stmmac_main.c 82.1 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

31
#include <linux/clk.h>
32 33 34 35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
41
#include <linux/if.h>
42 43
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
44
#include <linux/slab.h>
45
#include <linux/prefetch.h>
46 47 48 49
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
50 51
#include <linux/net_tstamp.h>
#include "stmmac_ptp.h"
52
#include "stmmac.h"
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
74
#ifdef STMMAC_XMIT_DEBUG
75 76 77 78 79 80 81 82 83
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
84
#define TX_TIMEO	5000
85 86
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
87
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
88

89
static int debug = -1;
90
module_param(debug, int, S_IRUGO | S_IWUSR);
91
MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
92

93
int phyaddr = -1;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

129 130 131 132 133 134
#define STMMAC_DEFAULT_LPI_TIMER	1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))

135 136 137 138 139 140 141
/* By default the driver will use the ring mode to manage tx and rx descriptors
 * but passing this value so user can force to use the chain instead of the ring
 */
static unsigned int chain_mode;
module_param(chain_mode, int, S_IRUGO);
MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");

142 143
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

144 145 146 147 148
#ifdef CONFIG_STMMAC_DEBUG_FS
static int stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(void);
#endif

149 150
#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
172 173
	if (eee_timer < 0)
		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
174 175
}

176 177 178 179 180 181 182 183 184 185 186 187
/**
 * stmmac_clk_csr_set - dynamically set the MDC clock
 * @priv: driver private structure
 * Description: this is to dynamically set the MDC clock according to the csr
 * clock input.
 * Note:
 *	If a specific clk_csr value is passed from the platform
 *	this means that the CSR Clock Range selection cannot be
 *	changed at run-time and it is fixed (as reported in the driver
 *	documentation). Viceversa the driver will try to set the MDC
 *	clock dynamically according to the actual clock input.
 */
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
	u32 clk_rate;

	clk_rate = clk_get_rate(priv->stmmac_clk);

	/* Platform provided default clk_csr would be assumed valid
	 * for all other cases except for the below mentioned ones. */
	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
		if (clk_rate < CSR_F_35M)
			priv->clk_csr = STMMAC_CSR_20_35M;
		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
			priv->clk_csr = STMMAC_CSR_35_60M;
		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
			priv->clk_csr = STMMAC_CSR_60_100M;
		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
			priv->clk_csr = STMMAC_CSR_100_150M;
		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
			priv->clk_csr = STMMAC_CSR_150_250M;
		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
			priv->clk_csr = STMMAC_CSR_250_300M;
	} /* For values higher than the IEEE 802.3 specified frequency
	   * we can not estimate the proper divider as it is not known
	   * the frequency of clk_csr_i. So we do not change the default
	   * divider. */
}

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

237 238 239 240 241
/**
 * stmmac_hw_fix_mac_speed: callback for speed selection
 * @priv: driver private structure
 * Description: on some platforms (e.g. ST), some HW system configuraton
 * registers have to be set according to the link speed negotiated.
242 243 244 245 246 247 248 249 250 251
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

252 253 254 255 256
/**
 * stmmac_enable_eee_mode: Check and enter in LPI mode
 * @priv: driver private structure
 * Description: this function is to verify and enter in LPI mode for EEE.
 */
257 258 259 260 261 262 263 264
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
	/* Check and enter in LPI mode */
	if ((priv->dirty_tx == priv->cur_tx) &&
	    (priv->tx_path_in_lpi_mode == false))
		priv->hw->mac->set_eee_mode(priv->ioaddr);
}

265 266 267 268 269 270
/**
 * stmmac_disable_eee_mode: disable/exit from EEE
 * @priv: driver private structure
 * Description: this function is to exit and disable EEE in case of
 * LPI state is true. This is called by the xmit.
 */
271 272 273 274 275 276 277 278
void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
	priv->hw->mac->reset_eee_mode(priv->ioaddr);
	del_timer_sync(&priv->eee_ctrl_timer);
	priv->tx_path_in_lpi_mode = false;
}

/**
279
 * stmmac_eee_ctrl_timer: EEE TX SW timer.
280 281
 * @arg : data hook
 * Description:
282
 *  if there is no data transfer and if we are not in LPI state,
283 284 285 286 287 288 289 290 291 292 293
 *  then MAC Transmitter can be moved to LPI state.
 */
static void stmmac_eee_ctrl_timer(unsigned long arg)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)arg;

	stmmac_enable_eee_mode(priv);
	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
}

/**
294 295
 * stmmac_eee_init: init EEE
 * @priv: driver private structure
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
 * Description:
 *  If the EEE support has been enabled while configuring the driver,
 *  if the GMAC actually supports the EEE (from the HW cap reg) and the
 *  phy can also manage EEE, so enable the LPI state and start the timer
 *  to verify if the tx path can enter in LPI state.
 */
bool stmmac_eee_init(struct stmmac_priv *priv)
{
	bool ret = false;

	/* MAC core supports the EEE feature. */
	if (priv->dma_cap.eee) {
		/* Check if the PHY supports EEE */
		if (phy_init_eee(priv->phydev, 1))
			goto out;

		priv->eee_active = 1;
		init_timer(&priv->eee_ctrl_timer);
		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
		priv->eee_ctrl_timer.data = (unsigned long)priv;
		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
		add_timer(&priv->eee_ctrl_timer);

		priv->hw->mac->set_eee_timer(priv->ioaddr,
					     STMMAC_DEFAULT_LIT_LS_TIMER,
					     priv->tx_lpi_timer);

		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");

		ret = true;
	}
out:
	return ret;
}

331 332 333 334 335 336 337 338
/**
 * stmmac_eee_adjust: adjust HW EEE according to the speed
 * @priv: driver private structure
 * Description:
 *	When the EEE has been already initialised we have to
 *	modify the PLS bit in the LPI ctrl & status reg according
 *	to the PHY link status. For this reason.
 */
339 340 341 342 343 344
static void stmmac_eee_adjust(struct stmmac_priv *priv)
{
	if (priv->eee_enabled)
		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
}

345 346
/* stmmac_get_tx_hwtstamp: get HW TX timestamps
 * @priv: driver private structure
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
 * @entry : descriptor index to be used.
 * @skb : the socket buffer
 * Description :
 * This function will read timestamp from the descriptor & pass it to stack.
 * and also perform some sanity checks.
 */
static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
				   unsigned int entry,
				   struct sk_buff *skb)
{
	struct skb_shared_hwtstamps shhwtstamp;
	u64 ns;
	void *desc = NULL;

	if (!priv->hwts_tx_en)
		return;

	/* if skb doesn't support hw tstamp */
	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
		return;

	if (priv->adv_ts)
		desc = (priv->dma_etx + entry);
	else
		desc = (priv->dma_tx + entry);

	/* check tx tstamp status */
	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
		return;

	/* get the valid tstamp */
	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);

	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamp.hwtstamp = ns_to_ktime(ns);
	/* pass tstamp to stack */
	skb_tstamp_tx(skb, &shhwtstamp);

	return;
}

388 389
/* stmmac_get_rx_hwtstamp: get HW RX timestamps
 * @priv: driver private structure
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
 * @entry : descriptor index to be used.
 * @skb : the socket buffer
 * Description :
 * This function will read received packet's timestamp from the descriptor
 * and pass it to stack. It also perform some sanity checks.
 */
static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
				   unsigned int entry,
				   struct sk_buff *skb)
{
	struct skb_shared_hwtstamps *shhwtstamp = NULL;
	u64 ns;
	void *desc = NULL;

	if (!priv->hwts_rx_en)
		return;

	if (priv->adv_ts)
		desc = (priv->dma_erx + entry);
	else
		desc = (priv->dma_rx + entry);

	/* if rx tstamp is not valid */
	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
		return;

	/* get valid tstamp */
	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
	shhwtstamp = skb_hwtstamps(skb);
	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamp->hwtstamp = ns_to_ktime(ns);
}

/**
 *  stmmac_hwtstamp_ioctl - control hardware timestamping.
 *  @dev: device pointer.
 *  @ifr: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  Description:
 *  This function configures the MAC to enable/disable both outgoing(TX)
 *  and incoming(RX) packets time stamping based on user input.
 *  Return Value:
 *  0 on success and an appropriate -ve integer on failure.
 */
static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct hwtstamp_config config;
	struct timespec now;
	u64 temp = 0;
	u32 ptp_v2 = 0;
	u32 tstamp_all = 0;
	u32 ptp_over_ipv4_udp = 0;
	u32 ptp_over_ipv6_udp = 0;
	u32 ptp_over_ethernet = 0;
	u32 snap_type_sel = 0;
	u32 ts_master_en = 0;
	u32 ts_event_en = 0;
	u32 value = 0;

	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
		netdev_alert(priv->dev, "No support for HW time stamping\n");
		priv->hwts_tx_en = 0;
		priv->hwts_rx_en = 0;

		return -EOPNOTSUPP;
	}

	if (copy_from_user(&config, ifr->ifr_data,
		sizeof(struct hwtstamp_config)))
		return -EFAULT;

	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
		 __func__, config.flags, config.tx_type, config.rx_filter);

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		priv->hwts_tx_en = 0;
		break;
	case HWTSTAMP_TX_ON:
		priv->hwts_tx_en = 1;
		break;
	default:
		return -ERANGE;
	}

	if (priv->adv_ts) {
		switch (config.rx_filter) {
		/* time stamp no incoming packet at all */
		case HWTSTAMP_FILTER_NONE:
			config.rx_filter = HWTSTAMP_FILTER_NONE;
			break;

		/* PTP v1, UDP, any kind of event packet */
		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
			/* take time stamp for all event messages */
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v1, UDP, Sync packet */
		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v1, UDP, Delay_req packet */
		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v2, UDP, any kind of event packet */
		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for all event messages */
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v2, UDP, Sync packet */
		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v2, UDP, Delay_req packet */
		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v2/802.AS1, any layer, any kind of event packet */
		case HWTSTAMP_FILTER_PTP_V2_EVENT:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for all event messages */
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

		/* PTP v2/802.AS1, any layer, Sync packet */
		case HWTSTAMP_FILTER_PTP_V2_SYNC:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

		/* PTP v2/802.AS1, any layer, Delay_req packet */
		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

		/* time stamp any incoming packet */
		case HWTSTAMP_FILTER_ALL:
			config.rx_filter = HWTSTAMP_FILTER_ALL;
			tstamp_all = PTP_TCR_TSENALL;
			break;

		default:
			return -ERANGE;
		}
	} else {
		switch (config.rx_filter) {
		case HWTSTAMP_FILTER_NONE:
			config.rx_filter = HWTSTAMP_FILTER_NONE;
			break;
		default:
			/* PTP v1, UDP, any kind of event packet */
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
			break;
		}
	}
	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);

	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
	else {
		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
			tstamp_all | ptp_v2 | ptp_over_ethernet |
			ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
			ts_master_en | snap_type_sel);

		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);

		/* program Sub Second Increment reg */
		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);

		/* calculate default added value:
		 * formula is :
		 * addend = (2^32)/freq_div_ratio;
		 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
		 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
		 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
		 *       achive 20ns accuracy.
		 *
		 * 2^x * y == (y << x), hence
		 * 2^32 * 50000000 ==> (50000000 << 32)
		 */
		temp = (u64)(50000000ULL << 32);
		priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
		priv->hw->ptp->config_addend(priv->ioaddr,
					     priv->default_addend);

		/* initialize system time */
		getnstimeofday(&now);
		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
					    now.tv_nsec);
	}

	return copy_to_user(ifr->ifr_data, &config,
			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
}

650 651 652 653 654 655 656
/**
 * stmmac_init_ptp: init PTP
 * @priv: driver private structure
 * Description: this is to verify if the HW supports the PTPv1 or v2.
 * This is done by looking at the HW cap. register.
 * Also it registers the ptp driver.
 */
657
static int stmmac_init_ptp(struct stmmac_priv *priv)
658
{
659 660 661 662 663 664 665 666 667 668 669 670
	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
		return -EOPNOTSUPP;

	if (netif_msg_hw(priv)) {
		if (priv->dma_cap.time_stamp) {
			pr_debug("IEEE 1588-2002 Time Stamp supported\n");
			priv->adv_ts = 0;
		}
		if (priv->dma_cap.atime_stamp && priv->extend_desc) {
			pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
			priv->adv_ts = 1;
		}
671 672 673 674 675
	}

	priv->hw->ptp = &stmmac_ptp;
	priv->hwts_tx_en = 0;
	priv->hwts_rx_en = 0;
676 677 678 679 680 681 682

	return stmmac_ptp_register(priv);
}

static void stmmac_release_ptp(struct stmmac_priv *priv)
{
	stmmac_ptp_unregister(priv);
683 684
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
705

706
	if (phydev->link) {
707
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
708 709 710 711 712 713

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
714
				ctrl &= ~priv->hw->link.duplex;
715
			else
716
				ctrl |= priv->hw->link.duplex;
717 718 719 720
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
721
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
722
						 fc, pause_time);
723 724 725 726 727

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
728
				if (likely(priv->plat->has_gmac))
729
					ctrl &= ~priv->hw->link.port;
730
					stmmac_hw_fix_mac_speed(priv);
731 732 733
				break;
			case 100:
			case 10:
734
				if (priv->plat->has_gmac) {
735
					ctrl |= priv->hw->link.port;
736
					if (phydev->speed == SPEED_100) {
737
						ctrl |= priv->hw->link.speed;
738
					} else {
739
						ctrl &= ~(priv->hw->link.speed);
740 741
					}
				} else {
742
					ctrl &= ~priv->hw->link.port;
743
				}
744
				stmmac_hw_fix_mac_speed(priv);
745 746 747 748 749 750 751 752 753 754 755
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

756
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

772 773
	stmmac_eee_adjust(priv);

774 775 776 777 778
	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

779 780 781 782 783 784 785
/**
 * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
 * @priv: driver private structure
 * Description: this is to verify if the HW supports the PCS.
 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
 * configured for the TBI, RTBI, or SGMII PHY interface.
 */
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
{
	int interface = priv->plat->interface;

	if (priv->dma_cap.pcs) {
		if ((interface & PHY_INTERFACE_MODE_RGMII) ||
		    (interface & PHY_INTERFACE_MODE_RGMII_ID) ||
		    (interface & PHY_INTERFACE_MODE_RGMII_RXID) ||
		    (interface & PHY_INTERFACE_MODE_RGMII_TXID)) {
			pr_debug("STMMAC: PCS RGMII support enable\n");
			priv->pcs = STMMAC_PCS_RGMII;
		} else if (interface & PHY_INTERFACE_MODE_SGMII) {
			pr_debug("STMMAC: PCS SGMII support enable\n");
			priv->pcs = STMMAC_PCS_SGMII;
		}
	}
}

804 805 806 807 808 809 810 811 812 813 814 815
/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
816
	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
817
	char bus_id[MII_BUS_ID_SIZE];
818
	int interface = priv->plat->interface;
819 820 821 822
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

823 824 825 826 827 828 829
	if (priv->plat->phy_bus_name)
		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
				priv->plat->phy_bus_name, priv->plat->bus_id);
	else
		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
				priv->plat->bus_id);

830
	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
831
		 priv->plat->phy_addr);
832
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
833

834
	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
835 836 837 838 839 840

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

841
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
842 843 844 845
	if ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))
		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
					 SUPPORTED_1000baseT_Full);
846

847 848 849 850 851 852 853 854 855 856 857 858
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
859
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
860 861 862 863 864 865 866

	priv->phydev = phydev;

	return 0;
}

/**
867 868
 * stmmac_display_ring: display ring
 * @head: pointer to the head of the ring passed.
869
 * @size: size of the ring.
870
 * @extend_desc: to verify if extended descriptors are used.
871
 * Description: display the control/status and buffer descriptors.
872
 */
873
static void stmmac_display_ring(void *head, int size, int extend_desc)
874 875
{
	int i;
876 877 878
	struct dma_extended_desc *ep = (struct dma_extended_desc *) head;
	struct dma_desc *p = (struct dma_desc *) head;

879
	for (i = 0; i < size; i++) {
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
		u64 x;
		if (extend_desc) {
			x = *(u64 *) ep;
			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
				i, (unsigned int) virt_to_phys(ep),
				(unsigned int) x, (unsigned int) (x >> 32),
				ep->basic.des2, ep->basic.des3);
			ep++;
		} else {
			x = *(u64 *) p;
			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
				i, (unsigned int) virt_to_phys(p),
				(unsigned int) x, (unsigned int) (x >> 32),
				p->des2, p->des3);
			p++;
		}
896 897 898 899
		pr_info("\n");
	}
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static void stmmac_display_rings(struct stmmac_priv *priv)
{
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;

	if (priv->extend_desc) {
		pr_info("Extended RX descriptor ring:\n");
		stmmac_display_ring((void *) priv->dma_erx, rxsize, 1);
		pr_info("Extended TX descriptor ring:\n");
		stmmac_display_ring((void *) priv->dma_etx, txsize, 1);
	} else {
		pr_info("RX descriptor ring:\n");
		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
		pr_info("TX descriptor ring:\n");
		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
	}
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

934 935 936 937 938 939
/**
 * stmmac_clear_descriptors: clear descriptors
 * @priv: driver private structure
 * Description: this function is called to clear the tx and rx descriptors
 * in case of both basic and extended descriptors are used.
 */
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
static void stmmac_clear_descriptors(struct stmmac_priv *priv)
{
	int i;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;

	/* Clear the Rx/Tx descriptors */
	for (i = 0; i < rxsize; i++)
		if (priv->extend_desc)
			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
						     priv->use_riwt, priv->mode,
						     (i == rxsize - 1));
		else
			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
						     priv->use_riwt, priv->mode,
						     (i == rxsize - 1));
	for (i = 0; i < txsize; i++)
		if (priv->extend_desc)
			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
						     priv->mode,
						     (i == txsize - 1));
		else
			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
						     priv->mode,
						     (i == txsize - 1));
}

static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
				  int i)
{
	struct sk_buff *skb;

	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
				 GFP_KERNEL);
	if (unlikely(skb == NULL)) {
		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
		return 1;
	}
	skb_reserve(skb, NET_IP_ALIGN);
	priv->rx_skbuff[i] = skb;
	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						priv->dma_buf_sz,
						DMA_FROM_DEVICE);

	p->des2 = priv->rx_skbuff_dma[i];

	if ((priv->mode == STMMAC_RING_MODE) &&
	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
		priv->hw->ring->init_desc3(p);

	return 0;
}

993 994 995 996
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
997 998
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
999 1000 1001 1002 1003 1004 1005
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
1006
	unsigned int bfsize = 0;
1007

1008 1009
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
1010 1011
	if (priv->mode == STMMAC_RING_MODE)
		bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
1012

1013
	if (bfsize < BUF_SIZE_16KiB)
1014
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1015 1016 1017 1018

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (priv->extend_desc) {
		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
						   sizeof(struct
							  dma_extended_desc),
						   &priv->dma_rx_phy,
						   GFP_KERNEL);
		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
						   sizeof(struct
							  dma_extended_desc),
						   &priv->dma_tx_phy,
						   GFP_KERNEL);
		if ((!priv->dma_erx) || (!priv->dma_etx))
			return;
	} else {
		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);
		if ((!priv->dma_rx) || (!priv->dma_tx))
			return;
	}

1045 1046 1047 1048
	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
					    GFP_KERNEL);
	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
					GFP_KERNEL);
1049 1050
	priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
					GFP_KERNEL);
1051 1052
	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
					GFP_KERNEL);
1053 1054 1055
	if (netif_msg_drv(priv))
		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1056 1057

	/* RX INITIALIZATION */
1058
	DBG(probe, INFO, "stmmac: SKB addresses:\nskb\t\tskb data\tdma data\n");
1059
	for (i = 0; i < rxsize; i++) {
1060 1061 1062 1063 1064
		struct dma_desc *p;
		if (priv->extend_desc)
			p = &((priv->dma_erx + i)->basic);
		else
			p = priv->dma_rx + i;
1065

1066
		if (stmmac_init_rx_buffers(priv, p, i))
1067
			break;
1068

1069 1070 1071 1072 1073 1074 1075 1076
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	/* Setup the chained descriptor addresses */
	if (priv->mode == STMMAC_CHAIN_MODE) {
		if (priv->extend_desc) {
			priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
					      rxsize, 1);
			priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
					      txsize, 1);
		} else {
			priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
					      rxsize, 0);
			priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
					      txsize, 0);
		}
	}

1092 1093
	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
1094 1095 1096 1097 1098 1099
		struct dma_desc *p;
		if (priv->extend_desc)
			p = &((priv->dma_etx + i)->basic);
		else
			p = priv->dma_tx + i;
		p->des2 = 0;
1100
		priv->tx_skbuff_dma[i] = 0;
1101 1102
		priv->tx_skbuff[i] = NULL;
	}
1103

1104 1105 1106
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

1107
	stmmac_clear_descriptors(priv);
1108

1109 1110
	if (netif_msg_hw(priv))
		stmmac_display_rings(priv);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
1133 1134 1135 1136 1137 1138
			struct dma_desc *p;
			if (priv->extend_desc)
				p = &((priv->dma_etx + i)->basic);
			else
				p = priv->dma_tx + i;

1139 1140 1141
			if (priv->tx_skbuff_dma[i])
				dma_unmap_single(priv->device,
						 priv->tx_skbuff_dma[i],
1142 1143
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
1144 1145
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
1146
			priv->tx_skbuff_dma[i] = 0;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	if (!priv->extend_desc) {
		dma_free_coherent(priv->device,
				  priv->dma_tx_size * sizeof(struct dma_desc),
				  priv->dma_tx, priv->dma_tx_phy);
		dma_free_coherent(priv->device,
				  priv->dma_rx_size * sizeof(struct dma_desc),
				  priv->dma_rx, priv->dma_rx_phy);
	} else {
		dma_free_coherent(priv->device, priv->dma_tx_size *
				  sizeof(struct dma_extended_desc),
				  priv->dma_etx, priv->dma_tx_phy);
		dma_free_coherent(priv->device, priv->dma_rx_size *
				  sizeof(struct dma_extended_desc),
				  priv->dma_erx, priv->dma_rx_phy);
	}
1174 1175
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
1176
	kfree(priv->tx_skbuff_dma);
1177 1178 1179 1180 1181
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
1182
 *  @priv: driver private structure
1183
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1184
 *  or Store-And-Forward capability.
1185 1186 1187
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
1188 1189 1190 1191 1192
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
1193 1194 1195 1196 1197 1198 1199 1200 1201
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1202 1203 1204
}

/**
1205
 * stmmac_tx_clean:
1206
 * @priv: driver private structure
1207 1208
 * Description: it reclaims resources after transmission completes.
 */
1209
static void stmmac_tx_clean(struct stmmac_priv *priv)
1210 1211 1212
{
	unsigned int txsize = priv->dma_tx_size;

1213 1214
	spin_lock(&priv->tx_lock);

1215 1216
	priv->xstats.tx_clean++;

1217 1218 1219 1220
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
1221 1222 1223 1224 1225 1226
		struct dma_desc *p;

		if (priv->extend_desc)
			p = (struct dma_desc *) (priv->dma_etx + entry);
		else
			p = priv->dma_tx + entry;
1227 1228

		/* Check if the descriptor is owned by the DMA. */
1229
		if (priv->hw->desc->get_tx_owner(p))
1230 1231
			break;

1232
		/* Verify tx error by looking at the last segment. */
1233
		last = priv->hw->desc->get_tx_ls(p);
1234 1235
		if (likely(last)) {
			int tx_error =
1236 1237
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
1238
							  priv->ioaddr);
1239 1240 1241 1242 1243
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
1244 1245

			stmmac_get_tx_hwtstamp(priv, entry, skb);
1246 1247 1248 1249
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

1250 1251 1252
		if (likely(priv->tx_skbuff_dma[entry])) {
			dma_unmap_single(priv->device,
					 priv->tx_skbuff_dma[entry],
1253
					 priv->hw->desc->get_tx_len(p),
1254
					 DMA_TO_DEVICE);
1255 1256
			priv->tx_skbuff_dma[entry] = 0;
		}
1257
		priv->hw->ring->clean_desc3(priv, p);
1258 1259

		if (likely(skb != NULL)) {
E
Eric Dumazet 已提交
1260
			dev_kfree_skb(skb);
1261 1262 1263
			priv->tx_skbuff[entry] = NULL;
		}

1264
		priv->hw->desc->release_tx_desc(p, priv->mode);
1265

1266
		priv->dirty_tx++;
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
1278 1279 1280 1281 1282

	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
		stmmac_enable_eee_mode(priv);
		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
	}
1283
	spin_unlock(&priv->tx_lock);
1284 1285
}

1286
static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1287
{
1288
	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1289 1290
}

1291
static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1292
{
1293
	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1294 1295 1296 1297
}


/**
1298 1299
 * stmmac_tx_err: irq tx error mng function
 * @priv: driver private structure
1300 1301 1302 1303 1304
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
1305 1306
	int i;
	int txsize = priv->dma_tx_size;
1307 1308
	netif_stop_queue(priv->dev);

1309
	priv->hw->dma->stop_tx(priv->ioaddr);
1310
	dma_free_tx_skbufs(priv);
1311 1312 1313 1314 1315 1316 1317 1318 1319
	for (i = 0; i < txsize; i++)
		if (priv->extend_desc)
			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
						     priv->mode,
						     (i == txsize - 1));
		else
			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
						     priv->mode,
						     (i == txsize - 1));
1320 1321
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
1322
	priv->hw->dma->start_tx(priv->ioaddr);
1323 1324 1325 1326 1327

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}

1328 1329 1330 1331 1332 1333 1334 1335
/**
 * stmmac_dma_interrupt: DMA ISR
 * @priv: driver private structure
 * Description: this is the DMA ISR. It is called by the main ISR.
 * It calls the dwmac dma routine to understand which type of interrupt
 * happened. In case of there is a Normal interrupt and either TX or RX
 * interrupt happened so the NAPI is scheduled.
 */
1336 1337 1338 1339
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

1340
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1341 1342 1343 1344 1345 1346 1347
	if (likely((status & handle_rx)) || (status & handle_tx)) {
		if (likely(napi_schedule_prep(&priv->napi))) {
			stmmac_disable_dma_irq(priv);
			__napi_schedule(&priv->napi);
		}
	}
	if (unlikely(status & tx_hard_error_bump_tc)) {
1348 1349 1350
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
1351
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1352
			priv->xstats.threshold = tc;
1353
		}
1354 1355
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
1356 1357
}

1358 1359 1360 1361 1362
/**
 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
 * @priv: driver private structure
 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
 */
1363 1364 1365 1366 1367 1368
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

	dwmac_mmc_intr_all_mask(priv->ioaddr);
G
Giuseppe CAVALLARO 已提交
1369 1370 1371 1372 1373

	if (priv->dma_cap.rmon) {
		dwmac_mmc_ctrl(priv->ioaddr, mode);
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
1374
		pr_info(" No MAC Management Counters available\n");
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

1387
		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1388 1389 1390 1391 1392 1393
			uid, synid);

		return synid;
	}
	return 0;
}
1394

1395
/**
1396 1397 1398 1399 1400
 * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
 * @priv: driver private structure
 * Description: select the Enhanced/Alternate or Normal descriptors.
 * In case of Enhanced/Alternate, it looks at the extended descriptors are
 * supported by the HW cap. register.
1401
 */
1402 1403 1404 1405
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
	if (priv->plat->enh_desc) {
		pr_info(" Enhanced/Alternate descriptors\n");
1406 1407 1408 1409 1410 1411 1412 1413

		/* GMAC older than 3.50 has no extended descriptors */
		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
			pr_info("\tEnabled extended descriptors\n");
			priv->extend_desc = 1;
		} else
			pr_warn("Extended descriptors not supported\n");

1414 1415 1416 1417 1418 1419 1420 1421
		priv->hw->desc = &enh_desc_ops;
	} else {
		pr_info(" Normal descriptors\n");
		priv->hw->desc = &ndesc_ops;
	}
}

/**
1422 1423
 * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
 * @priv: driver private structure
1424 1425 1426 1427 1428
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
1429 1430 1431
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
1432
	u32 hw_cap = 0;
1433

1434 1435
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1436

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1449
		/* MMC */
1450
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1451
		/* IEEE 1588-2002*/
1452 1453
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1454
		/* IEEE 1588-2008*/
1455 1456
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1457
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1458 1459
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1460
		/* TX and RX csum */
1461 1462 1463 1464 1465 1466 1467
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1468
		/* TX and RX number of channels */
1469 1470 1471 1472
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1473
		/* Alternate (enhanced) DESC mode*/
1474 1475
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1476
	}
1477 1478 1479 1480

	return hw_cap;
}

1481 1482 1483 1484 1485 1486 1487
/**
 * stmmac_check_ether_addr: check if the MAC addr is valid
 * @priv: driver private structure
 * Description:
 * it is to verify if the MAC address is valid, in case of failures it
 * generates a random MAC address
 */
1488 1489 1490 1491 1492 1493 1494
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
		priv->hw->mac->get_umac_addr((void __iomem *)
					     priv->dev->base_addr,
					     priv->dev->dev_addr, 0);
		if  (!is_valid_ether_addr(priv->dev->dev_addr))
1495
			eth_hw_addr_random(priv->dev);
1496 1497 1498 1499 1500
	}
	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
						   priv->dev->dev_addr);
}

1501 1502 1503 1504 1505 1506 1507 1508
/**
 * stmmac_init_dma_engine: DMA init.
 * @priv: driver private structure
 * Description:
 * It inits the DMA invoking the specific MAC/GMAC callback.
 * Some DMA parameters can be passed from the platform;
 * in case of these are not passed a default is kept for the MAC or GMAC.
 */
1509 1510 1511
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1512
	int mixed_burst = 0;
1513
	int atds = 0;
1514 1515 1516 1517

	if (priv->plat->dma_cfg) {
		pbl = priv->plat->dma_cfg->pbl;
		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1518
		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1519 1520 1521
		burst_len = priv->plat->dma_cfg->burst_len;
	}

1522 1523 1524
	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
		atds = 1;

1525
	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1526
				   burst_len, priv->dma_tx_phy,
1527
				   priv->dma_rx_phy, atds);
1528 1529
}

1530
/**
1531
 * stmmac_tx_timer: mitigation sw timer for tx.
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
 * @data: data pointer
 * Description:
 * This is the timer handler to directly invoke the stmmac_tx_clean.
 */
static void stmmac_tx_timer(unsigned long data)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)data;

	stmmac_tx_clean(priv);
}

/**
1544 1545
 * stmmac_init_tx_coalesce: init tx mitigation options.
 * @priv: driver private structure
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
 * Description:
 * This inits the transmit coalesce parameters: i.e. timer rate,
 * timer handler and default threshold used for enabling the
 * interrupt on completion bit.
 */
static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
{
	priv->tx_coal_frames = STMMAC_TX_FRAMES;
	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
	init_timer(&priv->txtimer);
	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
	priv->txtimer.data = (unsigned long)priv;
	priv->txtimer.function = stmmac_tx_timer;
	add_timer(&priv->txtimer);
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

1576
	clk_prepare_enable(priv->stmmac_clk);
1577 1578 1579

	stmmac_check_ether_addr(priv);

1580 1581
	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
	    priv->pcs != STMMAC_PCS_RTBI) {
1582 1583 1584 1585 1586 1587
		ret = stmmac_init_phy(dev);
		if (ret) {
			pr_err("%s: Cannot attach to PHY (error: %d)\n",
			       __func__, ret);
			goto open_error;
		}
1588
	}
1589 1590 1591 1592 1593 1594 1595 1596

	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
1597
	ret = stmmac_init_dma_engine(priv);
1598
	if (ret < 0) {
1599
		pr_err("%s: DMA initialization failed\n", __func__);
1600
		goto open_error;
1601 1602 1603
	}

	/* Copy the MAC addr into the HW  */
1604
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1605

1606
	/* If required, perform hw setup of the bus. */
1607 1608
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
1609

1610
	/* Initialize the MAC Core */
1611
	priv->hw->mac->core_init(priv->ioaddr);
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	/* Request the Wake IRQ in case of another line is used for WoL */
	if (priv->wol_irq != dev->irq) {
		ret = request_irq(priv->wol_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
			goto open_error_wolirq;
		}
	}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	/* Request the IRQ lines */
	if (priv->lpi_irq != -ENXIO) {
		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
				  dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
			       __func__, priv->lpi_irq, ret);
			goto open_error_lpiirq;
		}
	}

1644
	/* Enable the MAC Rx/Tx */
1645
	stmmac_set_mac(priv->ioaddr, true);
1646 1647 1648 1649 1650 1651 1652 1653

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

G
Giuseppe CAVALLARO 已提交
1654
	stmmac_mmc_setup(priv);
1655

1656 1657 1658
	ret = stmmac_init_ptp(priv);
	if (ret)
		pr_warn("%s: failed PTP initialisation\n", __func__);
1659

1660 1661 1662
#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(dev);
	if (ret < 0)
1663
		pr_warning("%s: failed debugFS registration\n", __func__);
1664
#endif
1665 1666
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1667 1668
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1669 1670 1671

	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
1672 1673
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
1674 1675 1676 1677 1678
	}

	if (priv->phydev)
		phy_start(priv->phydev);

1679
	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
1680 1681 1682 1683

	/* Using PCS we cannot dial with the phy registers at this stage
	 * so we do not support extra feature like EEE.
	 */
1684 1685
	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
	    priv->pcs != STMMAC_PCS_RTBI)
1686
		priv->eee_enabled = stmmac_eee_init(priv);
1687

1688 1689
	stmmac_init_tx_coalesce(priv);

1690 1691 1692 1693 1694
	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
		priv->rx_riwt = MAX_DMA_RIWT;
		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
	}

1695 1696 1697
	if (priv->pcs && priv->hw->mac->ctrl_ane)
		priv->hw->mac->ctrl_ane(priv->ioaddr, 0);

1698 1699
	napi_enable(&priv->napi);
	netif_start_queue(dev);
1700

1701
	return 0;
1702

1703 1704 1705 1706
open_error_lpiirq:
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);

1707 1708 1709
open_error_wolirq:
	free_irq(dev->irq, dev);

1710 1711 1712 1713
open_error:
	if (priv->phydev)
		phy_disconnect(priv->phydev);

1714
	clk_disable_unprepare(priv->stmmac_clk);
1715

1716
	return ret;
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

1729 1730 1731
	if (priv->eee_enabled)
		del_timer_sync(&priv->eee_ctrl_timer);

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

	napi_disable(&priv->napi);

1743 1744
	del_timer_sync(&priv->txtimer);

1745 1746
	/* Free the IRQ lines */
	free_irq(dev->irq, dev);
1747 1748
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);
1749 1750
	if (priv->lpi_irq != -ENXIO)
		free_irq(priv->lpi_irq, dev);
1751 1752

	/* Stop TX/RX DMA and clear the descriptors */
1753 1754
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1755 1756 1757 1758

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1759
	/* Disable the MAC Rx/Tx */
1760
	stmmac_set_mac(priv->ioaddr, false);
1761 1762 1763

	netif_carrier_off(dev);

1764 1765 1766
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif
1767
	clk_disable_unprepare(priv->stmmac_clk);
1768

1769 1770
	stmmac_release_ptp(priv);

1771 1772 1773 1774
	return 0;
}

/**
1775
 *  stmmac_xmit: Tx entry point of the driver
1776 1777
 *  @skb : the socket buffer
 *  @dev : device pointer
1778 1779 1780
 *  Description : this is the tx entry point of the driver.
 *  It programs the chain or the ring and supports oversized frames
 *  and SG feature.
1781 1782 1783 1784 1785 1786
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
1787
	int i, csum_insertion = 0, is_jumbo = 0;
1788 1789
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1790
	unsigned int nopaged_len = skb_headlen(skb);
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1802 1803
	spin_lock(&priv->tx_lock);

1804 1805 1806
	if (priv->tx_path_in_lpi_mode)
		stmmac_disable_eee_mode(priv);

1807 1808 1809 1810
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1811 1812 1813 1814 1815 1816 1817
		pr_debug("stmmac xmit: [entry %d]\n"
			 "\tskb addr %p - len: %d - nopaged_len: %d\n"
			 "\tn_frags: %d - ip_summed: %d - %s gso\n"
			 "\ttx_count_frames %d\n", entry,
			 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
			 !skb_is_gso(skb) ? "isn't" : "is",
			 priv->tx_count_frames);
1818 1819
#endif

1820
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1821

1822 1823 1824 1825 1826
	if (priv->extend_desc)
		desc = (struct dma_desc *) (priv->dma_etx + entry);
	else
		desc = priv->dma_tx + entry;

1827 1828 1829 1830
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1831 1832 1833
		pr_debug("\tskb len: %d, nopaged_len: %d,\n"
			 "\t\tn_frags: %d, ip_summed: %d\n",
			 skb->len, nopaged_len, nfrags, skb->ip_summed);
1834 1835
#endif
	priv->tx_skbuff[entry] = skb;
1836

1837 1838 1839 1840 1841 1842 1843
	/* To program the descriptors according to the size of the frame */
	if (priv->mode == STMMAC_RING_MODE) {
		is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
							priv->plat->enh_desc);
		if (unlikely(is_jumbo))
			entry = priv->hw->ring->jumbo_frm(priv, skb,
							  csum_insertion);
1844
	} else {
1845 1846 1847 1848 1849 1850 1851
		is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
							priv->plat->enh_desc);
		if (unlikely(is_jumbo))
			entry = priv->hw->chain->jumbo_frm(priv, skb,
							   csum_insertion);
	}
	if (likely(!is_jumbo)) {
1852 1853
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1854
		priv->tx_skbuff_dma[entry] = desc->des2;
1855
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1856 1857
						csum_insertion, priv->mode);
	} else
1858
		desc = first;
1859 1860

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1861 1862
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1863 1864

		entry = (++priv->cur_tx) % txsize;
1865 1866 1867 1868
		if (priv->extend_desc)
			desc = (struct dma_desc *) (priv->dma_etx + entry);
		else
			desc = priv->dma_tx + entry;
1869 1870

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1871 1872
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1873
		priv->tx_skbuff_dma[entry] = desc->des2;
1874
		priv->tx_skbuff[entry] = NULL;
1875 1876
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
						priv->mode);
1877
		wmb();
1878
		priv->hw->desc->set_tx_owner(desc);
1879
		wmb();
1880 1881
	}

1882
	/* Finalize the latest segment. */
1883
	priv->hw->desc->close_tx_desc(desc);
1884

1885
	wmb();
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	/* According to the coalesce parameter the IC bit for the latest
	 * segment could be reset and the timer re-started to invoke the
	 * stmmac_tx function. This approach takes care about the fragments.
	 */
	priv->tx_count_frames += nfrags + 1;
	if (priv->tx_coal_frames > priv->tx_count_frames) {
		priv->hw->desc->clear_tx_ic(desc);
		priv->xstats.tx_reset_ic_bit++;
		TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
		       priv->tx_count_frames);
		mod_timer(&priv->txtimer,
			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
	} else
		priv->tx_count_frames = 0;
1900

1901
	/* To avoid raise condition */
1902
	priv->hw->desc->set_tx_owner(first);
1903
	wmb();
1904 1905 1906 1907 1908 1909 1910 1911 1912

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
1913 1914 1915 1916 1917
		if (priv->extend_desc)
			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
		else
			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1929 1930 1931 1932 1933 1934 1935 1936 1937
	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
		     priv->hwts_tx_en)) {
		/* declare that device is doing timestamping */
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		priv->hw->desc->enable_tx_timestamp(first);
	}

	if (!priv->hwts_tx_en)
		skb_tx_timestamp(skb);
1938

1939 1940
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1941 1942
	spin_unlock(&priv->tx_lock);

1943 1944 1945
	return NETDEV_TX_OK;
}

1946 1947 1948 1949 1950 1951
/**
 * stmmac_rx_refill: refill used skb preallocated buffers
 * @priv: driver private structure
 * Description : this is to reallocate the skb for the reception process
 * that is based on zero-copy.
 */
1952 1953 1954 1955 1956 1957 1958
static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
1959 1960 1961 1962 1963 1964 1965
		struct dma_desc *p;

		if (priv->extend_desc)
			p = (struct dma_desc *) (priv->dma_erx + entry);
		else
			p = priv->dma_rx + entry;

1966 1967 1968
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

E
Eric Dumazet 已提交
1969
			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1970 1971 1972 1973 1974 1975 1976 1977 1978

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

1979
			p->des2 = priv->rx_skbuff_dma[entry];
1980

1981
			priv->hw->ring->refill_desc3(priv, p);
1982

1983 1984
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1985
		wmb();
1986
		priv->hw->desc->set_rx_owner(p);
1987
		wmb();
1988 1989 1990
	}
}

1991 1992 1993 1994 1995 1996 1997
/**
 * stmmac_rx_refill: refill used skb preallocated buffers
 * @priv: driver private structure
 * @limit: napi bugget.
 * Description :  this the function called by the napi poll method.
 * It gets all the frames inside the ring.
 */
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
2008 2009 2010 2011
		if (priv->extend_desc)
			stmmac_display_ring((void *) priv->dma_erx, rxsize, 1);
		else
			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2012 2013
	}
#endif
2014
	while (count < limit) {
2015
		int status;
2016
		struct dma_desc *p, *p_next;
2017

2018 2019 2020 2021 2022 2023
		if (priv->extend_desc)
			p = (struct dma_desc *) (priv->dma_erx + entry);
		else
			p = priv->dma_rx + entry ;

		if (priv->hw->desc->get_rx_owner(p))
2024 2025 2026 2027 2028
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
2029 2030 2031 2032 2033 2034
		if (priv->extend_desc)
			p_next = (struct dma_desc *) (priv->dma_erx +
						      next_entry);
		else
			p_next = priv->dma_rx + next_entry;

2035 2036 2037
		prefetch(p_next);

		/* read the status of the incoming frame */
2038 2039 2040 2041 2042 2043 2044
		status = priv->hw->desc->rx_status(&priv->dev->stats,
						   &priv->xstats, p);
		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
			priv->hw->desc->rx_extended_status(&priv->dev->stats,
							   &priv->xstats,
							   priv->dma_erx +
							   entry);
2045
		if (unlikely(status == discard_frame)) {
2046
			priv->dev->stats.rx_errors++;
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
			if (priv->hwts_rx_en && !priv->extend_desc) {
				/* DESC2 & DESC3 will be overwitten by device
				 * with timestamp value, hence reinitialize
				 * them in stmmac_rx_refill() function so that
				 * device can reuse it.
				 */
				priv->rx_skbuff[entry] = NULL;
				dma_unmap_single(priv->device,
					priv->rx_skbuff_dma[entry],
					priv->dma_buf_sz, DMA_FROM_DEVICE);
			}
		} else {
2059
			struct sk_buff *skb;
2060
			int frame_len;
2061

2062 2063
			frame_len = priv->hw->desc->get_rx_frame_len(p,
					priv->plat->rx_coe);
2064 2065 2066 2067
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

2087 2088
			stmmac_get_rx_hwtstamp(priv, entry, skb);

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

2101
			if (unlikely(!priv->plat->rx_coe))
2102
				skb_checksum_none_assert(skb);
2103
			else
2104
				skb->ip_summed = CHECKSUM_UNNECESSARY;
2105 2106

			napi_gro_receive(&priv->napi, skb);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
2127
 *  To look at the incoming frames and clear the tx resources.
2128 2129 2130 2131 2132 2133
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

2134 2135
	priv->xstats.napi_poll++;
	stmmac_tx_clean(priv);
2136

2137
	work_done = stmmac_rx(priv, budget);
2138 2139
	if (work_done < budget) {
		napi_complete(napi);
2140
		stmmac_enable_dma_irq(priv);
2141 2142 2143 2144 2145 2146 2147 2148
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
2149
 *   complete within a reasonable time. The driver will mark the error in the
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
2185
 *  stmmac_set_rx_mode - entry point for multicast addressing
2186 2187 2188 2189 2190 2191 2192
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
2193
static void stmmac_set_rx_mode(struct net_device *dev)
2194 2195 2196 2197
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
2198
	priv->hw->mac->set_filter(dev, priv->synopsys_id);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

2223
	if (priv->plat->enh_desc)
2224 2225
		max_mtu = JUMBO_LEN;
	else
2226
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2227 2228 2229 2230 2231 2232

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

2233 2234 2235 2236 2237 2238
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

2239 2240
static netdev_features_t stmmac_fix_features(struct net_device *dev,
	netdev_features_t features)
2241 2242 2243
{
	struct stmmac_priv *priv = netdev_priv(dev);

2244
	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2245
		features &= ~NETIF_F_RXCSUM;
2246 2247
	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
		features &= ~NETIF_F_IPV6_CSUM;
2248 2249 2250
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

2251 2252 2253 2254
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
2255 2256
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
2257

2258
	return features;
2259 2260
}

2261 2262 2263 2264 2265 2266 2267 2268
/**
 *  stmmac_interrupt - main ISR
 *  @irq: interrupt number.
 *  @dev_id: to pass the net device pointer.
 *  Description: this is the main driver interrupt service routine.
 *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
 *  interrupts.
 */
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

2279 2280 2281
	/* To handle GMAC own interrupts */
	if (priv->plat->has_gmac) {
		int status = priv->hw->mac->host_irq_status((void __iomem *)
2282 2283
							    dev->base_addr,
							    &priv->xstats);
2284 2285
		if (unlikely(status)) {
			/* For LPI we need to save the tx status */
2286
			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2287
				priv->tx_path_in_lpi_mode = true;
2288
			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2289 2290 2291
				priv->tx_path_in_lpi_mode = false;
		}
	}
2292

2293
	/* To handle DMA interrupts */
2294
	stmmac_dma_interrupt(priv);
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
2317
 *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2318 2319 2320 2321
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
2322
	int ret = -EOPNOTSUPP;
2323 2324 2325 2326

	if (!netif_running(dev))
		return -EINVAL;

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (!priv->phydev)
			return -EINVAL;
		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
		break;
	case SIOCSHWTSTAMP:
		ret = stmmac_hwtstamp_ioctl(dev, rq);
		break;
	default:
		break;
	}
2341

2342 2343 2344
	return ret;
}

2345 2346 2347
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
2348
static struct dentry *stmmac_dma_cap;
2349

2350 2351
static void sysfs_display_ring(void *head, int size, int extend_desc,
				struct seq_file *seq)
2352 2353
{
	int i;
2354 2355
	struct dma_extended_desc *ep = (struct dma_extended_desc *) head;
	struct dma_desc *p = (struct dma_desc *) head;
2356

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	for (i = 0; i < size; i++) {
		u64 x;
		if (extend_desc) {
			x = *(u64 *) ep;
			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
				   i, (unsigned int) virt_to_phys(ep),
				   (unsigned int) x, (unsigned int) (x >> 32),
				   ep->basic.des2, ep->basic.des3);
			ep++;
		} else {
			x = *(u64 *) p;
			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
				   i, (unsigned int) virt_to_phys(ep),
				   (unsigned int) x, (unsigned int) (x >> 32),
				   p->des2, p->des3);
			p++;
		}
2374 2375
		seq_printf(seq, "\n");
	}
2376
}
2377

2378 2379 2380 2381 2382 2383
static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
2384

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	if (priv->extend_desc) {
		seq_printf(seq, "Extended RX descriptor ring:\n");
		sysfs_display_ring((void *) priv->dma_erx, rxsize, 1, seq);
		seq_printf(seq, "Extended TX descriptor ring:\n");
		sysfs_display_ring((void *) priv->dma_etx, txsize, 1, seq);
	} else {
		seq_printf(seq, "RX descriptor ring:\n");
		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
		seq_printf(seq, "TX descriptor ring:\n");
		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
2410
	.release = single_release,
2411 2412
};

2413 2414 2415 2416 2417
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

2418
	if (!priv->hw_cap_support) {
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
2482
	.release = single_release,
2483 2484
};

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

2521 2522 2523 2524 2525 2526
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
2527
	debugfs_remove(stmmac_dma_cap);
2528 2529 2530 2531
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

2532 2533 2534 2535 2536
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
2537
	.ndo_fix_features = stmmac_fix_features,
2538
	.ndo_set_rx_mode = stmmac_set_rx_mode,
2539 2540 2541 2542 2543 2544 2545 2546 2547
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

2548 2549
/**
 *  stmmac_hw_init - Init the MAC device
2550
 *  @priv: driver private structure
2551 2552 2553 2554 2555 2556 2557 2558
 *  Description: this function detects which MAC device
 *  (GMAC/MAC10-100) has to attached, checks the HW capability
 *  (if supported) and sets the driver's features (for example
 *  to use the ring or chaine mode or support the normal/enh
 *  descriptor structure).
 */
static int stmmac_hw_init(struct stmmac_priv *priv)
{
2559
	int ret;
2560 2561 2562
	struct mac_device_info *mac;

	/* Identify the MAC HW device */
2563 2564
	if (priv->plat->has_gmac) {
		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2565
		mac = dwmac1000_setup(priv->ioaddr);
2566
	} else {
2567
		mac = dwmac100_setup(priv->ioaddr);
2568
	}
2569 2570 2571 2572 2573 2574
	if (!mac)
		return -ENOMEM;

	priv->hw = mac;

	/* Get and dump the chip ID */
2575
	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2576

2577 2578 2579
	/* To use alternate (extended) or normal descriptor structures */
	stmmac_selec_desc_mode(priv);

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	/* To use the chained or ring mode */
	if (chain_mode)	{
		priv->hw->chain = &chain_mode_ops;
		pr_info(" Chain mode enabled\n");
		priv->mode = STMMAC_CHAIN_MODE;
	} else {
		priv->hw->ring = &ring_mode_ops;
		pr_info(" Ring mode enabled\n");
		priv->mode = STMMAC_RING_MODE;
	}

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	/* Get the HW capability (new GMAC newer than 3.50a) */
	priv->hw_cap_support = stmmac_get_hw_features(priv);
	if (priv->hw_cap_support) {
		pr_info(" DMA HW capability register supported");

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2603 2604 2605 2606 2607 2608 2609 2610

		priv->plat->tx_coe = priv->dma_cap.tx_coe;

		if (priv->dma_cap.rx_coe_type2)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
		else if (priv->dma_cap.rx_coe_type1)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;

2611 2612 2613
	} else
		pr_info(" No HW DMA feature register supported");

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	/* Enable the IPC (Checksum Offload) and check if the feature has been
	 * enabled during the core configuration. */
	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
	if (!ret) {
		pr_warning(" RX IPC Checksum Offload not configured.\n");
		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
	}

	if (priv->plat->rx_coe)
		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
			priv->plat->rx_coe);
2625 2626 2627 2628 2629 2630 2631 2632
	if (priv->plat->tx_coe)
		pr_info(" TX Checksum insertion supported\n");

	if (priv->plat->pmt) {
		pr_info(" Wake-Up On Lan supported\n");
		device_set_wakeup_capable(priv->device, 1);
	}

2633
	return 0;
2634 2635
}

2636
/**
2637 2638
 * stmmac_dvr_probe
 * @device: device pointer
2639 2640
 * @plat_dat: platform data pointer
 * @addr: iobase memory address
2641 2642
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
2643
 */
2644
struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2645 2646
				     struct plat_stmmacenet_data *plat_dat,
				     void __iomem *addr)
2647 2648
{
	int ret = 0;
2649 2650
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
2651

2652
	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2653
	if (!ndev)
2654 2655 2656 2657 2658 2659 2660
		return NULL;

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
2661

2662
	ether_setup(ndev);
2663

2664
	stmmac_set_ethtool_ops(ndev);
2665 2666 2667 2668 2669 2670 2671
	priv->pause = pause;
	priv->plat = plat_dat;
	priv->ioaddr = addr;
	priv->dev->base_addr = (unsigned long)addr;

	/* Verify driver arguments */
	stmmac_verify_args();
2672

2673 2674 2675 2676 2677 2678
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

	/* Init MAC and get the capabilities */
2679 2680 2681
	ret = stmmac_hw_init(priv);
	if (ret)
		goto error_free_netdev;
2682 2683

	ndev->netdev_ops = &stmmac_netdev_ops;
2684

2685 2686
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			    NETIF_F_RXCSUM;
2687 2688
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2689 2690
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
2691
	ndev->features |= NETIF_F_HW_VLAN_RX;
2692 2693 2694 2695 2696 2697
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	/* Rx Watchdog is available in the COREs newer than the 3.40.
	 * In some case, for example on bugged HW this feature
	 * has to be disable and this can be done by passing the
	 * riwt_off field from the platform.
	 */
	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
		priv->use_riwt = 1;
		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
	}

2708
	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2709

2710
	spin_lock_init(&priv->lock);
2711
	spin_lock_init(&priv->tx_lock);
2712

2713
	ret = register_netdev(ndev);
2714
	if (ret) {
2715
		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2716
		goto error_netdev_register;
2717 2718
	}

2719
	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2720
	if (IS_ERR(priv->stmmac_clk)) {
2721
		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2722 2723
		goto error_clk_get;
	}
2724

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	/* If a specific clk_csr value is passed from the platform
	 * this means that the CSR Clock Range selection cannot be
	 * changed at run-time and it is fixed. Viceversa the driver'll try to
	 * set the MDC clock dynamically according to the csr actual
	 * clock input.
	 */
	if (!priv->plat->clk_csr)
		stmmac_clk_csr_set(priv);
	else
		priv->clk_csr = priv->plat->clk_csr;

2736 2737
	stmmac_check_pcs_mode(priv);

2738 2739
	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
	    priv->pcs != STMMAC_PCS_RTBI) {
2740 2741 2742 2743 2744 2745 2746
		/* MDIO bus Registration */
		ret = stmmac_mdio_register(ndev);
		if (ret < 0) {
			pr_debug("%s: MDIO bus (id: %d) registration failed",
				 __func__, priv->plat->bus_id);
			goto error_mdio_register;
		}
2747 2748
	}

2749
	return priv;
2750

2751 2752 2753
error_mdio_register:
	clk_put(priv->stmmac_clk);
error_clk_get:
2754
	unregister_netdev(ndev);
2755 2756
error_netdev_register:
	netif_napi_del(&priv->napi);
2757
error_free_netdev:
2758
	free_netdev(ndev);
2759

2760
	return NULL;
2761 2762 2763 2764
}

/**
 * stmmac_dvr_remove
2765
 * @ndev: net device pointer
2766
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2767
 * changes the link status, releases the DMA descriptor rings.
2768
 */
2769
int stmmac_dvr_remove(struct net_device *ndev)
2770
{
2771
	struct stmmac_priv *priv = netdev_priv(ndev);
2772 2773 2774

	pr_info("%s:\n\tremoving driver", __func__);

2775 2776
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
2777

2778
	stmmac_set_mac(priv->ioaddr, false);
2779 2780
	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
	    priv->pcs != STMMAC_PCS_RTBI)
2781
		stmmac_mdio_unregister(ndev);
2782 2783 2784 2785 2786 2787 2788 2789
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
2790
int stmmac_suspend(struct net_device *ndev)
2791
{
2792
	struct stmmac_priv *priv = netdev_priv(ndev);
2793
	unsigned long flags;
2794

2795
	if (!ndev || !netif_running(ndev))
2796 2797
		return 0;

2798 2799 2800
	if (priv->phydev)
		phy_stop(priv->phydev);

2801
	spin_lock_irqsave(&priv->lock, flags);
2802

2803 2804
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
2805

2806 2807 2808 2809 2810
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
2811 2812

	stmmac_clear_descriptors(priv);
2813 2814 2815 2816

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2817
	else {
2818
		stmmac_set_mac(priv->ioaddr, false);
2819
		/* Disable clock in case of PWM is off */
2820
		clk_disable_unprepare(priv->stmmac_clk);
2821
	}
2822
	spin_unlock_irqrestore(&priv->lock, flags);
2823 2824 2825
	return 0;
}

2826
int stmmac_resume(struct net_device *ndev)
2827
{
2828
	struct stmmac_priv *priv = netdev_priv(ndev);
2829
	unsigned long flags;
2830

2831
	if (!netif_running(ndev))
2832 2833
		return 0;

2834
	spin_lock_irqsave(&priv->lock, flags);
2835

2836 2837 2838 2839 2840
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
2841
	if (device_may_wakeup(priv->device))
2842
		priv->hw->mac->pmt(priv->ioaddr, 0);
2843 2844
	else
		/* enable the clk prevously disabled */
2845
		clk_prepare_enable(priv->stmmac_clk);
2846

2847
	netif_device_attach(ndev);
2848 2849

	/* Enable the MAC and DMA */
2850
	stmmac_set_mac(priv->ioaddr, true);
2851 2852
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
2853 2854 2855

	napi_enable(&priv->napi);

2856
	netif_start_queue(ndev);
2857

2858
	spin_unlock_irqrestore(&priv->lock, flags);
2859 2860 2861 2862

	if (priv->phydev)
		phy_start(priv->phydev);

2863 2864 2865
	return 0;
}

2866
int stmmac_freeze(struct net_device *ndev)
2867 2868 2869 2870 2871 2872 2873
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

2874
int stmmac_restore(struct net_device *ndev)
2875 2876 2877 2878 2879 2880 2881
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}
#endif /* CONFIG_PM */
2882

2883 2884 2885
/* Driver can be configured w/ and w/ both PCI and Platf drivers
 * depending on the configuration selected.
 */
2886 2887
static int __init stmmac_init(void)
{
2888
	int ret;
2889

2890 2891 2892 2893 2894 2895
	ret = stmmac_register_platform();
	if (ret)
		goto err;
	ret = stmmac_register_pci();
	if (ret)
		goto err_pci;
2896
	return 0;
2897 2898 2899 2900 2901
err_pci:
	stmmac_unregister_platform();
err:
	pr_err("stmmac: driver registration failed\n");
	return ret;
2902 2903 2904 2905
}

static void __exit stmmac_exit(void)
{
2906 2907
	stmmac_unregister_platform();
	stmmac_unregister_pci();
2908 2909 2910 2911 2912
}

module_init(stmmac_init);
module_exit(stmmac_exit);

2913 2914 2915 2916 2917 2918 2919 2920
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
2921
		if (!strncmp(opt, "debug:", 6)) {
2922
			if (kstrtoint(opt + 6, 0, &debug))
2923 2924
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
2925
			if (kstrtoint(opt + 8, 0, &phyaddr))
2926 2927
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2928
			if (kstrtoint(opt + 11, 0, &dma_txsize))
2929 2930
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2931
			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2932 2933
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
2934
			if (kstrtoint(opt + 7, 0, &buf_sz))
2935 2936
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
2937
			if (kstrtoint(opt + 3, 0, &tc))
2938 2939
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
2940
			if (kstrtoint(opt + 9, 0, &watchdog))
2941 2942
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2943
			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2944 2945
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
2946
			if (kstrtoint(opt + 6, 0, &pause))
2947
				goto err;
2948
		} else if (!strncmp(opt, "eee_timer:", 10)) {
2949 2950
			if (kstrtoint(opt + 10, 0, &eee_timer))
				goto err;
2951 2952 2953
		} else if (!strncmp(opt, "chain_mode:", 11)) {
			if (kstrtoint(opt + 11, 0, &chain_mode))
				goto err;
2954
		}
2955 2956
	}
	return 0;
2957 2958 2959 2960

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2961 2962 2963 2964
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif
2965 2966 2967 2968

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");