stmmac_main.c 61.5 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

31
#include <linux/clk.h>
32 33 34 35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
41
#include <linux/if.h>
42 43
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
44
#include <linux/slab.h>
45
#include <linux/prefetch.h>
46 47 48 49
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
50
#include "stmmac.h"
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
#ifdef STMMAC_TX_DEBUG
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

91
int phyaddr = -1;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

127 128 129 130 131 132
#define STMMAC_DEFAULT_LPI_TIMER	1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))

133 134
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

135 136 137 138 139
#ifdef CONFIG_STMMAC_DEBUG_FS
static int stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(void);
#endif

140 141
#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
163 164
	if (eee_timer < 0)
		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
165 166
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
	u32 clk_rate;

	clk_rate = clk_get_rate(priv->stmmac_clk);

	/* Platform provided default clk_csr would be assumed valid
	 * for all other cases except for the below mentioned ones. */
	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
		if (clk_rate < CSR_F_35M)
			priv->clk_csr = STMMAC_CSR_20_35M;
		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
			priv->clk_csr = STMMAC_CSR_35_60M;
		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
			priv->clk_csr = STMMAC_CSR_60_100M;
		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
			priv->clk_csr = STMMAC_CSR_100_150M;
		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
			priv->clk_csr = STMMAC_CSR_150_250M;
		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
			priv->clk_csr = STMMAC_CSR_250_300M;
	} /* For values higher than the IEEE 802.3 specified frequency
	   * we can not estimate the proper divider as it is not known
	   * the frequency of clk_csr_i. So we do not change the default
	   * divider. */
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

216 217 218 219 220 221 222 223 224 225 226 227
/* On some ST platforms, some HW system configuraton registers have to be
 * set according to the link speed negotiated.
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
	/* Check and enter in LPI mode */
	if ((priv->dirty_tx == priv->cur_tx) &&
	    (priv->tx_path_in_lpi_mode == false))
		priv->hw->mac->set_eee_mode(priv->ioaddr);
}

void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
	/* Exit and disable EEE in case of we are are in LPI state. */
	priv->hw->mac->reset_eee_mode(priv->ioaddr);
	del_timer_sync(&priv->eee_ctrl_timer);
	priv->tx_path_in_lpi_mode = false;
}

/**
 * stmmac_eee_ctrl_timer
 * @arg : data hook
 * Description:
 *  If there is no data transfer and if we are not in LPI state,
 *  then MAC Transmitter can be moved to LPI state.
 */
static void stmmac_eee_ctrl_timer(unsigned long arg)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)arg;

	stmmac_enable_eee_mode(priv);
	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
}

/**
 * stmmac_eee_init
 * @priv: private device pointer
 * Description:
 *  If the EEE support has been enabled while configuring the driver,
 *  if the GMAC actually supports the EEE (from the HW cap reg) and the
 *  phy can also manage EEE, so enable the LPI state and start the timer
 *  to verify if the tx path can enter in LPI state.
 */
bool stmmac_eee_init(struct stmmac_priv *priv)
{
	bool ret = false;

	/* MAC core supports the EEE feature. */
	if (priv->dma_cap.eee) {
		/* Check if the PHY supports EEE */
		if (phy_init_eee(priv->phydev, 1))
			goto out;

		priv->eee_active = 1;
		init_timer(&priv->eee_ctrl_timer);
		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
		priv->eee_ctrl_timer.data = (unsigned long)priv;
		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
		add_timer(&priv->eee_ctrl_timer);

		priv->hw->mac->set_eee_timer(priv->ioaddr,
					     STMMAC_DEFAULT_LIT_LS_TIMER,
					     priv->tx_lpi_timer);

		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");

		ret = true;
	}
out:
	return ret;
}

static void stmmac_eee_adjust(struct stmmac_priv *priv)
{
	/* When the EEE has been already initialised we have to
	 * modify the PLS bit in the LPI ctrl & status reg according
	 * to the PHY link status. For this reason.
	 */
	if (priv->eee_enabled)
		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
327

328
	if (phydev->link) {
329
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
330 331 332 333 334 335

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
336
				ctrl &= ~priv->hw->link.duplex;
337
			else
338
				ctrl |= priv->hw->link.duplex;
339 340 341 342
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
343
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
344
						 fc, pause_time);
345 346 347 348 349

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
350
				if (likely(priv->plat->has_gmac))
351
					ctrl &= ~priv->hw->link.port;
352
					stmmac_hw_fix_mac_speed(priv);
353 354 355
				break;
			case 100:
			case 10:
356
				if (priv->plat->has_gmac) {
357
					ctrl |= priv->hw->link.port;
358
					if (phydev->speed == SPEED_100) {
359
						ctrl |= priv->hw->link.speed;
360
					} else {
361
						ctrl &= ~(priv->hw->link.speed);
362 363
					}
				} else {
364
					ctrl &= ~priv->hw->link.port;
365
				}
366
				stmmac_hw_fix_mac_speed(priv);
367 368 369 370 371 372 373 374 375 376 377
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

378
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

394 395
	stmmac_eee_adjust(priv);

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
413
	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
414
	char bus_id[MII_BUS_ID_SIZE];
415
	int interface = priv->plat->interface;
416 417 418 419
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

420 421 422 423 424 425 426
	if (priv->plat->phy_bus_name)
		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
				priv->plat->phy_bus_name, priv->plat->bus_id);
	else
		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
				priv->plat->bus_id);

427
	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
428
		 priv->plat->phy_addr);
429
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
430

431 432
	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 0,
			     interface);
433 434 435 436 437 438

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

439
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
440 441 442 443
	if ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))
		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
					 SUPPORTED_1000baseT_Full);
444

445 446 447 448 449 450 451 452 453 454 455 456
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
457
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

	priv->phydev = phydev;

	return 0;
}

/**
 * display_ring
 * @p: pointer to the ring.
 * @size: size of the ring.
 * Description: display all the descriptors within the ring.
 */
static void display_ring(struct dma_desc *p, int size)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	for (i = 0; i < size; i++) {
		struct tmp_s *x = (struct tmp_s *)(p + i);
		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
		       i, (unsigned int)virt_to_phys(&p[i]),
		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
		       x->b, x->c);
		pr_info("\n");
	}
}

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

504 505 506 507
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
508 509
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
510 511 512 513 514 515 516 517
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	struct sk_buff *skb;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
518 519 520
	unsigned int bfsize;
	int dis_ic = 0;
	int des3_as_data_buf = 0;
521

522 523 524 525 526 527
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);

	if (bfsize == BUF_SIZE_16KiB)
		des3_as_data_buf = 1;
528
	else
529
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
	priv->rx_skbuff =
	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
	priv->dma_rx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
				       GFP_KERNEL);
	priv->dma_tx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);

	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
		return;
	}

557
	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
558 559 560 561 562 563 564 565 566 567 568
	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
	    dev->name, priv->dma_rx, priv->dma_tx,
	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);

	/* RX INITIALIZATION */
	DBG(probe, INFO, "stmmac: SKB addresses:\n"
			 "skb\t\tskb data\tdma data\n");

	for (i = 0; i < rxsize; i++) {
		struct dma_desc *p = priv->dma_rx + i;

569 570
		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
					 GFP_KERNEL);
571 572 573 574
		if (unlikely(skb == NULL)) {
			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
			break;
		}
575
		skb_reserve(skb, NET_IP_ALIGN);
576 577 578 579 580
		priv->rx_skbuff[i] = skb;
		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						bfsize, DMA_FROM_DEVICE);

		p->des2 = priv->rx_skbuff_dma[i];
581 582 583

		priv->hw->ring->init_desc3(des3_as_data_buf, p);

584 585 586 587 588 589 590 591 592 593 594 595 596
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
		priv->tx_skbuff[i] = NULL;
		priv->dma_tx[i].des2 = 0;
	}
597 598 599 600 601 602

	/* In case of Chained mode this sets the des3 to the next
	 * element in the chain */
	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);

603 604 605 606
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

	/* Clear the Rx/Tx descriptors */
607 608
	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

	if (netif_msg_hw(priv)) {
		pr_info("RX descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
		pr_info("TX descriptor ring:\n");
		display_ring(priv->dma_tx, txsize);
	}
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
			struct dma_desc *p = priv->dma_tx + i;
			if (p->des2)
				dma_unmap_single(priv->device, p->des2,
641 642
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
	dma_free_coherent(priv->device,
			  priv->dma_tx_size * sizeof(struct dma_desc),
			  priv->dma_tx, priv->dma_tx_phy);
	dma_free_coherent(priv->device,
			  priv->dma_rx_size * sizeof(struct dma_desc),
			  priv->dma_rx, priv->dma_rx_phy);
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
672
 *  or Store-And-Forward capability.
673 674 675
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
676 677 678 679 680
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
681 682 683 684 685 686 687 688 689
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
690 691 692
}

/**
693 694
 * stmmac_tx_clean:
 * @priv: private data pointer
695 696
 * Description: it reclaims resources after transmission completes.
 */
697
static void stmmac_tx_clean(struct stmmac_priv *priv)
698 699 700
{
	unsigned int txsize = priv->dma_tx_size;

701 702
	spin_lock(&priv->tx_lock);

703 704
	priv->xstats.tx_clean++;

705 706 707 708 709 710 711
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
		struct dma_desc *p = priv->dma_tx + entry;

		/* Check if the descriptor is owned by the DMA. */
712
		if (priv->hw->desc->get_tx_owner(p))
713 714 715
			break;

		/* Verify tx error by looking at the last segment */
716
		last = priv->hw->desc->get_tx_ls(p);
717 718
		if (likely(last)) {
			int tx_error =
719 720
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
721
							  priv->ioaddr);
722 723 724 725 726 727 728 729 730 731 732
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

		if (likely(p->des2))
			dma_unmap_single(priv->device, p->des2,
733
					 priv->hw->desc->get_tx_len(p),
734
					 DMA_TO_DEVICE);
735
		priv->hw->ring->clean_desc3(p);
736 737

		if (likely(skb != NULL)) {
E
Eric Dumazet 已提交
738
			dev_kfree_skb(skb);
739 740 741
			priv->tx_skbuff[entry] = NULL;
		}

742
		priv->hw->desc->release_tx_desc(p);
743

744
		priv->dirty_tx++;
745 746 747 748 749 750 751 752 753 754 755
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
756 757 758 759 760

	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
		stmmac_enable_eee_mode(priv);
		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
	}
761
	spin_unlock(&priv->tx_lock);
762 763
}

764
static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
765
{
766
	priv->hw->dma->enable_dma_irq(priv->ioaddr);
767 768
}

769
static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
770
{
771
	priv->hw->dma->disable_dma_irq(priv->ioaddr);
772 773 774 775 776 777 778 779 780 781 782 783 784
}


/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
	netif_stop_queue(priv->dev);

785
	priv->hw->dma->stop_tx(priv->ioaddr);
786
	dma_free_tx_skbufs(priv);
787
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
788 789
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
790
	priv->hw->dma->start_tx(priv->ioaddr);
791 792 793 794 795

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}

796 797 798 799
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

800
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
801 802 803 804 805 806 807
	if (likely((status & handle_rx)) || (status & handle_tx)) {
		if (likely(napi_schedule_prep(&priv->napi))) {
			stmmac_disable_dma_irq(priv);
			__napi_schedule(&priv->napi);
		}
	}
	if (unlikely(status & tx_hard_error_bump_tc)) {
808 809 810
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
811
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
812
			priv->xstats.threshold = tc;
813
		}
814 815
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
816 817
}

818 819 820 821 822
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

G
Giuseppe CAVALLARO 已提交
823 824
	/* Mask MMC irq, counters are managed in SW and registers
	 * are cleared on each READ eventually. */
825
	dwmac_mmc_intr_all_mask(priv->ioaddr);
G
Giuseppe CAVALLARO 已提交
826 827 828 829 830

	if (priv->dma_cap.rmon) {
		dwmac_mmc_ctrl(priv->ioaddr, mode);
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
831
		pr_info(" No MAC Management Counters available\n");
832 833
}

834 835 836 837 838 839 840 841 842 843
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

844
		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
845 846 847 848 849 850
			uid, synid);

		return synid;
	}
	return 0;
}
851

852 853
/**
 * stmmac_selec_desc_mode
854 855 856
 * @priv : private structure
 * Description: select the Enhanced/Alternate or Normal descriptors
 */
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
	if (priv->plat->enh_desc) {
		pr_info(" Enhanced/Alternate descriptors\n");
		priv->hw->desc = &enh_desc_ops;
	} else {
		pr_info(" Normal descriptors\n");
		priv->hw->desc = &ndesc_ops;
	}
}

/**
 * stmmac_get_hw_features
 * @priv : private device pointer
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
876 877 878
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
879
	u32 hw_cap = 0;
880

881 882
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
883

884 885 886 887 888 889 890 891 892 893 894 895
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
896
		/* MMC */
897
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
898
		/* IEEE 1588-2002*/
899 900
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
901
		/* IEEE 1588-2008*/
902 903
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
904
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
905 906
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
907
		/* TX and RX csum */
908 909 910 911 912 913 914
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
915
		/* TX and RX number of channels */
916 917 918 919
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
920
		/* Alternate (enhanced) DESC mode*/
921 922
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
923
	}
924 925 926 927

	return hw_cap;
}

928 929 930 931 932 933 934 935 936
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	/* verify if the MAC address is valid, in case of failures it
	 * generates a random MAC address */
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
		priv->hw->mac->get_umac_addr((void __iomem *)
					     priv->dev->base_addr,
					     priv->dev->dev_addr, 0);
		if  (!is_valid_ether_addr(priv->dev->dev_addr))
937
			eth_hw_addr_random(priv->dev);
938 939 940 941 942
	}
	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
						   priv->dev->dev_addr);
}

943 944 945
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
946
	int mixed_burst = 0;
947 948 949 950 951 952 953

	/* Some DMA parameters can be passed from the platform;
	 * in case of these are not passed we keep a default
	 * (good for all the chips) and init the DMA! */
	if (priv->plat->dma_cfg) {
		pbl = priv->plat->dma_cfg->pbl;
		fixed_burst = priv->plat->dma_cfg->fixed_burst;
954
		mixed_burst = priv->plat->dma_cfg->mixed_burst;
955 956 957
		burst_len = priv->plat->dma_cfg->burst_len;
	}

958
	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
959 960 961 962
				   burst_len, priv->dma_tx_phy,
				   priv->dma_rx_phy);
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/**
 * stmmac_tx_timer:
 * @data: data pointer
 * Description:
 * This is the timer handler to directly invoke the stmmac_tx_clean.
 */
static void stmmac_tx_timer(unsigned long data)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)data;

	stmmac_tx_clean(priv);
}

/**
 * stmmac_tx_timer:
 * @priv: private data structure
 * Description:
 * This inits the transmit coalesce parameters: i.e. timer rate,
 * timer handler and default threshold used for enabling the
 * interrupt on completion bit.
 */
static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
{
	priv->tx_coal_frames = STMMAC_TX_FRAMES;
	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
	init_timer(&priv->txtimer);
	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
	priv->txtimer.data = (unsigned long)priv;
	priv->txtimer.function = stmmac_tx_timer;
	add_timer(&priv->txtimer);
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

1009
	clk_prepare_enable(priv->stmmac_clk);
1010 1011 1012

	stmmac_check_ether_addr(priv);

1013 1014 1015 1016 1017
	ret = stmmac_init_phy(dev);
	if (unlikely(ret)) {
		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
		goto open_error;
	}
1018 1019 1020 1021 1022 1023 1024 1025

	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
1026
	ret = stmmac_init_dma_engine(priv);
1027
	if (ret < 0) {
1028
		pr_err("%s: DMA initialization failed\n", __func__);
1029
		goto open_error;
1030 1031 1032
	}

	/* Copy the MAC addr into the HW  */
1033
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1034

1035
	/* If required, perform hw setup of the bus. */
1036 1037
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
1038

1039
	/* Initialize the MAC Core */
1040
	priv->hw->mac->core_init(priv->ioaddr);
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	/* Request the Wake IRQ in case of another line is used for WoL */
	if (priv->wol_irq != dev->irq) {
		ret = request_irq(priv->wol_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
			goto open_error_wolirq;
		}
	}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	/* Request the IRQ lines */
	if (priv->lpi_irq != -ENXIO) {
		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
				  dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
			       __func__, priv->lpi_irq, ret);
			goto open_error_lpiirq;
		}
	}

1073
	/* Enable the MAC Rx/Tx */
1074
	stmmac_set_mac(priv->ioaddr, true);
1075 1076 1077 1078 1079 1080 1081 1082

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

G
Giuseppe CAVALLARO 已提交
1083
	stmmac_mmc_setup(priv);
1084

1085 1086 1087
#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(dev);
	if (ret < 0)
1088
		pr_warning("%s: failed debugFS registration\n", __func__);
1089
#endif
1090 1091
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1092 1093
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1094 1095 1096

	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
1097 1098
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
1099 1100 1101 1102 1103
	}

	if (priv->phydev)
		phy_start(priv->phydev);

1104 1105 1106
	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
	priv->eee_enabled = stmmac_eee_init(priv);

1107 1108
	stmmac_init_tx_coalesce(priv);

1109 1110
	napi_enable(&priv->napi);
	netif_start_queue(dev);
1111

1112
	return 0;
1113

1114 1115 1116 1117
open_error_lpiirq:
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);

1118 1119 1120
open_error_wolirq:
	free_irq(dev->irq, dev);

1121 1122 1123 1124
open_error:
	if (priv->phydev)
		phy_disconnect(priv->phydev);

1125
	clk_disable_unprepare(priv->stmmac_clk);
1126

1127
	return ret;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

1140 1141 1142
	if (priv->eee_enabled)
		del_timer_sync(&priv->eee_ctrl_timer);

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

	napi_disable(&priv->napi);

1154 1155
	del_timer_sync(&priv->txtimer);

1156 1157
	/* Free the IRQ lines */
	free_irq(dev->irq, dev);
1158 1159
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);
1160 1161
	if (priv->lpi_irq != -ENXIO)
		free_irq(priv->lpi_irq, dev);
1162 1163

	/* Stop TX/RX DMA and clear the descriptors */
1164 1165
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1166 1167 1168 1169

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1170
	/* Disable the MAC Rx/Tx */
1171
	stmmac_set_mac(priv->ioaddr, false);
1172 1173 1174

	netif_carrier_off(dev);

1175 1176 1177
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif
1178
	clk_disable_unprepare(priv->stmmac_clk);
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	return 0;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
	int i, csum_insertion = 0;
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1197
	unsigned int nopaged_len = skb_headlen(skb);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1209 1210
	spin_lock(&priv->tx_lock);

1211 1212 1213
	if (priv->tx_path_in_lpi_mode)
		stmmac_disable_eee_mode(priv);

1214 1215 1216 1217
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1218 1219 1220 1221 1222 1223 1224
		pr_debug("stmmac xmit: [entry %d]\n"
			 "\tskb addr %p - len: %d - nopaged_len: %d\n"
			 "\tn_frags: %d - ip_summed: %d - %s gso\n"
			 "\ttx_count_frames %d\n", entry,
			 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
			 !skb_is_gso(skb) ? "isn't" : "is",
			 priv->tx_count_frames);
1225 1226
#endif

1227
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1228 1229 1230 1231 1232 1233

	desc = priv->dma_tx + entry;
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1234 1235 1236
		pr_debug("\tskb len: %d, nopaged_len: %d,\n"
			 "\t\tn_frags: %d, ip_summed: %d\n",
			 skb->len, nopaged_len, nfrags, skb->ip_summed);
1237 1238
#endif
	priv->tx_skbuff[entry] = skb;
1239 1240 1241

	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1242 1243 1244 1245
		desc = priv->dma_tx + entry;
	} else {
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1246 1247
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
						csum_insertion);
1248 1249 1250
	}

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1251 1252
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1253 1254 1255 1256 1257

		entry = (++priv->cur_tx) % txsize;
		desc = priv->dma_tx + entry;

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1258 1259
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1260
		priv->tx_skbuff[entry] = NULL;
1261
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1262
		wmb();
1263
		priv->hw->desc->set_tx_owner(desc);
1264
		wmb();
1265 1266
	}

1267
	/* Finalize the latest segment. */
1268
	priv->hw->desc->close_tx_desc(desc);
1269

1270
	wmb();
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	/* According to the coalesce parameter the IC bit for the latest
	 * segment could be reset and the timer re-started to invoke the
	 * stmmac_tx function. This approach takes care about the fragments.
	 */
	priv->tx_count_frames += nfrags + 1;
	if (priv->tx_coal_frames > priv->tx_count_frames) {
		priv->hw->desc->clear_tx_ic(desc);
		priv->xstats.tx_reset_ic_bit++;
		TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
		       priv->tx_count_frames);
		mod_timer(&priv->txtimer,
			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
	} else
		priv->tx_count_frames = 0;
1285

1286
	/* To avoid raise condition */
1287
	priv->hw->desc->set_tx_owner(first);
1288
	wmb();
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
		display_ring(priv->dma_tx, txsize);
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1310 1311
	skb_tx_timestamp(skb);

1312 1313
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1314 1315
	spin_unlock(&priv->tx_lock);

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;
	struct dma_desc *p = priv->dma_rx;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

E
Eric Dumazet 已提交
1330
			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1341 1342 1343 1344

			if (unlikely(priv->plat->has_gmac))
				priv->hw->ring->refill_desc3(bfsize, p + entry);

1345 1346
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1347
		wmb();
1348
		priv->hw->desc->set_rx_owner(p + entry);
1349
		wmb();
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	}
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;
	struct dma_desc *p = priv->dma_rx + entry;
	struct dma_desc *p_next;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
	}
#endif
1368
	while (!priv->hw->desc->get_rx_owner(p)) {
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		int status;

		if (count >= limit)
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
		p_next = priv->dma_rx + next_entry;
		prefetch(p_next);

		/* read the status of the incoming frame */
1381 1382
		status = (priv->hw->desc->rx_status(&priv->dev->stats,
						    &priv->xstats, p));
1383 1384 1385 1386
		if (unlikely(status == discard_frame))
			priv->dev->stats.rx_errors++;
		else {
			struct sk_buff *skb;
1387
			int frame_len;
1388

1389 1390
			frame_len = priv->hw->desc->get_rx_frame_len(p,
					priv->plat->rx_coe);
1391 1392 1393 1394
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

1426
			if (unlikely(!priv->plat->rx_coe)) {
1427
				/* No RX COE for old mac10/100 devices */
1428
				skb_checksum_none_assert(skb);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
				netif_receive_skb(skb);
			} else {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
				napi_gro_receive(&priv->napi, skb);
			}

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
		p = p_next;	/* use prefetched values */
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
1455
 *  To look at the incoming frames and clear the tx resources.
1456 1457 1458 1459 1460 1461
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

1462 1463
	priv->xstats.napi_poll++;
	stmmac_tx_clean(priv);
1464

1465
	work_done = stmmac_rx(priv, budget);
1466 1467
	if (work_done < budget) {
		napi_complete(napi);
1468
		stmmac_enable_dma_irq(priv);
1469 1470 1471 1472 1473 1474 1475 1476
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
1477
 *   complete within a reasonable time. The driver will mark the error in the
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
1513
 *  stmmac_set_rx_mode - entry point for multicast addressing
1514 1515 1516 1517 1518 1519 1520
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
1521
static void stmmac_set_rx_mode(struct net_device *dev)
1522 1523 1524 1525
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
1526
	priv->hw->mac->set_filter(dev, priv->synopsys_id);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

1551
	if (priv->plat->enh_desc)
1552 1553
		max_mtu = JUMBO_LEN;
	else
1554
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1555 1556 1557 1558 1559 1560

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

1561 1562 1563 1564 1565 1566
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

1567 1568
static netdev_features_t stmmac_fix_features(struct net_device *dev,
	netdev_features_t features)
1569 1570 1571
{
	struct stmmac_priv *priv = netdev_priv(dev);

1572
	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1573
		features &= ~NETIF_F_RXCSUM;
1574 1575
	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
		features &= ~NETIF_F_IPV6_CSUM;
1576 1577 1578
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

1579 1580 1581 1582
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
1583 1584
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
1585

1586
	return features;
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	/* To handle GMAC own interrupts */
	if (priv->plat->has_gmac) {
		int status = priv->hw->mac->host_irq_status((void __iomem *)
							    dev->base_addr);
		if (unlikely(status)) {
			if (status & core_mmc_tx_irq)
				priv->xstats.mmc_tx_irq_n++;
			if (status & core_mmc_rx_irq)
				priv->xstats.mmc_rx_irq_n++;
			if (status & core_mmc_rx_csum_offload_irq)
				priv->xstats.mmc_rx_csum_offload_irq_n++;
			if (status & core_irq_receive_pmt_irq)
				priv->xstats.irq_receive_pmt_irq_n++;

			/* For LPI we need to save the tx status */
			if (status & core_irq_tx_path_in_lpi_mode) {
				priv->xstats.irq_tx_path_in_lpi_mode_n++;
				priv->tx_path_in_lpi_mode = true;
			}
			if (status & core_irq_tx_path_exit_lpi_mode) {
				priv->xstats.irq_tx_path_exit_lpi_mode_n++;
				priv->tx_path_in_lpi_mode = false;
			}
			if (status & core_irq_rx_path_in_lpi_mode)
				priv->xstats.irq_rx_path_in_lpi_mode_n++;
			if (status & core_irq_rx_path_exit_lpi_mode)
				priv->xstats.irq_rx_path_exit_lpi_mode_n++;
		}
	}
1628

1629
	/* To handle DMA interrupts */
1630
	stmmac_dma_interrupt(priv);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, just the
 *  phy_mii_ioctl(...) can be invoked.
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1659
	int ret;
1660 1661 1662 1663

	if (!netif_running(dev))
		return -EINVAL;

1664 1665 1666 1667 1668
	if (!priv->phydev)
		return -EINVAL;

	ret = phy_mii_ioctl(priv->phydev, rq, cmd);

1669 1670 1671
	return ret;
}

1672 1673 1674
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
1675
static struct dentry *stmmac_dma_cap;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

	seq_printf(seq, "=======================\n");
	seq_printf(seq, " RX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	seq_printf(seq, "\n");
	seq_printf(seq, "=======================\n");
	seq_printf(seq, "  TX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_tx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
1726
	.release = single_release,
1727 1728
};

1729 1730 1731 1732 1733
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

1734
	if (!priv->hw_cap_support) {
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
1798
	.release = single_release,
1799 1800
};

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1837 1838 1839 1840 1841 1842
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
1843
	debugfs_remove(stmmac_dma_cap);
1844 1845 1846 1847
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

1848 1849 1850 1851 1852
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
1853
	.ndo_fix_features = stmmac_fix_features,
1854
	.ndo_set_rx_mode = stmmac_set_rx_mode,
1855 1856 1857 1858 1859 1860 1861 1862 1863
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
/**
 *  stmmac_hw_init - Init the MAC device
 *  @priv : pointer to the private device structure.
 *  Description: this function detects which MAC device
 *  (GMAC/MAC10-100) has to attached, checks the HW capability
 *  (if supported) and sets the driver's features (for example
 *  to use the ring or chaine mode or support the normal/enh
 *  descriptor structure).
 */
static int stmmac_hw_init(struct stmmac_priv *priv)
{
	int ret = 0;
	struct mac_device_info *mac;

	/* Identify the MAC HW device */
1879 1880
	if (priv->plat->has_gmac) {
		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1881
		mac = dwmac1000_setup(priv->ioaddr);
1882
	} else {
1883
		mac = dwmac100_setup(priv->ioaddr);
1884
	}
1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (!mac)
		return -ENOMEM;

	priv->hw = mac;

	/* To use the chained or ring mode */
	priv->hw->ring = &ring_mode_ops;

	/* Get and dump the chip ID */
1894
	priv->synopsys_id = stmmac_get_synopsys_id(priv);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

	/* Get the HW capability (new GMAC newer than 3.50a) */
	priv->hw_cap_support = stmmac_get_hw_features(priv);
	if (priv->hw_cap_support) {
		pr_info(" DMA HW capability register supported");

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1908 1909 1910 1911 1912 1913 1914 1915

		priv->plat->tx_coe = priv->dma_cap.tx_coe;

		if (priv->dma_cap.rx_coe_type2)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
		else if (priv->dma_cap.rx_coe_type1)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;

1916 1917 1918 1919 1920 1921
	} else
		pr_info(" No HW DMA feature register supported");

	/* Select the enhnaced/normal descriptor structures */
	stmmac_selec_desc_mode(priv);

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	/* Enable the IPC (Checksum Offload) and check if the feature has been
	 * enabled during the core configuration. */
	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
	if (!ret) {
		pr_warning(" RX IPC Checksum Offload not configured.\n");
		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
	}

	if (priv->plat->rx_coe)
		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
			priv->plat->rx_coe);
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	if (priv->plat->tx_coe)
		pr_info(" TX Checksum insertion supported\n");

	if (priv->plat->pmt) {
		pr_info(" Wake-Up On Lan supported\n");
		device_set_wakeup_capable(priv->device, 1);
	}

	return ret;
}

1944
/**
1945 1946
 * stmmac_dvr_probe
 * @device: device pointer
1947 1948
 * @plat_dat: platform data pointer
 * @addr: iobase memory address
1949 1950
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
1951
 */
1952
struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1953 1954
				     struct plat_stmmacenet_data *plat_dat,
				     void __iomem *addr)
1955 1956
{
	int ret = 0;
1957 1958
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
1959

1960
	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1961
	if (!ndev)
1962 1963 1964 1965 1966 1967 1968
		return NULL;

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
1969

1970
	ether_setup(ndev);
1971

1972
	stmmac_set_ethtool_ops(ndev);
1973 1974 1975 1976 1977 1978 1979
	priv->pause = pause;
	priv->plat = plat_dat;
	priv->ioaddr = addr;
	priv->dev->base_addr = (unsigned long)addr;

	/* Verify driver arguments */
	stmmac_verify_args();
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

	/* Init MAC and get the capabilities */
	stmmac_hw_init(priv);

	ndev->netdev_ops = &stmmac_netdev_ops;
1990

1991 1992
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			    NETIF_F_RXCSUM;
1993 1994
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1995 1996
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
1997
	ndev->features |= NETIF_F_HW_VLAN_RX;
1998 1999 2000 2001 2002 2003
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

2004
	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2005

2006
	spin_lock_init(&priv->lock);
2007
	spin_lock_init(&priv->tx_lock);
2008

2009
	ret = register_netdev(ndev);
2010
	if (ret) {
2011
		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2012
		goto error_netdev_register;
2013 2014
	}

2015
	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2016
	if (IS_ERR(priv->stmmac_clk)) {
2017
		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2018 2019
		goto error_clk_get;
	}
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	/* If a specific clk_csr value is passed from the platform
	 * this means that the CSR Clock Range selection cannot be
	 * changed at run-time and it is fixed. Viceversa the driver'll try to
	 * set the MDC clock dynamically according to the csr actual
	 * clock input.
	 */
	if (!priv->plat->clk_csr)
		stmmac_clk_csr_set(priv);
	else
		priv->clk_csr = priv->plat->clk_csr;

2032 2033 2034 2035 2036
	/* MDIO bus Registration */
	ret = stmmac_mdio_register(ndev);
	if (ret < 0) {
		pr_debug("%s: MDIO bus (id: %d) registration failed",
			 __func__, priv->plat->bus_id);
2037
		goto error_mdio_register;
2038 2039
	}

2040
	return priv;
2041

2042 2043 2044
error_mdio_register:
	clk_put(priv->stmmac_clk);
error_clk_get:
2045
	unregister_netdev(ndev);
2046 2047
error_netdev_register:
	netif_napi_del(&priv->napi);
2048
	free_netdev(ndev);
2049

2050
	return NULL;
2051 2052 2053 2054
}

/**
 * stmmac_dvr_remove
2055
 * @ndev: net device pointer
2056
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2057
 * changes the link status, releases the DMA descriptor rings.
2058
 */
2059
int stmmac_dvr_remove(struct net_device *ndev)
2060
{
2061
	struct stmmac_priv *priv = netdev_priv(ndev);
2062 2063 2064

	pr_info("%s:\n\tremoving driver", __func__);

2065 2066
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
2067

2068
	stmmac_set_mac(priv->ioaddr, false);
2069
	stmmac_mdio_unregister(ndev);
2070 2071 2072 2073 2074 2075 2076 2077
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
2078
int stmmac_suspend(struct net_device *ndev)
2079
{
2080
	struct stmmac_priv *priv = netdev_priv(ndev);
2081
	int dis_ic = 0;
2082
	unsigned long flags;
2083

2084
	if (!ndev || !netif_running(ndev))
2085 2086
		return 0;

2087 2088 2089
	if (priv->phydev)
		phy_stop(priv->phydev);

2090
	spin_lock_irqsave(&priv->lock, flags);
2091

2092 2093
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
	/* Clear the Rx/Tx descriptors */
	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
				     dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2108
	else {
2109
		stmmac_set_mac(priv->ioaddr, false);
2110
		/* Disable clock in case of PWM is off */
2111
		clk_disable_unprepare(priv->stmmac_clk);
2112
	}
2113
	spin_unlock_irqrestore(&priv->lock, flags);
2114 2115 2116
	return 0;
}

2117
int stmmac_resume(struct net_device *ndev)
2118
{
2119
	struct stmmac_priv *priv = netdev_priv(ndev);
2120
	unsigned long flags;
2121

2122
	if (!netif_running(ndev))
2123 2124
		return 0;

2125
	spin_lock_irqsave(&priv->lock, flags);
2126

2127 2128 2129 2130 2131
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
2132
	if (device_may_wakeup(priv->device))
2133
		priv->hw->mac->pmt(priv->ioaddr, 0);
2134 2135
	else
		/* enable the clk prevously disabled */
2136
		clk_prepare_enable(priv->stmmac_clk);
2137

2138
	netif_device_attach(ndev);
2139 2140

	/* Enable the MAC and DMA */
2141
	stmmac_set_mac(priv->ioaddr, true);
2142 2143
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
2144 2145 2146

	napi_enable(&priv->napi);

2147
	netif_start_queue(ndev);
2148

2149
	spin_unlock_irqrestore(&priv->lock, flags);
2150 2151 2152 2153

	if (priv->phydev)
		phy_start(priv->phydev);

2154 2155 2156
	return 0;
}

2157
int stmmac_freeze(struct net_device *ndev)
2158 2159 2160 2161 2162 2163 2164
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

2165
int stmmac_restore(struct net_device *ndev)
2166 2167 2168 2169 2170 2171 2172
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}
#endif /* CONFIG_PM */
2173

2174 2175 2176
/* Driver can be configured w/ and w/ both PCI and Platf drivers
 * depending on the configuration selected.
 */
2177 2178
static int __init stmmac_init(void)
{
2179 2180
	int err_plt = 0;
	int err_pci = 0;
2181

2182 2183
	err_plt = stmmac_register_platform();
	err_pci = stmmac_register_pci();
2184

2185 2186 2187
	if ((err_pci) && (err_plt)) {
		pr_err("stmmac: driver registration failed\n");
		return -EINVAL;
2188 2189
	}

2190
	return 0;
2191 2192 2193 2194
}

static void __exit stmmac_exit(void)
{
2195 2196
	stmmac_unregister_platform();
	stmmac_unregister_pci();
2197 2198 2199 2200 2201
}

module_init(stmmac_init);
module_exit(stmmac_exit);

2202 2203 2204 2205 2206 2207 2208 2209
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
2210
		if (!strncmp(opt, "debug:", 6)) {
2211
			if (kstrtoint(opt + 6, 0, &debug))
2212 2213
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
2214
			if (kstrtoint(opt + 8, 0, &phyaddr))
2215 2216
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2217
			if (kstrtoint(opt + 11, 0, &dma_txsize))
2218 2219
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2220
			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2221 2222
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
2223
			if (kstrtoint(opt + 7, 0, &buf_sz))
2224 2225
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
2226
			if (kstrtoint(opt + 3, 0, &tc))
2227 2228
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
2229
			if (kstrtoint(opt + 9, 0, &watchdog))
2230 2231
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2232
			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2233 2234
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
2235
			if (kstrtoint(opt + 6, 0, &pause))
2236
				goto err;
2237 2238 2239
		} else if (!strncmp(opt, "eee_timer:", 6)) {
			if (kstrtoint(opt + 10, 0, &eee_timer))
				goto err;
2240
		}
2241 2242
	}
	return 0;
2243 2244 2245 2246

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2247 2248 2249 2250
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif
2251 2252 2253 2254

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");