stmmac_main.c 63.2 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

31
#include <linux/clk.h>
32 33 34 35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
41
#include <linux/if.h>
42 43
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
44
#include <linux/slab.h>
45
#include <linux/prefetch.h>
46 47 48 49
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
50
#include "stmmac.h"
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
72
#ifdef STMMAC_XMIT_DEBUG
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

91
int phyaddr = -1;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

127 128 129 130 131 132
#define STMMAC_DEFAULT_LPI_TIMER	1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))

133 134 135 136 137 138 139
/* By default the driver will use the ring mode to manage tx and rx descriptors
 * but passing this value so user can force to use the chain instead of the ring
 */
static unsigned int chain_mode;
module_param(chain_mode, int, S_IRUGO);
MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");

140 141
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

142 143 144 145 146
#ifdef CONFIG_STMMAC_DEBUG_FS
static int stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(void);
#endif

147 148
#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
170 171
	if (eee_timer < 0)
		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
	u32 clk_rate;

	clk_rate = clk_get_rate(priv->stmmac_clk);

	/* Platform provided default clk_csr would be assumed valid
	 * for all other cases except for the below mentioned ones. */
	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
		if (clk_rate < CSR_F_35M)
			priv->clk_csr = STMMAC_CSR_20_35M;
		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
			priv->clk_csr = STMMAC_CSR_35_60M;
		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
			priv->clk_csr = STMMAC_CSR_60_100M;
		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
			priv->clk_csr = STMMAC_CSR_100_150M;
		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
			priv->clk_csr = STMMAC_CSR_150_250M;
		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
			priv->clk_csr = STMMAC_CSR_250_300M;
	} /* For values higher than the IEEE 802.3 specified frequency
	   * we can not estimate the proper divider as it is not known
	   * the frequency of clk_csr_i. So we do not change the default
	   * divider. */
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

223 224 225 226 227 228 229 230 231 232 233 234
/* On some ST platforms, some HW system configuraton registers have to be
 * set according to the link speed negotiated.
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
	/* Check and enter in LPI mode */
	if ((priv->dirty_tx == priv->cur_tx) &&
	    (priv->tx_path_in_lpi_mode == false))
		priv->hw->mac->set_eee_mode(priv->ioaddr);
}

void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
	/* Exit and disable EEE in case of we are are in LPI state. */
	priv->hw->mac->reset_eee_mode(priv->ioaddr);
	del_timer_sync(&priv->eee_ctrl_timer);
	priv->tx_path_in_lpi_mode = false;
}

/**
 * stmmac_eee_ctrl_timer
 * @arg : data hook
 * Description:
 *  If there is no data transfer and if we are not in LPI state,
 *  then MAC Transmitter can be moved to LPI state.
 */
static void stmmac_eee_ctrl_timer(unsigned long arg)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)arg;

	stmmac_enable_eee_mode(priv);
	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
}

/**
 * stmmac_eee_init
 * @priv: private device pointer
 * Description:
 *  If the EEE support has been enabled while configuring the driver,
 *  if the GMAC actually supports the EEE (from the HW cap reg) and the
 *  phy can also manage EEE, so enable the LPI state and start the timer
 *  to verify if the tx path can enter in LPI state.
 */
bool stmmac_eee_init(struct stmmac_priv *priv)
{
	bool ret = false;

	/* MAC core supports the EEE feature. */
	if (priv->dma_cap.eee) {
		/* Check if the PHY supports EEE */
		if (phy_init_eee(priv->phydev, 1))
			goto out;

		priv->eee_active = 1;
		init_timer(&priv->eee_ctrl_timer);
		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
		priv->eee_ctrl_timer.data = (unsigned long)priv;
		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
		add_timer(&priv->eee_ctrl_timer);

		priv->hw->mac->set_eee_timer(priv->ioaddr,
					     STMMAC_DEFAULT_LIT_LS_TIMER,
					     priv->tx_lpi_timer);

		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");

		ret = true;
	}
out:
	return ret;
}

static void stmmac_eee_adjust(struct stmmac_priv *priv)
{
	/* When the EEE has been already initialised we have to
	 * modify the PLS bit in the LPI ctrl & status reg according
	 * to the PHY link status. For this reason.
	 */
	if (priv->eee_enabled)
		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
334

335
	if (phydev->link) {
336
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
337 338 339 340 341 342

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
343
				ctrl &= ~priv->hw->link.duplex;
344
			else
345
				ctrl |= priv->hw->link.duplex;
346 347 348 349
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
350
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
351
						 fc, pause_time);
352 353 354 355 356

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
357
				if (likely(priv->plat->has_gmac))
358
					ctrl &= ~priv->hw->link.port;
359
					stmmac_hw_fix_mac_speed(priv);
360 361 362
				break;
			case 100:
			case 10:
363
				if (priv->plat->has_gmac) {
364
					ctrl |= priv->hw->link.port;
365
					if (phydev->speed == SPEED_100) {
366
						ctrl |= priv->hw->link.speed;
367
					} else {
368
						ctrl &= ~(priv->hw->link.speed);
369 370
					}
				} else {
371
					ctrl &= ~priv->hw->link.port;
372
				}
373
				stmmac_hw_fix_mac_speed(priv);
374 375 376 377 378 379 380 381 382 383 384
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

385
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

401 402
	stmmac_eee_adjust(priv);

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
420
	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
421
	char bus_id[MII_BUS_ID_SIZE];
422
	int interface = priv->plat->interface;
423 424 425 426
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

427 428 429 430 431 432 433
	if (priv->plat->phy_bus_name)
		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
				priv->plat->phy_bus_name, priv->plat->bus_id);
	else
		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
				priv->plat->bus_id);

434
	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
435
		 priv->plat->phy_addr);
436
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
437

438
	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
439 440 441 442 443 444

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

445
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
446 447 448 449
	if ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))
		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
					 SUPPORTED_1000baseT_Full);
450

451 452 453 454 455 456 457 458 459 460 461 462
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
463
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

	priv->phydev = phydev;

	return 0;
}

/**
 * display_ring
 * @p: pointer to the ring.
 * @size: size of the ring.
 * Description: display all the descriptors within the ring.
 */
static void display_ring(struct dma_desc *p, int size)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	for (i = 0; i < size; i++) {
		struct tmp_s *x = (struct tmp_s *)(p + i);
		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
		       i, (unsigned int)virt_to_phys(&p[i]),
		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
		       x->b, x->c);
		pr_info("\n");
	}
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

510 511 512 513
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
514 515
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
516 517 518 519 520 521 522 523
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	struct sk_buff *skb;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
524
	unsigned int bfsize = 0;
525
	int dis_ic = 0;
526

527 528
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
529 530
	if (priv->mode == STMMAC_RING_MODE)
		bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
531

532
	if (bfsize < BUF_SIZE_16KiB)
533
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
534 535 536 537

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

538 539 540 541
	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
					    GFP_KERNEL);
	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
					GFP_KERNEL);
542 543 544
	priv->dma_rx = dma_alloc_coherent(priv->device,
					  rxsize * sizeof(struct dma_desc),
					  &priv->dma_rx_phy, GFP_KERNEL);
545 546
	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
					GFP_KERNEL);
547 548 549 550 551
	priv->dma_tx = dma_alloc_coherent(priv->device,
					  txsize * sizeof(struct dma_desc),
					  &priv->dma_tx_phy, GFP_KERNEL);

	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL))
552 553
		return;

554
	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
555 556 557 558 559 560 561 562 563 564 565
	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
	    dev->name, priv->dma_rx, priv->dma_tx,
	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);

	/* RX INITIALIZATION */
	DBG(probe, INFO, "stmmac: SKB addresses:\n"
			 "skb\t\tskb data\tdma data\n");

	for (i = 0; i < rxsize; i++) {
		struct dma_desc *p = priv->dma_rx + i;

566 567
		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
					 GFP_KERNEL);
568 569 570 571
		if (unlikely(skb == NULL)) {
			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
			break;
		}
572
		skb_reserve(skb, NET_IP_ALIGN);
573 574 575 576 577
		priv->rx_skbuff[i] = skb;
		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						bfsize, DMA_FROM_DEVICE);

		p->des2 = priv->rx_skbuff_dma[i];
578

579 580 581
		if ((priv->mode == STMMAC_RING_MODE) &&
		    (bfsize == BUF_SIZE_16KiB))
			priv->hw->ring->init_desc3(p);
582

583 584 585 586 587 588 589 590 591 592 593 594 595
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
		priv->tx_skbuff[i] = NULL;
		priv->dma_tx[i].des2 = 0;
	}
596 597 598

	/* In case of Chained mode this sets the des3 to the next
	 * element in the chain */
599 600 601 602 603 604
	if (priv->mode == STMMAC_CHAIN_MODE) {
		priv->hw->chain->init_dma_chain(priv->dma_rx, priv->dma_rx_phy,
						rxsize);
		priv->hw->chain->init_dma_chain(priv->dma_tx, priv->dma_tx_phy,
						txsize);
	}
605 606 607
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

608 609
	if (priv->use_riwt)
		dis_ic = 1;
610
	/* Clear the Rx/Tx descriptors */
611 612
	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic, priv->mode);
	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize, priv->mode);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

	if (netif_msg_hw(priv)) {
		pr_info("RX descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
		pr_info("TX descriptor ring:\n");
		display_ring(priv->dma_tx, txsize);
	}
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
			struct dma_desc *p = priv->dma_tx + i;
			if (p->des2)
				dma_unmap_single(priv->device, p->des2,
645 646
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
	dma_free_coherent(priv->device,
			  priv->dma_tx_size * sizeof(struct dma_desc),
			  priv->dma_tx, priv->dma_tx_phy);
	dma_free_coherent(priv->device,
			  priv->dma_rx_size * sizeof(struct dma_desc),
			  priv->dma_rx, priv->dma_rx_phy);
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
676
 *  or Store-And-Forward capability.
677 678 679
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
680 681 682 683 684
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
685 686 687 688 689 690 691 692 693
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
694 695 696
}

/**
697 698
 * stmmac_tx_clean:
 * @priv: private data pointer
699 700
 * Description: it reclaims resources after transmission completes.
 */
701
static void stmmac_tx_clean(struct stmmac_priv *priv)
702 703 704
{
	unsigned int txsize = priv->dma_tx_size;

705 706
	spin_lock(&priv->tx_lock);

707 708
	priv->xstats.tx_clean++;

709 710 711 712 713 714 715
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
		struct dma_desc *p = priv->dma_tx + entry;

		/* Check if the descriptor is owned by the DMA. */
716
		if (priv->hw->desc->get_tx_owner(p))
717 718 719
			break;

		/* Verify tx error by looking at the last segment */
720
		last = priv->hw->desc->get_tx_ls(p);
721 722
		if (likely(last)) {
			int tx_error =
723 724
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
725
							  priv->ioaddr);
726 727 728 729 730 731 732 733 734 735 736
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

		if (likely(p->des2))
			dma_unmap_single(priv->device, p->des2,
737
					 priv->hw->desc->get_tx_len(p),
738
					 DMA_TO_DEVICE);
739 740
		if (priv->mode == STMMAC_RING_MODE)
			priv->hw->ring->clean_desc3(p);
741 742

		if (likely(skb != NULL)) {
E
Eric Dumazet 已提交
743
			dev_kfree_skb(skb);
744 745 746
			priv->tx_skbuff[entry] = NULL;
		}

747
		priv->hw->desc->release_tx_desc(p, priv->mode);
748

749
		priv->dirty_tx++;
750 751 752 753 754 755 756 757 758 759 760
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
761 762 763 764 765

	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
		stmmac_enable_eee_mode(priv);
		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
	}
766
	spin_unlock(&priv->tx_lock);
767 768
}

769
static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
770
{
771
	priv->hw->dma->enable_dma_irq(priv->ioaddr);
772 773
}

774
static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
775
{
776
	priv->hw->dma->disable_dma_irq(priv->ioaddr);
777 778 779 780 781 782 783 784 785 786 787 788 789
}


/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
	netif_stop_queue(priv->dev);

790
	priv->hw->dma->stop_tx(priv->ioaddr);
791
	dma_free_tx_skbufs(priv);
792 793
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size,
				     priv->mode);
794 795
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
796
	priv->hw->dma->start_tx(priv->ioaddr);
797 798 799 800 801

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}

802 803 804 805
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

806
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
807 808 809 810 811 812 813
	if (likely((status & handle_rx)) || (status & handle_tx)) {
		if (likely(napi_schedule_prep(&priv->napi))) {
			stmmac_disable_dma_irq(priv);
			__napi_schedule(&priv->napi);
		}
	}
	if (unlikely(status & tx_hard_error_bump_tc)) {
814 815 816
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
817
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
818
			priv->xstats.threshold = tc;
819
		}
820 821
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
822 823
}

824 825 826 827 828
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

G
Giuseppe CAVALLARO 已提交
829 830
	/* Mask MMC irq, counters are managed in SW and registers
	 * are cleared on each READ eventually. */
831
	dwmac_mmc_intr_all_mask(priv->ioaddr);
G
Giuseppe CAVALLARO 已提交
832 833 834 835 836

	if (priv->dma_cap.rmon) {
		dwmac_mmc_ctrl(priv->ioaddr, mode);
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
837
		pr_info(" No MAC Management Counters available\n");
838 839
}

840 841 842 843 844 845 846 847 848 849
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

850
		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
851 852 853 854 855 856
			uid, synid);

		return synid;
	}
	return 0;
}
857

858 859
/**
 * stmmac_selec_desc_mode
860 861 862
 * @priv : private structure
 * Description: select the Enhanced/Alternate or Normal descriptors
 */
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
	if (priv->plat->enh_desc) {
		pr_info(" Enhanced/Alternate descriptors\n");
		priv->hw->desc = &enh_desc_ops;
	} else {
		pr_info(" Normal descriptors\n");
		priv->hw->desc = &ndesc_ops;
	}
}

/**
 * stmmac_get_hw_features
 * @priv : private device pointer
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
882 883 884
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
885
	u32 hw_cap = 0;
886

887 888
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
889

890 891 892 893 894 895 896 897 898 899 900 901
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
902
		/* MMC */
903
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
904
		/* IEEE 1588-2002*/
905 906
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
907
		/* IEEE 1588-2008*/
908 909
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
910
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
911 912
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
913
		/* TX and RX csum */
914 915 916 917 918 919 920
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
921
		/* TX and RX number of channels */
922 923 924 925
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
926
		/* Alternate (enhanced) DESC mode*/
927 928
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
929
	}
930 931 932 933

	return hw_cap;
}

934 935 936 937 938 939 940 941 942
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	/* verify if the MAC address is valid, in case of failures it
	 * generates a random MAC address */
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
		priv->hw->mac->get_umac_addr((void __iomem *)
					     priv->dev->base_addr,
					     priv->dev->dev_addr, 0);
		if  (!is_valid_ether_addr(priv->dev->dev_addr))
943
			eth_hw_addr_random(priv->dev);
944 945 946 947 948
	}
	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
						   priv->dev->dev_addr);
}

949 950 951
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
952
	int mixed_burst = 0;
953 954 955 956 957 958 959

	/* Some DMA parameters can be passed from the platform;
	 * in case of these are not passed we keep a default
	 * (good for all the chips) and init the DMA! */
	if (priv->plat->dma_cfg) {
		pbl = priv->plat->dma_cfg->pbl;
		fixed_burst = priv->plat->dma_cfg->fixed_burst;
960
		mixed_burst = priv->plat->dma_cfg->mixed_burst;
961 962 963
		burst_len = priv->plat->dma_cfg->burst_len;
	}

964
	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
965 966 967 968
				   burst_len, priv->dma_tx_phy,
				   priv->dma_rx_phy);
}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/**
 * stmmac_tx_timer:
 * @data: data pointer
 * Description:
 * This is the timer handler to directly invoke the stmmac_tx_clean.
 */
static void stmmac_tx_timer(unsigned long data)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)data;

	stmmac_tx_clean(priv);
}

/**
 * stmmac_tx_timer:
 * @priv: private data structure
 * Description:
 * This inits the transmit coalesce parameters: i.e. timer rate,
 * timer handler and default threshold used for enabling the
 * interrupt on completion bit.
 */
static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
{
	priv->tx_coal_frames = STMMAC_TX_FRAMES;
	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
	init_timer(&priv->txtimer);
	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
	priv->txtimer.data = (unsigned long)priv;
	priv->txtimer.function = stmmac_tx_timer;
	add_timer(&priv->txtimer);
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

1015
	clk_prepare_enable(priv->stmmac_clk);
1016 1017 1018

	stmmac_check_ether_addr(priv);

1019 1020 1021 1022 1023
	ret = stmmac_init_phy(dev);
	if (unlikely(ret)) {
		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
		goto open_error;
	}
1024 1025 1026 1027 1028 1029 1030 1031

	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
1032
	ret = stmmac_init_dma_engine(priv);
1033
	if (ret < 0) {
1034
		pr_err("%s: DMA initialization failed\n", __func__);
1035
		goto open_error;
1036 1037 1038
	}

	/* Copy the MAC addr into the HW  */
1039
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1040

1041
	/* If required, perform hw setup of the bus. */
1042 1043
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
1044

1045
	/* Initialize the MAC Core */
1046
	priv->hw->mac->core_init(priv->ioaddr);
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	/* Request the Wake IRQ in case of another line is used for WoL */
	if (priv->wol_irq != dev->irq) {
		ret = request_irq(priv->wol_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
			goto open_error_wolirq;
		}
	}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	/* Request the IRQ lines */
	if (priv->lpi_irq != -ENXIO) {
		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
				  dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
			       __func__, priv->lpi_irq, ret);
			goto open_error_lpiirq;
		}
	}

1079
	/* Enable the MAC Rx/Tx */
1080
	stmmac_set_mac(priv->ioaddr, true);
1081 1082 1083 1084 1085 1086 1087 1088

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

G
Giuseppe CAVALLARO 已提交
1089
	stmmac_mmc_setup(priv);
1090

1091 1092 1093
#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(dev);
	if (ret < 0)
1094
		pr_warning("%s: failed debugFS registration\n", __func__);
1095
#endif
1096 1097
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1098 1099
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1100 1101 1102

	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
1103 1104
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
1105 1106 1107 1108 1109
	}

	if (priv->phydev)
		phy_start(priv->phydev);

1110 1111 1112
	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
	priv->eee_enabled = stmmac_eee_init(priv);

1113 1114
	stmmac_init_tx_coalesce(priv);

1115 1116 1117 1118 1119
	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
		priv->rx_riwt = MAX_DMA_RIWT;
		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
	}

1120 1121
	napi_enable(&priv->napi);
	netif_start_queue(dev);
1122

1123
	return 0;
1124

1125 1126 1127 1128
open_error_lpiirq:
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);

1129 1130 1131
open_error_wolirq:
	free_irq(dev->irq, dev);

1132 1133 1134 1135
open_error:
	if (priv->phydev)
		phy_disconnect(priv->phydev);

1136
	clk_disable_unprepare(priv->stmmac_clk);
1137

1138
	return ret;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

1151 1152 1153
	if (priv->eee_enabled)
		del_timer_sync(&priv->eee_ctrl_timer);

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

	napi_disable(&priv->napi);

1165 1166
	del_timer_sync(&priv->txtimer);

1167 1168
	/* Free the IRQ lines */
	free_irq(dev->irq, dev);
1169 1170
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);
1171 1172
	if (priv->lpi_irq != -ENXIO)
		free_irq(priv->lpi_irq, dev);
1173 1174

	/* Stop TX/RX DMA and clear the descriptors */
1175 1176
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1177 1178 1179 1180

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1181
	/* Disable the MAC Rx/Tx */
1182
	stmmac_set_mac(priv->ioaddr, false);
1183 1184 1185

	netif_carrier_off(dev);

1186 1187 1188
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif
1189
	clk_disable_unprepare(priv->stmmac_clk);
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	return 0;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
1205
	int i, csum_insertion = 0, is_jumbo = 0;
1206 1207
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1208
	unsigned int nopaged_len = skb_headlen(skb);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1220 1221
	spin_lock(&priv->tx_lock);

1222 1223 1224
	if (priv->tx_path_in_lpi_mode)
		stmmac_disable_eee_mode(priv);

1225 1226 1227 1228
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1229 1230 1231 1232 1233 1234 1235
		pr_debug("stmmac xmit: [entry %d]\n"
			 "\tskb addr %p - len: %d - nopaged_len: %d\n"
			 "\tn_frags: %d - ip_summed: %d - %s gso\n"
			 "\ttx_count_frames %d\n", entry,
			 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
			 !skb_is_gso(skb) ? "isn't" : "is",
			 priv->tx_count_frames);
1236 1237
#endif

1238
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1239 1240 1241 1242 1243 1244

	desc = priv->dma_tx + entry;
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1245 1246 1247
		pr_debug("\tskb len: %d, nopaged_len: %d,\n"
			 "\t\tn_frags: %d, ip_summed: %d\n",
			 skb->len, nopaged_len, nfrags, skb->ip_summed);
1248 1249
#endif
	priv->tx_skbuff[entry] = skb;
1250

1251 1252 1253 1254 1255 1256 1257
	/* To program the descriptors according to the size of the frame */
	if (priv->mode == STMMAC_RING_MODE) {
		is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
							priv->plat->enh_desc);
		if (unlikely(is_jumbo))
			entry = priv->hw->ring->jumbo_frm(priv, skb,
							  csum_insertion);
1258
	} else {
1259 1260 1261 1262 1263 1264 1265
		is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
							priv->plat->enh_desc);
		if (unlikely(is_jumbo))
			entry = priv->hw->chain->jumbo_frm(priv, skb,
							   csum_insertion);
	}
	if (likely(!is_jumbo)) {
1266 1267
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1268
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1269 1270 1271
						csum_insertion, priv->mode);
	} else
		desc = priv->dma_tx + entry;
1272 1273

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1274 1275
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1276 1277 1278 1279 1280

		entry = (++priv->cur_tx) % txsize;
		desc = priv->dma_tx + entry;

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1281 1282
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1283
		priv->tx_skbuff[entry] = NULL;
1284 1285
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
						priv->mode);
1286
		wmb();
1287
		priv->hw->desc->set_tx_owner(desc);
1288
		wmb();
1289 1290
	}

1291
	/* Finalize the latest segment. */
1292
	priv->hw->desc->close_tx_desc(desc);
1293

1294
	wmb();
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	/* According to the coalesce parameter the IC bit for the latest
	 * segment could be reset and the timer re-started to invoke the
	 * stmmac_tx function. This approach takes care about the fragments.
	 */
	priv->tx_count_frames += nfrags + 1;
	if (priv->tx_coal_frames > priv->tx_count_frames) {
		priv->hw->desc->clear_tx_ic(desc);
		priv->xstats.tx_reset_ic_bit++;
		TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
		       priv->tx_count_frames);
		mod_timer(&priv->txtimer,
			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
	} else
		priv->tx_count_frames = 0;
1309

1310
	/* To avoid raise condition */
1311
	priv->hw->desc->set_tx_owner(first);
1312
	wmb();
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
		display_ring(priv->dma_tx, txsize);
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1334 1335
	skb_tx_timestamp(skb);

1336 1337
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1338 1339
	spin_unlock(&priv->tx_lock);

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;
	struct dma_desc *p = priv->dma_rx;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

E
Eric Dumazet 已提交
1354
			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1365

1366 1367
			if (unlikely((priv->mode == STMMAC_RING_MODE) &&
				     (priv->plat->has_gmac)))
1368 1369
				priv->hw->ring->refill_desc3(bfsize, p + entry);

1370 1371
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1372
		wmb();
1373
		priv->hw->desc->set_rx_owner(p + entry);
1374
		wmb();
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	}
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;
	struct dma_desc *p = priv->dma_rx + entry;
	struct dma_desc *p_next;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
	}
#endif
1393
	while (!priv->hw->desc->get_rx_owner(p)) {
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		int status;

		if (count >= limit)
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
		p_next = priv->dma_rx + next_entry;
		prefetch(p_next);

		/* read the status of the incoming frame */
1406 1407
		status = (priv->hw->desc->rx_status(&priv->dev->stats,
						    &priv->xstats, p));
1408 1409 1410 1411
		if (unlikely(status == discard_frame))
			priv->dev->stats.rx_errors++;
		else {
			struct sk_buff *skb;
1412
			int frame_len;
1413

1414 1415
			frame_len = priv->hw->desc->get_rx_frame_len(p,
					priv->plat->rx_coe);
1416 1417 1418 1419
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

1451
			if (unlikely(!priv->plat->rx_coe))
1452
				skb_checksum_none_assert(skb);
1453
			else
1454
				skb->ip_summed = CHECKSUM_UNNECESSARY;
1455 1456

			napi_gro_receive(&priv->napi, skb);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
		p = p_next;	/* use prefetched values */
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
1478
 *  To look at the incoming frames and clear the tx resources.
1479 1480 1481 1482 1483 1484
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

1485 1486
	priv->xstats.napi_poll++;
	stmmac_tx_clean(priv);
1487

1488
	work_done = stmmac_rx(priv, budget);
1489 1490
	if (work_done < budget) {
		napi_complete(napi);
1491
		stmmac_enable_dma_irq(priv);
1492 1493 1494 1495 1496 1497 1498 1499
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
1500
 *   complete within a reasonable time. The driver will mark the error in the
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
1536
 *  stmmac_set_rx_mode - entry point for multicast addressing
1537 1538 1539 1540 1541 1542 1543
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
1544
static void stmmac_set_rx_mode(struct net_device *dev)
1545 1546 1547 1548
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
1549
	priv->hw->mac->set_filter(dev, priv->synopsys_id);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

1574
	if (priv->plat->enh_desc)
1575 1576
		max_mtu = JUMBO_LEN;
	else
1577
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1578 1579 1580 1581 1582 1583

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

1584 1585 1586 1587 1588 1589
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

1590 1591
static netdev_features_t stmmac_fix_features(struct net_device *dev,
	netdev_features_t features)
1592 1593 1594
{
	struct stmmac_priv *priv = netdev_priv(dev);

1595
	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1596
		features &= ~NETIF_F_RXCSUM;
1597 1598
	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
		features &= ~NETIF_F_IPV6_CSUM;
1599 1600 1601
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

1602 1603 1604 1605
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
1606 1607
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
1608

1609
	return features;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	/* To handle GMAC own interrupts */
	if (priv->plat->has_gmac) {
		int status = priv->hw->mac->host_irq_status((void __iomem *)
							    dev->base_addr);
		if (unlikely(status)) {
			if (status & core_mmc_tx_irq)
				priv->xstats.mmc_tx_irq_n++;
			if (status & core_mmc_rx_irq)
				priv->xstats.mmc_rx_irq_n++;
			if (status & core_mmc_rx_csum_offload_irq)
				priv->xstats.mmc_rx_csum_offload_irq_n++;
			if (status & core_irq_receive_pmt_irq)
				priv->xstats.irq_receive_pmt_irq_n++;

			/* For LPI we need to save the tx status */
			if (status & core_irq_tx_path_in_lpi_mode) {
				priv->xstats.irq_tx_path_in_lpi_mode_n++;
				priv->tx_path_in_lpi_mode = true;
			}
			if (status & core_irq_tx_path_exit_lpi_mode) {
				priv->xstats.irq_tx_path_exit_lpi_mode_n++;
				priv->tx_path_in_lpi_mode = false;
			}
			if (status & core_irq_rx_path_in_lpi_mode)
				priv->xstats.irq_rx_path_in_lpi_mode_n++;
			if (status & core_irq_rx_path_exit_lpi_mode)
				priv->xstats.irq_rx_path_exit_lpi_mode_n++;
		}
	}
1651

1652
	/* To handle DMA interrupts */
1653
	stmmac_dma_interrupt(priv);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, just the
 *  phy_mii_ioctl(...) can be invoked.
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1682
	int ret;
1683 1684 1685 1686

	if (!netif_running(dev))
		return -EINVAL;

1687 1688 1689 1690 1691
	if (!priv->phydev)
		return -EINVAL;

	ret = phy_mii_ioctl(priv->phydev, rq, cmd);

1692 1693 1694
	return ret;
}

1695 1696 1697
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
1698
static struct dentry *stmmac_dma_cap;
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

	seq_printf(seq, "=======================\n");
	seq_printf(seq, " RX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	seq_printf(seq, "\n");
	seq_printf(seq, "=======================\n");
	seq_printf(seq, "  TX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_tx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
1749
	.release = single_release,
1750 1751
};

1752 1753 1754 1755 1756
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

1757
	if (!priv->hw_cap_support) {
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
1821
	.release = single_release,
1822 1823
};

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1860 1861 1862 1863 1864 1865
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
1866
	debugfs_remove(stmmac_dma_cap);
1867 1868 1869 1870
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

1871 1872 1873 1874 1875
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
1876
	.ndo_fix_features = stmmac_fix_features,
1877
	.ndo_set_rx_mode = stmmac_set_rx_mode,
1878 1879 1880 1881 1882 1883 1884 1885 1886
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
/**
 *  stmmac_hw_init - Init the MAC device
 *  @priv : pointer to the private device structure.
 *  Description: this function detects which MAC device
 *  (GMAC/MAC10-100) has to attached, checks the HW capability
 *  (if supported) and sets the driver's features (for example
 *  to use the ring or chaine mode or support the normal/enh
 *  descriptor structure).
 */
static int stmmac_hw_init(struct stmmac_priv *priv)
{
	int ret = 0;
	struct mac_device_info *mac;

	/* Identify the MAC HW device */
1902 1903
	if (priv->plat->has_gmac) {
		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1904
		mac = dwmac1000_setup(priv->ioaddr);
1905
	} else {
1906
		mac = dwmac100_setup(priv->ioaddr);
1907
	}
1908 1909 1910 1911 1912 1913
	if (!mac)
		return -ENOMEM;

	priv->hw = mac;

	/* Get and dump the chip ID */
1914
	priv->synopsys_id = stmmac_get_synopsys_id(priv);
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	/* To use the chained or ring mode */
	if (chain_mode)	{
		priv->hw->chain = &chain_mode_ops;
		pr_info(" Chain mode enabled\n");
		priv->mode = STMMAC_CHAIN_MODE;
	} else {
		priv->hw->ring = &ring_mode_ops;
		pr_info(" Ring mode enabled\n");
		priv->mode = STMMAC_RING_MODE;
	}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	/* Get the HW capability (new GMAC newer than 3.50a) */
	priv->hw_cap_support = stmmac_get_hw_features(priv);
	if (priv->hw_cap_support) {
		pr_info(" DMA HW capability register supported");

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1939 1940 1941 1942 1943 1944 1945 1946

		priv->plat->tx_coe = priv->dma_cap.tx_coe;

		if (priv->dma_cap.rx_coe_type2)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
		else if (priv->dma_cap.rx_coe_type1)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;

1947 1948 1949 1950 1951 1952
	} else
		pr_info(" No HW DMA feature register supported");

	/* Select the enhnaced/normal descriptor structures */
	stmmac_selec_desc_mode(priv);

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	/* Enable the IPC (Checksum Offload) and check if the feature has been
	 * enabled during the core configuration. */
	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
	if (!ret) {
		pr_warning(" RX IPC Checksum Offload not configured.\n");
		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
	}

	if (priv->plat->rx_coe)
		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
			priv->plat->rx_coe);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	if (priv->plat->tx_coe)
		pr_info(" TX Checksum insertion supported\n");

	if (priv->plat->pmt) {
		pr_info(" Wake-Up On Lan supported\n");
		device_set_wakeup_capable(priv->device, 1);
	}

	return ret;
}

1975
/**
1976 1977
 * stmmac_dvr_probe
 * @device: device pointer
1978 1979
 * @plat_dat: platform data pointer
 * @addr: iobase memory address
1980 1981
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
1982
 */
1983
struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1984 1985
				     struct plat_stmmacenet_data *plat_dat,
				     void __iomem *addr)
1986 1987
{
	int ret = 0;
1988 1989
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
1990

1991
	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1992
	if (!ndev)
1993 1994 1995 1996 1997 1998 1999
		return NULL;

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
2000

2001
	ether_setup(ndev);
2002

2003
	stmmac_set_ethtool_ops(ndev);
2004 2005 2006 2007 2008 2009 2010
	priv->pause = pause;
	priv->plat = plat_dat;
	priv->ioaddr = addr;
	priv->dev->base_addr = (unsigned long)addr;

	/* Verify driver arguments */
	stmmac_verify_args();
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

	/* Init MAC and get the capabilities */
	stmmac_hw_init(priv);

	ndev->netdev_ops = &stmmac_netdev_ops;
2021

2022 2023
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			    NETIF_F_RXCSUM;
2024 2025
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2026 2027
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
2028
	ndev->features |= NETIF_F_HW_VLAN_RX;
2029 2030 2031 2032 2033 2034
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	/* Rx Watchdog is available in the COREs newer than the 3.40.
	 * In some case, for example on bugged HW this feature
	 * has to be disable and this can be done by passing the
	 * riwt_off field from the platform.
	 */
	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
		priv->use_riwt = 1;
		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
	}

2045
	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2046

2047
	spin_lock_init(&priv->lock);
2048
	spin_lock_init(&priv->tx_lock);
2049

2050
	ret = register_netdev(ndev);
2051
	if (ret) {
2052
		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2053
		goto error_netdev_register;
2054 2055
	}

2056
	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2057
	if (IS_ERR(priv->stmmac_clk)) {
2058
		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2059 2060
		goto error_clk_get;
	}
2061

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	/* If a specific clk_csr value is passed from the platform
	 * this means that the CSR Clock Range selection cannot be
	 * changed at run-time and it is fixed. Viceversa the driver'll try to
	 * set the MDC clock dynamically according to the csr actual
	 * clock input.
	 */
	if (!priv->plat->clk_csr)
		stmmac_clk_csr_set(priv);
	else
		priv->clk_csr = priv->plat->clk_csr;

2073 2074 2075 2076 2077
	/* MDIO bus Registration */
	ret = stmmac_mdio_register(ndev);
	if (ret < 0) {
		pr_debug("%s: MDIO bus (id: %d) registration failed",
			 __func__, priv->plat->bus_id);
2078
		goto error_mdio_register;
2079 2080
	}

2081
	return priv;
2082

2083 2084 2085
error_mdio_register:
	clk_put(priv->stmmac_clk);
error_clk_get:
2086
	unregister_netdev(ndev);
2087 2088
error_netdev_register:
	netif_napi_del(&priv->napi);
2089
	free_netdev(ndev);
2090

2091
	return NULL;
2092 2093 2094 2095
}

/**
 * stmmac_dvr_remove
2096
 * @ndev: net device pointer
2097
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2098
 * changes the link status, releases the DMA descriptor rings.
2099
 */
2100
int stmmac_dvr_remove(struct net_device *ndev)
2101
{
2102
	struct stmmac_priv *priv = netdev_priv(ndev);
2103 2104 2105

	pr_info("%s:\n\tremoving driver", __func__);

2106 2107
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
2108

2109
	stmmac_set_mac(priv->ioaddr, false);
2110
	stmmac_mdio_unregister(ndev);
2111 2112 2113 2114 2115 2116 2117 2118
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
2119
int stmmac_suspend(struct net_device *ndev)
2120
{
2121
	struct stmmac_priv *priv = netdev_priv(ndev);
2122
	int dis_ic = 0;
2123
	unsigned long flags;
2124

2125
	if (!ndev || !netif_running(ndev))
2126 2127
		return 0;

2128 2129 2130
	if (priv->phydev)
		phy_stop(priv->phydev);

2131
	spin_lock_irqsave(&priv->lock, flags);
2132

2133 2134
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
2135

2136 2137 2138
	if (priv->use_riwt)
		dis_ic = 1;

2139 2140 2141 2142 2143 2144 2145
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
	/* Clear the Rx/Tx descriptors */
	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2146 2147 2148
				     dis_ic, priv->mode);
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size,
				     priv->mode);
2149 2150 2151 2152

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2153
	else {
2154
		stmmac_set_mac(priv->ioaddr, false);
2155
		/* Disable clock in case of PWM is off */
2156
		clk_disable_unprepare(priv->stmmac_clk);
2157
	}
2158
	spin_unlock_irqrestore(&priv->lock, flags);
2159 2160 2161
	return 0;
}

2162
int stmmac_resume(struct net_device *ndev)
2163
{
2164
	struct stmmac_priv *priv = netdev_priv(ndev);
2165
	unsigned long flags;
2166

2167
	if (!netif_running(ndev))
2168 2169
		return 0;

2170
	spin_lock_irqsave(&priv->lock, flags);
2171

2172 2173 2174 2175 2176
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
2177
	if (device_may_wakeup(priv->device))
2178
		priv->hw->mac->pmt(priv->ioaddr, 0);
2179 2180
	else
		/* enable the clk prevously disabled */
2181
		clk_prepare_enable(priv->stmmac_clk);
2182

2183
	netif_device_attach(ndev);
2184 2185

	/* Enable the MAC and DMA */
2186
	stmmac_set_mac(priv->ioaddr, true);
2187 2188
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
2189 2190 2191

	napi_enable(&priv->napi);

2192
	netif_start_queue(ndev);
2193

2194
	spin_unlock_irqrestore(&priv->lock, flags);
2195 2196 2197 2198

	if (priv->phydev)
		phy_start(priv->phydev);

2199 2200 2201
	return 0;
}

2202
int stmmac_freeze(struct net_device *ndev)
2203 2204 2205 2206 2207 2208 2209
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

2210
int stmmac_restore(struct net_device *ndev)
2211 2212 2213 2214 2215 2216 2217
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}
#endif /* CONFIG_PM */
2218

2219 2220 2221
/* Driver can be configured w/ and w/ both PCI and Platf drivers
 * depending on the configuration selected.
 */
2222 2223
static int __init stmmac_init(void)
{
2224
	int ret;
2225

2226 2227 2228 2229 2230 2231
	ret = stmmac_register_platform();
	if (ret)
		goto err;
	ret = stmmac_register_pci();
	if (ret)
		goto err_pci;
2232
	return 0;
2233 2234 2235 2236 2237
err_pci:
	stmmac_unregister_platform();
err:
	pr_err("stmmac: driver registration failed\n");
	return ret;
2238 2239 2240 2241
}

static void __exit stmmac_exit(void)
{
2242 2243
	stmmac_unregister_platform();
	stmmac_unregister_pci();
2244 2245 2246 2247 2248
}

module_init(stmmac_init);
module_exit(stmmac_exit);

2249 2250 2251 2252 2253 2254 2255 2256
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
2257
		if (!strncmp(opt, "debug:", 6)) {
2258
			if (kstrtoint(opt + 6, 0, &debug))
2259 2260
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
2261
			if (kstrtoint(opt + 8, 0, &phyaddr))
2262 2263
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2264
			if (kstrtoint(opt + 11, 0, &dma_txsize))
2265 2266
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2267
			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2268 2269
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
2270
			if (kstrtoint(opt + 7, 0, &buf_sz))
2271 2272
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
2273
			if (kstrtoint(opt + 3, 0, &tc))
2274 2275
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
2276
			if (kstrtoint(opt + 9, 0, &watchdog))
2277 2278
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2279
			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2280 2281
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
2282
			if (kstrtoint(opt + 6, 0, &pause))
2283
				goto err;
2284
		} else if (!strncmp(opt, "eee_timer:", 10)) {
2285 2286
			if (kstrtoint(opt + 10, 0, &eee_timer))
				goto err;
2287 2288 2289
		} else if (!strncmp(opt, "chain_mode:", 11)) {
			if (kstrtoint(opt + 11, 0, &chain_mode))
				goto err;
2290
		}
2291 2292
	}
	return 0;
2293 2294 2295 2296

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2297 2298 2299 2300
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif
2301 2302 2303 2304

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");