323 324 325 326 327 328
	*stime_scaled = stime;
	utime_scaled = utime;
	if (deltascaled != stime + utime) {
		if (utime) {
			*stime_scaled = deltascaled * stime / (stime + utime);
			utime_scaled = deltascaled - *stime_scaled;
329
		} else {
330
			*stime_scaled = deltascaled;
331 332
		}
	}
333
	acct->utime_scaled += utime_scaled;
334

335
	return stime;
336 337
}

338
void vtime_account_system(struct task_struct *tsk)
339
{
340 341 342 343 344 345 346
	unsigned long stime, stime_scaled, steal_time;
	struct cpu_accounting_data *acct = get_accounting(tsk);

	stime = vtime_delta(tsk, &stime_scaled, &steal_time);

	stime -= min(stime, steal_time);
	acct->steal_time += steal_time;
347

348 349 350 351 352 353 354 355 356 357 358 359 360
	if ((tsk->flags & PF_VCPU) && !irq_count()) {
		acct->gtime += stime;
		acct->utime_scaled += stime_scaled;
	} else {
		if (hardirq_count())
			acct->hardirq_time += stime;
		else if (in_serving_softirq())
			acct->softirq_time += stime;
		else
			acct->stime += stime;

		acct->stime_scaled += stime_scaled;
	}
361
}
362
EXPORT_SYMBOL_GPL(vtime_account_system);
363

364
void vtime_account_idle(struct task_struct *tsk)
365
{
366 367
	unsigned long stime, stime_scaled, steal_time;
	struct cpu_accounting_data *acct = get_accounting(tsk);
368

369 370
	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
	acct->idle_time += stime + steal_time;
371 372 373
}

/*
374
 * Account the whole cputime accumulated in the paca
375
 * Must be called with interrupts disabled.
376 377
 * Assumes that vtime_account_system/idle() has been called
 * recently (i.e. since the last entry from usermode) so that
378
 * get_paca()->user_time_scaled is up to date.
379
 */
380
void vtime_flush(struct task_struct *tsk)
381
{
382
	struct cpu_accounting_data *acct = get_accounting(tsk);
383

384
	if (acct->utime)
385
		account_user_time(tsk, cputime_to_nsecs(acct->utime));
386 387

	if (acct->utime_scaled)
388
		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
389 390

	if (acct->gtime)
391
		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
392 393

	if (acct->steal_time)
394
		account_steal_time(cputime_to_nsecs(acct->steal_time));
395 396

	if (acct->idle_time)
397
		account_idle_time(cputime_to_nsecs(acct->idle_time));
398 399

	if (acct->stime)
400 401
		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
					  CPUTIME_SYSTEM);
402
	if (acct->stime_scaled)
403
		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
404 405

	if (acct->hardirq_time)
406 407
		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
					  CPUTIME_IRQ);
408
	if (acct->softirq_time)
409 410
		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
					  CPUTIME_SOFTIRQ);
411

412 413
	acct->utime = 0;
	acct->utime_scaled = 0;
414
	acct->utime_sspurr = 0;
415 416 417 418 419 420 421
	acct->gtime = 0;
	acct->steal_time = 0;
	acct->idle_time = 0;
	acct->stime = 0;
	acct->stime_scaled = 0;
	acct->hardirq_time = 0;
	acct->softirq_time = 0;
422 423
}

424 425 426 427 428 429 430 431 432 433 434
#ifdef CONFIG_PPC32
/*
 * Called from the context switch with interrupts disabled, to charge all
 * accumulated times to the current process, and to prepare accounting on
 * the next process.
 */
void arch_vtime_task_switch(struct task_struct *prev)
{
	struct cpu_accounting_data *acct = get_accounting(current);

	acct->starttime = get_accounting(prev)->starttime;
435
	acct->startspurr = get_accounting(prev)->startspurr;
436 437 438
}
#endif /* CONFIG_PPC32 */

439
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
440 441 442
#define calc_cputime_factors()
#endif

443 444 445 446 447
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

448
	spin_begin();
449 450 451 452 453 454 455
	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
456
			spin_cpu_relax();
457 458 459 460
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
461
			spin_cpu_relax();
462
	}
463
	spin_end();
464 465 466 467 468 469 470 471 472
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

486
#ifdef CONFIG_IRQ_WORK
487

488 489 490 491
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
492
static inline unsigned long test_irq_work_pending(void)
493
{
494 495 496 497
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
498
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
499 500 501
	return x;
}

502
static inline void set_irq_work_pending_flag(void)
503 504 505
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
506
		"i" (offsetof(struct paca_struct, irq_work_pending)));
507 508
}

509
static inline void clear_irq_work_pending(void)
510 511 512
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
513
		"i" (offsetof(struct paca_struct, irq_work_pending)));
514 515
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
void arch_irq_work_raise(void)
{
	preempt_disable();
	set_irq_work_pending_flag();
	/*
	 * Non-nmi code running with interrupts disabled will replay
	 * irq_happened before it re-enables interrupts, so setthe
	 * decrementer there instead of causing a hardware exception
	 * which would immediately hit the masked interrupt handler
	 * and have the net effect of setting the decrementer in
	 * irq_happened.
	 *
	 * NMI interrupts can not check this when they return, so the
	 * decrementer hardware exception is raised, which will fire
	 * when interrupts are next enabled.
	 *
	 * BookE does not support this yet, it must audit all NMI
	 * interrupt handlers to ensure they call nmi_enter() so this
	 * check would be correct.
	 */
	if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) {
		set_dec(1);
	} else {
		hard_irq_disable();
		local_paca->irq_happened |= PACA_IRQ_DEC;
	}
	preempt_enable();
}

545 546
#else /* 32-bit */

547
DEFINE_PER_CPU(u8, irq_work_pending);
548

549 550 551
#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
552

553
void arch_irq_work_raise(void)
554 555
{
	preempt_disable();
556
	set_irq_work_pending_flag();
557 558 559 560
	set_dec(1);
	preempt_enable();
}

561 562
#endif /* 32 vs 64 bit */

563
#else  /* CONFIG_IRQ_WORK */
564

565 566
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
567

568
#endif /* CONFIG_IRQ_WORK */
569

L
Linus Torvalds 已提交
570 571 572 573
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
574
void timer_interrupt(struct pt_regs *regs)
L
Linus Torvalds 已提交
575
{
576
	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
577
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
578 579
	struct pt_regs *old_regs;
	u64 now;
580

581
	/* Some implementations of hotplug will get timer interrupts while
582 583 584 585
	 * offline, just ignore these and we also need to set
	 * decrementers_next_tb as MAX to make sure __check_irq_replay
	 * don't replay timer interrupt when return, otherwise we'll trap
	 * here infinitely :(
586
	 */
587
	if (unlikely(!cpu_online(smp_processor_id()))) {
588
		*next_tb = ~(u64)0;
589
		set_dec(decrementer_max);
590
		return;
591
	}
592

593 594 595 596 597 598 599 600 601 602 603
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions. When the
	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
	 * 31 bits, which is about 4 seconds on most systems, which gives
	 * the watchdog a chance of catching timer interrupt hard lockups.
	 */
	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
		set_dec(0x7fffffff);
	else
		set_dec(decrementer_max);

604 605 606 607 608
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

609

P
Paul Bolle 已提交
610
#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
611 612 613
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
614

615
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
616
	irq_enter();
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	trace_timer_interrupt_entry(regs);

	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
	}

	now = get_tb_or_rtc();
	if (now >= *next_tb) {
		*next_tb = ~(u64)0;
		if (evt->event_handler)
			evt->event_handler(evt);
		__this_cpu_inc(irq_stat.timer_irqs_event);
	} else {
		now = *next_tb - now;
		if (now <= decrementer_max)
			set_dec(now);
		/* We may have raced with new irq work */
		if (test_irq_work_pending())
			set_dec(1);
		__this_cpu_inc(irq_stat.timer_irqs_others);
	}
L
Linus Torvalds 已提交
639

640
	trace_timer_interrupt_exit(regs);
L
Linus Torvalds 已提交
641
	irq_exit();
642
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
643
}
A
Al Viro 已提交
644
EXPORT_SYMBOL(timer_interrupt);
L
Linus Torvalds 已提交
645

646
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
647 648 649 650 651 652
void timer_broadcast_interrupt(void)
{
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);

	*next_tb = ~(u64)0;
	tick_receive_broadcast();
653
	__this_cpu_inc(irq_stat.broadcast_irqs_event);
654
}
655
#endif
656

657 658 659 660 661 662 663 664 665
/*
 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 * left pending on exit from a KVM guest.  We don't need to do anything
 * to clear them, as they are edge-triggered.
 */
void hdec_interrupt(struct pt_regs *regs)
{
}

666
#ifdef CONFIG_SUSPEND
667
static void generic_suspend_disable_irqs(void)
668 669 670 671 672
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

673
	set_dec(decrementer_max);
674
	local_irq_disable();
675
	set_dec(decrementer_max);
676 677
}

678
static void generic_suspend_enable_irqs(void)
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

700 701 702 703 704 705
unsigned long long tb_to_ns(unsigned long long ticks)
{
	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
}
EXPORT_SYMBOL_GPL(tb_to_ns);

L
Linus Torvalds 已提交
706 707 708 709 710 711 712
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
713
notrace unsigned long long sched_clock(void)
L
Linus Torvalds 已提交
714
{
715 716
	if (__USE_RTC())
		return get_rtc();
717
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

#ifdef CONFIG_PPC_PSERIES

/*
 * Running clock - attempts to give a view of time passing for a virtualised
 * kernels.
 * Uses the VTB register if available otherwise a next best guess.
 */
unsigned long long running_clock(void)
{
	/*
	 * Don't read the VTB as a host since KVM does not switch in host
	 * timebase into the VTB when it takes a guest off the CPU, reading the
	 * VTB would result in reading 'last switched out' guest VTB.
	 *
	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
	 * would be unsafe to rely only on the #ifdef above.
	 */
	if (firmware_has_feature(FW_FEATURE_LPAR) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;

	/*
	 * This is a next best approximation without a VTB.
	 * On a host which is running bare metal there should never be any stolen
	 * time and on a host which doesn't do any virtualisation TB *should* equal
	 * VTB so it makes no difference anyway.
	 */
748
	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
749 750 751
}
#endif

752
static int __init get_freq(char *name, int cells, unsigned long *val)
753 754
{
	struct device_node *cpu;
755
	const __be32 *fp;
756
	int found = 0;
757

758
	/* The cpu node should have timebase and clock frequency properties */
759 760
	cpu = of_find_node_by_type(NULL, "cpu");

761
	if (cpu) {
762
		fp = of_get_property(cpu, name, NULL);
763
		if (fp) {
764
			found = 1;
765
			*val = of_read_ulong(fp, cells);
766
		}
767 768

		of_node_put(cpu);
769
	}
770 771 772 773

	return found;
}

774
static void start_cpu_decrementer(void)
775 776
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
777 778
	unsigned int tcr;

779 780 781
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

782 783 784 785 786 787 788 789 790
	tcr = mfspr(SPRN_TCR);
	/*
	 * The watchdog may have already been enabled by u-boot. So leave
	 * TRC[WP] (Watchdog Period) alone.
	 */
	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
	tcr |= TCR_DIE;		/* Enable decrementer */
	mtspr(SPRN_TCR, tcr);
#endif
791 792
}

793 794 795 796 797 798 799
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

800 801
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
802
	}
803

804 805 806 807 808 809 810
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
811 812 813
	}
}

814
int update_persistent_clock64(struct timespec64 now)
815 816 817
{
	struct rtc_time tm;

818
	if (!ppc_md.set_rtc_time)
819
		return -ENODEV;
820

821
	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
822 823 824 825

	return ppc_md.set_rtc_time(&tm);
}

826
static void __read_persistent_clock(struct timespec64 *ts)
827 828 829 830
{
	struct rtc_time tm;
	static int first = 1;

831
	ts->tv_nsec = 0;
832 833 834 835 836 837 838
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
839 840 841 842 843 844 845 846
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
847
	}
848
	ppc_md.get_rtc_time(&tm);
849

850
	ts->tv_sec = rtc_tm_to_time64(&tm);
851 852
}

853
void read_persistent_clock64(struct timespec64 *ts)
854 855 856 857 858 859 860 861 862 863 864
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

865
/* clocksource code */
866
static notrace u64 rtc_read(struct clocksource *cs)
867
{
868
	return (u64)get_rtc();
869 870
}

871
static notrace u64 timebase_read(struct clocksource *cs)
872
{
873
	return (u64)get_tb();
874 875
}

876 877

void update_vsyscall(struct timekeeper *tk)
878
{
879 880 881 882 883
	struct timespec xt;
	struct clocksource *clock = tk->tkr_mono.clock;
	u32 mult = tk->tkr_mono.mult;
	u32 shift = tk->tkr_mono.shift;
	u64 cycle_last = tk->tkr_mono.cycle_last;
J
John Stultz 已提交
884
	u64 new_tb_to_xs, new_stamp_xsec;
885
	u64 frac_sec;
886 887 888 889

	if (clock != &clocksource_timebase)
		return;

890 891 892
	xt.tv_sec = tk->xtime_sec;
	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);

893 894 895 896
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	/*
	 * This computes ((2^20 / 1e9) * mult) >> shift as a
	 * 0.64 fixed-point fraction.
	 * The computation in the else clause below won't overflow
	 * (as long as the timebase frequency is >= 1.049 MHz)
	 * but loses precision because we lose the low bits of the constant
	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
	 * over a second.  (Shift values are usually 22, 23 or 24.)
	 * For high frequency clocks such as the 512MHz timebase clock
	 * on POWER[6789], the mult value is small (e.g. 32768000)
	 * and so we can shift the constant by 16 initially
	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
	 * remaining shifts after the multiplication, which gives a
	 * more accurate result (e.g. with mult = 32768000, shift = 24,
	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
	 */
	if (mult <= 62500000 && clock->shift >= 16)
		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
	else
		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);

	/*
	 * Compute the fractional second in units of 2^-32 seconds.
	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
	 * it in units of 2^-32 seconds.
	 * We assume shift <= 32 because clocks_calc_mult_shift()
	 * generates shift values in the range 0 - 32.
	 */
	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
	do_div(frac_sec, NSEC_PER_SEC);
J
John Stultz 已提交
929

930 931 932 933 934 935
	/*
	 * Work out new stamp_xsec value for any legacy users of systemcfg.
	 * stamp_xsec is in units of 2^-20 seconds.
	 */
	new_stamp_xsec = frac_sec >> 12;
	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
936

J
John Stultz 已提交
937 938 939 940 941 942 943 944 945
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 */
946
	vdso_data->tb_orig_stamp = cycle_last;
J
John Stultz 已提交
947 948
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
949 950 951
	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
	vdso_data->stamp_xtime = xt;
952
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
953 954
	smp_wmb();
	++(vdso_data->tb_update_count);
955 956 957 958 959 960 961 962
}

void update_vsyscall_tz(void)
{
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
}

963
static void __init clocksource_init(void)
964 965 966 967 968 969 970 971
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

972
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
973 974 975 976 977 978 979 980 981
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

982 983 984
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
985
	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
986
	set_dec(evt);
987 988 989 990 991

	/* We may have raced with new irq work */
	if (test_irq_work_pending())
		set_dec(1);

992 993 994
	return 0;
}

995
static int decrementer_shutdown(struct clock_event_device *dev)
996
{
997
	decrementer_set_next_event(decrementer_max, dev);
998
	return 0;
999 1000 1001 1002
}

static void register_decrementer_clockevent(int cpu)
{
1003
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
1004 1005

	*dec = decrementer_clockevent;
1006
	dec->cpumask = cpumask_of(cpu);
1007

1008 1009
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
1010 1011 1012 1013

	clockevents_register_device(dec);
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static void enable_large_decrementer(void)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
		return;

	/*
	 * If we're running as the hypervisor we need to enable the LD manually
	 * otherwise firmware should have done it for us.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
}

static void __init set_decrementer_max(void)
{
	struct device_node *cpu;
	u32 bits = 32;

	/* Prior to ISAv3 the decrementer is always 32 bit */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	cpu = of_find_node_by_type(NULL, "cpu");

	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
		if (bits > 64 || bits < 32) {
			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
			bits = 32;
		}

		/* calculate the signed maximum given this many bits */
		decrementer_max = (1ul << (bits - 1)) - 1;
	}

	of_node_put(cpu);

	pr_info("time_init: %u bit decrementer (max: %llx)\n",
		bits, decrementer_max);
}

1057
static void __init init_decrementer_clockevent(void)
1058 1059 1060
{
	int cpu = smp_processor_id();

1061 1062
	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);

1063
	decrementer_clockevent.max_delta_ns =
1064
		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
1065
	decrementer_clockevent.max_delta_ticks = decrementer_max;
1066 1067
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
1068
	decrementer_clockevent.min_delta_ticks = 2;
1069 1070 1071 1072 1073 1074

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
1075 1076 1077
	/* Enable and test the large decrementer for this cpu */
	enable_large_decrementer();

1078 1079 1080 1081 1082
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1083 1084 1085 1086 1087
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

1088
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
1089 1090 1091
void __init time_init(void)
{
	struct div_result res;
1092
	u64 scale;
1093 1094
	unsigned shift;

1095 1096 1097 1098 1099 1100
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
1101
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1102
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1103
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1104 1105
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
1106 1107

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1108
	tb_ticks_per_sec = ppc_tb_freq;
1109
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1110
	calc_cputime_factors();
1111

L
Linus Torvalds 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
1130
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1131
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
1132

1133
	/* If platform provided a timezone (pmac), we correct the time */
1134
	if (timezone_offset) {
1135 1136
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
1137
	}
1138

1139 1140
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
1141

1142 1143 1144 1145
	/* initialise and enable the large decrementer (if we have one) */
	set_decrementer_max();
	enable_large_decrementer();

1146 1147 1148 1149 1150
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1151 1152
	/* Register the clocksource */
	clocksource_init();
1153

1154
	init_decrementer_clockevent();
1155
	tick_setup_hrtimer_broadcast();
1156 1157 1158 1159

#ifdef CONFIG_COMMON_CLK
	of_clk_init(NULL);
#endif
L
Linus Torvalds 已提交
1160 1161 1162 1163 1164 1165
}

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1166 1167
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1168
{
1169 1170 1171
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1172 1173 1174 1175 1176 1177

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1178 1179 1180 1181 1182
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1183

1184 1185 1186 1187 1188
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1189

1190 1191
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1192 1193

}
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1204 1205 1206 1207
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
	ppc_md.get_rtc_time(tm);
1208
	return 0;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
}

static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
	if (!ppc_md.set_rtc_time)
		return -EOPNOTSUPP;

	if (ppc_md.set_rtc_time(tm) < 0)
		return -EOPNOTSUPP;

	return 0;
}

static const struct rtc_class_ops rtc_generic_ops = {
	.read_time = rtc_generic_get_time,
	.set_time = rtc_generic_set_time,
};

1227 1228 1229 1230 1231 1232 1233
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

1234 1235 1236
	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
					     &rtc_generic_ops,
					     sizeof(rtc_generic_ops));
1237

1238
	return PTR_ERR_OR_ZERO(pdev);
1239 1240
}

1241
device_initcall(rtc_init);
1242
#endif