stmmac_main.c 62.9 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
40
#include <linux/if.h>
41 42
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
43
#include <linux/slab.h>
44
#include <linux/prefetch.h>
45 46 47 48
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
49
#include "stmmac.h"
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
#ifdef STMMAC_TX_DEBUG
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

90
int phyaddr = -1;
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

/* Pay attention to tune this parameter; take care of both
 * hardware capability and network stabitily/performance impact.
 * Many tests showed that ~4ms latency seems to be good enough. */
#ifdef CONFIG_STMMAC_TIMER
#define DEFAULT_PERIODIC_RATE	256
static int tmrate = DEFAULT_PERIODIC_RATE;
module_param(tmrate, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
#endif

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

136 137 138 139 140 141
#define STMMAC_DEFAULT_LPI_TIMER	1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))

142 143
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

144 145 146 147 148
#ifdef CONFIG_STMMAC_DEBUG_FS
static int stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(void);
#endif

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
170 171
	if (eee_timer < 0)
		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
172 173
}

174 175 176 177 178
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
#ifdef CONFIG_HAVE_CLK
	u32 clk_rate;

179 180 181
	if (IS_ERR(priv->stmmac_clk))
		return;

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
	clk_rate = clk_get_rate(priv->stmmac_clk);

	/* Platform provided default clk_csr would be assumed valid
	 * for all other cases except for the below mentioned ones. */
	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
		if (clk_rate < CSR_F_35M)
			priv->clk_csr = STMMAC_CSR_20_35M;
		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
			priv->clk_csr = STMMAC_CSR_35_60M;
		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
			priv->clk_csr = STMMAC_CSR_60_100M;
		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
			priv->clk_csr = STMMAC_CSR_100_150M;
		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
			priv->clk_csr = STMMAC_CSR_150_250M;
		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
			priv->clk_csr = STMMAC_CSR_250_300M;
	} /* For values higher than the IEEE 802.3 specified frequency
	   * we can not estimate the proper divider as it is not known
	   * the frequency of clk_csr_i. So we do not change the default
	   * divider. */
#endif
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

228 229 230 231 232 233 234 235 236 237 238 239
/* On some ST platforms, some HW system configuraton registers have to be
 * set according to the link speed negotiated.
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
	/* Check and enter in LPI mode */
	if ((priv->dirty_tx == priv->cur_tx) &&
	    (priv->tx_path_in_lpi_mode == false))
		priv->hw->mac->set_eee_mode(priv->ioaddr);
}

void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
	/* Exit and disable EEE in case of we are are in LPI state. */
	priv->hw->mac->reset_eee_mode(priv->ioaddr);
	del_timer_sync(&priv->eee_ctrl_timer);
	priv->tx_path_in_lpi_mode = false;
}

/**
 * stmmac_eee_ctrl_timer
 * @arg : data hook
 * Description:
 *  If there is no data transfer and if we are not in LPI state,
 *  then MAC Transmitter can be moved to LPI state.
 */
static void stmmac_eee_ctrl_timer(unsigned long arg)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)arg;

	stmmac_enable_eee_mode(priv);
	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
}

/**
 * stmmac_eee_init
 * @priv: private device pointer
 * Description:
 *  If the EEE support has been enabled while configuring the driver,
 *  if the GMAC actually supports the EEE (from the HW cap reg) and the
 *  phy can also manage EEE, so enable the LPI state and start the timer
 *  to verify if the tx path can enter in LPI state.
 */
bool stmmac_eee_init(struct stmmac_priv *priv)
{
	bool ret = false;

	/* MAC core supports the EEE feature. */
	if (priv->dma_cap.eee) {
		/* Check if the PHY supports EEE */
		if (phy_init_eee(priv->phydev, 1))
			goto out;

		priv->eee_active = 1;
		init_timer(&priv->eee_ctrl_timer);
		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
		priv->eee_ctrl_timer.data = (unsigned long)priv;
		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
		add_timer(&priv->eee_ctrl_timer);

		priv->hw->mac->set_eee_timer(priv->ioaddr,
					     STMMAC_DEFAULT_LIT_LS_TIMER,
					     priv->tx_lpi_timer);

		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");

		ret = true;
	}
out:
	return ret;
}

static void stmmac_eee_adjust(struct stmmac_priv *priv)
{
	/* When the EEE has been already initialised we have to
	 * modify the PLS bit in the LPI ctrl & status reg according
	 * to the PHY link status. For this reason.
	 */
	if (priv->eee_enabled)
		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
339

340
	if (phydev->link) {
341
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
342 343 344 345 346 347

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
348
				ctrl &= ~priv->hw->link.duplex;
349
			else
350
				ctrl |= priv->hw->link.duplex;
351 352 353 354
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
355
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
356
						 fc, pause_time);
357 358 359 360 361

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
362
				if (likely(priv->plat->has_gmac))
363
					ctrl &= ~priv->hw->link.port;
364
					stmmac_hw_fix_mac_speed(priv);
365 366 367
				break;
			case 100:
			case 10:
368
				if (priv->plat->has_gmac) {
369
					ctrl |= priv->hw->link.port;
370
					if (phydev->speed == SPEED_100) {
371
						ctrl |= priv->hw->link.speed;
372
					} else {
373
						ctrl &= ~(priv->hw->link.speed);
374 375
					}
				} else {
376
					ctrl &= ~priv->hw->link.port;
377
				}
378
				stmmac_hw_fix_mac_speed(priv);
379 380 381 382 383 384 385 386 387 388 389
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

390
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

406 407
	stmmac_eee_adjust(priv);

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
425
	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
426
	char bus_id[MII_BUS_ID_SIZE];
427
	int interface = priv->plat->interface;
428 429 430 431
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

432 433 434 435 436 437 438
	if (priv->plat->phy_bus_name)
		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
				priv->plat->phy_bus_name, priv->plat->bus_id);
	else
		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
				priv->plat->bus_id);

439
	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
440
		 priv->plat->phy_addr);
441
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
442

443 444
	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 0,
			     interface);
445 446 447 448 449 450

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

451
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
452 453 454 455
	if ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))
		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
					 SUPPORTED_1000baseT_Full);
456

457 458 459 460 461 462 463 464 465 466 467 468
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
469
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

	priv->phydev = phydev;

	return 0;
}

/**
 * display_ring
 * @p: pointer to the ring.
 * @size: size of the ring.
 * Description: display all the descriptors within the ring.
 */
static void display_ring(struct dma_desc *p, int size)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	for (i = 0; i < size; i++) {
		struct tmp_s *x = (struct tmp_s *)(p + i);
		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
		       i, (unsigned int)virt_to_phys(&p[i]),
		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
		       x->b, x->c);
		pr_info("\n");
	}
}

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

516 517 518 519
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
520 521
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
522 523 524 525 526 527 528 529
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	struct sk_buff *skb;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
530 531 532
	unsigned int bfsize;
	int dis_ic = 0;
	int des3_as_data_buf = 0;
533

534 535 536 537 538 539
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);

	if (bfsize == BUF_SIZE_16KiB)
		des3_as_data_buf = 1;
540
	else
541
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
542

543 544 545 546 547
#ifdef CONFIG_STMMAC_TIMER
	/* Disable interrupts on completion for the reception if timer is on */
	if (likely(priv->tm->enable))
		dis_ic = 1;
#endif
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
	priv->rx_skbuff =
	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
	priv->dma_rx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
				       GFP_KERNEL);
	priv->dma_tx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);

	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
		return;
	}

575
	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
576 577 578 579 580 581 582 583 584 585 586
	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
	    dev->name, priv->dma_rx, priv->dma_tx,
	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);

	/* RX INITIALIZATION */
	DBG(probe, INFO, "stmmac: SKB addresses:\n"
			 "skb\t\tskb data\tdma data\n");

	for (i = 0; i < rxsize; i++) {
		struct dma_desc *p = priv->dma_rx + i;

587 588
		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
					 GFP_KERNEL);
589 590 591 592
		if (unlikely(skb == NULL)) {
			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
			break;
		}
593
		skb_reserve(skb, NET_IP_ALIGN);
594 595 596 597 598
		priv->rx_skbuff[i] = skb;
		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						bfsize, DMA_FROM_DEVICE);

		p->des2 = priv->rx_skbuff_dma[i];
599 600 601

		priv->hw->ring->init_desc3(des3_as_data_buf, p);

602 603 604 605 606 607 608 609 610 611 612 613 614
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
		priv->tx_skbuff[i] = NULL;
		priv->dma_tx[i].des2 = 0;
	}
615 616 617 618 619 620

	/* In case of Chained mode this sets the des3 to the next
	 * element in the chain */
	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);

621 622 623 624
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

	/* Clear the Rx/Tx descriptors */
625 626
	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

	if (netif_msg_hw(priv)) {
		pr_info("RX descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
		pr_info("TX descriptor ring:\n");
		display_ring(priv->dma_tx, txsize);
	}
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
			struct dma_desc *p = priv->dma_tx + i;
			if (p->des2)
				dma_unmap_single(priv->device, p->des2,
659 660
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
	dma_free_coherent(priv->device,
			  priv->dma_tx_size * sizeof(struct dma_desc),
			  priv->dma_tx, priv->dma_tx_phy);
	dma_free_coherent(priv->device,
			  priv->dma_rx_size * sizeof(struct dma_desc),
			  priv->dma_rx, priv->dma_rx_phy);
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
690
 *  or Store-And-Forward capability.
691 692 693
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
694 695 696 697 698
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
699 700 701 702 703 704 705 706 707
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
708 709 710 711 712 713 714 715 716 717 718
}

/**
 * stmmac_tx:
 * @priv: private driver structure
 * Description: it reclaims resources after transmission completes.
 */
static void stmmac_tx(struct stmmac_priv *priv)
{
	unsigned int txsize = priv->dma_tx_size;

719 720
	spin_lock(&priv->tx_lock);

721 722 723 724 725 726 727
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
		struct dma_desc *p = priv->dma_tx + entry;

		/* Check if the descriptor is owned by the DMA. */
728
		if (priv->hw->desc->get_tx_owner(p))
729 730 731
			break;

		/* Verify tx error by looking at the last segment */
732
		last = priv->hw->desc->get_tx_ls(p);
733 734
		if (likely(last)) {
			int tx_error =
735 736
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
737
							  priv->ioaddr);
738 739 740 741 742 743 744 745 746 747 748
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

		if (likely(p->des2))
			dma_unmap_single(priv->device, p->des2,
749
					 priv->hw->desc->get_tx_len(p),
750
					 DMA_TO_DEVICE);
751
		priv->hw->ring->clean_desc3(p);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

		if (likely(skb != NULL)) {
			/*
			 * If there's room in the queue (limit it to size)
			 * we add this skb back into the pool,
			 * if it's the right size.
			 */
			if ((skb_queue_len(&priv->rx_recycle) <
				priv->dma_rx_size) &&
				skb_recycle_check(skb, priv->dma_buf_sz))
				__skb_queue_head(&priv->rx_recycle, skb);
			else
				dev_kfree_skb(skb);

			priv->tx_skbuff[entry] = NULL;
		}

769
		priv->hw->desc->release_tx_desc(p);
770

771
		priv->dirty_tx++;
772 773 774 775 776 777 778 779 780 781 782
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
783 784 785 786 787

	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
		stmmac_enable_eee_mode(priv);
		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
	}
788
	spin_unlock(&priv->tx_lock);
789 790 791 792
}

static inline void stmmac_enable_irq(struct stmmac_priv *priv)
{
793 794 795 796
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
	else
797
#endif
798
		priv->hw->dma->enable_dma_irq(priv->ioaddr);
799 800 801 802
}

static inline void stmmac_disable_irq(struct stmmac_priv *priv)
{
803 804 805 806
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_stop();
	else
807
#endif
808
		priv->hw->dma->disable_dma_irq(priv->ioaddr);
809 810 811 812 813 814 815
}

static int stmmac_has_work(struct stmmac_priv *priv)
{
	unsigned int has_work = 0;
	int rxret, tx_work = 0;

816
	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
		(priv->cur_rx % priv->dma_rx_size));

	if (priv->dirty_tx != priv->cur_tx)
		tx_work = 1;

	if (likely(!rxret || tx_work))
		has_work = 1;

	return has_work;
}

static inline void _stmmac_schedule(struct stmmac_priv *priv)
{
	if (likely(stmmac_has_work(priv))) {
		stmmac_disable_irq(priv);
		napi_schedule(&priv->napi);
	}
}

#ifdef CONFIG_STMMAC_TIMER
void stmmac_schedule(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	priv->xstats.sched_timer_n++;

	_stmmac_schedule(priv);
}

static void stmmac_no_timer_started(unsigned int x)
{;
};

static void stmmac_no_timer_stopped(void)
{;
};
#endif

/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
	netif_stop_queue(priv->dev);

865
	priv->hw->dma->stop_tx(priv->ioaddr);
866
	dma_free_tx_skbufs(priv);
867
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
868 869
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
870
	priv->hw->dma->start_tx(priv->ioaddr);
871 872 873 874 875 876

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}


877 878 879 880
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

881
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
882 883 884 885 886 887 888
	if (likely(status == handle_tx_rx))
		_stmmac_schedule(priv);

	else if (unlikely(status == tx_hard_error_bump_tc)) {
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
889
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
890
			priv->xstats.threshold = tc;
891
		}
892 893
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
894 895
}

896 897 898 899 900
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

G
Giuseppe CAVALLARO 已提交
901 902
	/* Mask MMC irq, counters are managed in SW and registers
	 * are cleared on each READ eventually. */
903
	dwmac_mmc_intr_all_mask(priv->ioaddr);
G
Giuseppe CAVALLARO 已提交
904 905 906 907 908

	if (priv->dma_cap.rmon) {
		dwmac_mmc_ctrl(priv->ioaddr, mode);
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
909
		pr_info(" No MAC Management Counters available\n");
910 911
}

912 913 914 915 916 917 918 919 920 921
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

922
		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
923 924 925 926 927 928
			uid, synid);

		return synid;
	}
	return 0;
}
929

930 931
/**
 * stmmac_selec_desc_mode
932 933 934
 * @priv : private structure
 * Description: select the Enhanced/Alternate or Normal descriptors
 */
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
	if (priv->plat->enh_desc) {
		pr_info(" Enhanced/Alternate descriptors\n");
		priv->hw->desc = &enh_desc_ops;
	} else {
		pr_info(" Normal descriptors\n");
		priv->hw->desc = &ndesc_ops;
	}
}

/**
 * stmmac_get_hw_features
 * @priv : private device pointer
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
954 955 956
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
957
	u32 hw_cap = 0;
958

959 960
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
961

962 963 964 965 966 967 968 969 970 971 972 973
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
974
		/* MMC */
975
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
976
		/* IEEE 1588-2002*/
977 978
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
979
		/* IEEE 1588-2008*/
980 981
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
982
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
983 984
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
985
		/* TX and RX csum */
986 987 988 989 990 991 992
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
993
		/* TX and RX number of channels */
994 995 996 997
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
998
		/* Alternate (enhanced) DESC mode*/
999 1000
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1001

1002
	}
1003 1004 1005 1006

	return hw_cap;
}

1007 1008 1009 1010 1011 1012 1013 1014 1015
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	/* verify if the MAC address is valid, in case of failures it
	 * generates a random MAC address */
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
		priv->hw->mac->get_umac_addr((void __iomem *)
					     priv->dev->base_addr,
					     priv->dev->dev_addr, 0);
		if  (!is_valid_ether_addr(priv->dev->dev_addr))
1016
			eth_hw_addr_random(priv->dev);
1017 1018 1019 1020 1021
	}
	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
						   priv->dev->dev_addr);
}

1022 1023 1024
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1025
	int mixed_burst = 0;
1026 1027 1028 1029 1030 1031 1032

	/* Some DMA parameters can be passed from the platform;
	 * in case of these are not passed we keep a default
	 * (good for all the chips) and init the DMA! */
	if (priv->plat->dma_cfg) {
		pbl = priv->plat->dma_cfg->pbl;
		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1033
		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1034 1035 1036
		burst_len = priv->plat->dma_cfg->burst_len;
	}

1037
	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1038 1039 1040 1041
				   burst_len, priv->dma_tx_phy,
				   priv->dma_rx_phy);
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

#ifdef CONFIG_STMMAC_TIMER
1057
	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
1058 1059
	if (unlikely(priv->tm == NULL))
		return -ENOMEM;
1060

1061 1062
	priv->tm->freq = tmrate;

1063 1064
	/* Test if the external timer can be actually used.
	 * In case of failure continue without timer. */
1065
	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
1066
		pr_warning("stmmaceth: cannot attach the external timer.\n");
1067 1068 1069
		priv->tm->freq = 0;
		priv->tm->timer_start = stmmac_no_timer_started;
		priv->tm->timer_stop = stmmac_no_timer_stopped;
1070 1071
	} else
		priv->tm->enable = 1;
1072
#endif
1073 1074 1075 1076
	stmmac_clk_enable(priv);

	stmmac_check_ether_addr(priv);

1077 1078 1079 1080 1081
	ret = stmmac_init_phy(dev);
	if (unlikely(ret)) {
		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
		goto open_error;
	}
1082 1083 1084 1085 1086 1087 1088 1089

	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
1090
	ret = stmmac_init_dma_engine(priv);
1091
	if (ret < 0) {
1092
		pr_err("%s: DMA initialization failed\n", __func__);
1093
		goto open_error;
1094 1095 1096
	}

	/* Copy the MAC addr into the HW  */
1097
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1098

1099
	/* If required, perform hw setup of the bus. */
1100 1101
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
1102

1103
	/* Initialize the MAC Core */
1104
	priv->hw->mac->core_init(priv->ioaddr);
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	/* Request the Wake IRQ in case of another line is used for WoL */
	if (priv->wol_irq != dev->irq) {
		ret = request_irq(priv->wol_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
			goto open_error_wolirq;
		}
	}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	/* Request the IRQ lines */
	if (priv->lpi_irq != -ENXIO) {
		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
				  dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
			       __func__, priv->lpi_irq, ret);
			goto open_error_lpiirq;
		}
	}

1137
	/* Enable the MAC Rx/Tx */
1138
	stmmac_set_mac(priv->ioaddr, true);
1139 1140 1141 1142 1143 1144 1145 1146

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

G
Giuseppe CAVALLARO 已提交
1147
	stmmac_mmc_setup(priv);
1148

1149 1150 1151
#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(dev);
	if (ret < 0)
1152
		pr_warning("%s: failed debugFS registration\n", __func__);
1153
#endif
1154 1155
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1156 1157
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1158 1159 1160 1161

#ifdef CONFIG_STMMAC_TIMER
	priv->tm->timer_start(tmrate);
#endif
1162

1163 1164
	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
1165 1166
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
1167 1168 1169 1170 1171
	}

	if (priv->phydev)
		phy_start(priv->phydev);

1172 1173 1174
	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
	priv->eee_enabled = stmmac_eee_init(priv);

1175 1176 1177
	napi_enable(&priv->napi);
	skb_queue_head_init(&priv->rx_recycle);
	netif_start_queue(dev);
1178

1179
	return 0;
1180

1181 1182 1183 1184
open_error_lpiirq:
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);

1185 1186 1187
open_error_wolirq:
	free_irq(dev->irq, dev);

1188 1189 1190 1191 1192 1193 1194
open_error:
#ifdef CONFIG_STMMAC_TIMER
	kfree(priv->tm);
#endif
	if (priv->phydev)
		phy_disconnect(priv->phydev);

1195
	stmmac_clk_disable(priv);
1196

1197
	return ret;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

1210 1211 1212
	if (priv->eee_enabled)
		del_timer_sync(&priv->eee_ctrl_timer);

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

#ifdef CONFIG_STMMAC_TIMER
	/* Stop and release the timer */
	stmmac_close_ext_timer();
	if (priv->tm != NULL)
		kfree(priv->tm);
#endif
	napi_disable(&priv->napi);
	skb_queue_purge(&priv->rx_recycle);

	/* Free the IRQ lines */
	free_irq(dev->irq, dev);
1233 1234
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);
1235 1236
	if (priv->lpi_irq != -ENXIO)
		free_irq(priv->lpi_irq, dev);
1237 1238

	/* Stop TX/RX DMA and clear the descriptors */
1239 1240
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1241 1242 1243 1244

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1245
	/* Disable the MAC Rx/Tx */
1246
	stmmac_set_mac(priv->ioaddr, false);
1247 1248 1249

	netif_carrier_off(dev);

1250 1251 1252
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif
1253
	stmmac_clk_disable(priv);
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	return 0;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
	int i, csum_insertion = 0;
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1272
	unsigned int nopaged_len = skb_headlen(skb);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1284 1285
	spin_lock(&priv->tx_lock);

1286 1287 1288
	if (priv->tx_path_in_lpi_mode)
		stmmac_disable_eee_mode(priv);

1289 1290 1291 1292 1293 1294 1295
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
		pr_info("stmmac xmit:\n"
		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1296
		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1297 1298 1299
		       !skb_is_gso(skb) ? "isn't" : "is");
#endif

1300
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1301 1302 1303 1304 1305 1306 1307 1308

	desc = priv->dma_tx + entry;
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
		       "\t\tn_frags: %d, ip_summed: %d\n",
1309
		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1310 1311
#endif
	priv->tx_skbuff[entry] = skb;
1312 1313 1314

	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1315 1316 1317 1318
		desc = priv->dma_tx + entry;
	} else {
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1319 1320
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
						csum_insertion);
1321 1322 1323
	}

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1324 1325
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1326 1327 1328 1329 1330

		entry = (++priv->cur_tx) % txsize;
		desc = priv->dma_tx + entry;

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1331 1332
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1333
		priv->tx_skbuff[entry] = NULL;
1334
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1335
		wmb();
1336
		priv->hw->desc->set_tx_owner(desc);
1337
		wmb();
1338 1339 1340
	}

	/* Interrupt on completition only for the latest segment */
1341
	priv->hw->desc->close_tx_desc(desc);
1342

1343
#ifdef CONFIG_STMMAC_TIMER
1344 1345
	/* Clean IC while using timer */
	if (likely(priv->tm->enable))
1346
		priv->hw->desc->clear_tx_ic(desc);
1347
#endif
1348 1349 1350

	wmb();

1351
	/* To avoid raise condition */
1352
	priv->hw->desc->set_tx_owner(first);
1353
	wmb();
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
		display_ring(priv->dma_tx, txsize);
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1375 1376
	skb_tx_timestamp(skb);

1377 1378
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1379 1380
	spin_unlock(&priv->tx_lock);

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;
	struct dma_desc *p = priv->dma_rx;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

			skb = __skb_dequeue(&priv->rx_recycle);
			if (skb == NULL)
				skb = netdev_alloc_skb_ip_align(priv->dev,
								bfsize);

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1409 1410 1411 1412

			if (unlikely(priv->plat->has_gmac))
				priv->hw->ring->refill_desc3(bfsize, p + entry);

1413 1414
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1415
		wmb();
1416
		priv->hw->desc->set_rx_owner(p + entry);
1417
		wmb();
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	}
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;
	struct dma_desc *p = priv->dma_rx + entry;
	struct dma_desc *p_next;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
	}
#endif
1436
	while (!priv->hw->desc->get_rx_owner(p)) {
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		int status;

		if (count >= limit)
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
		p_next = priv->dma_rx + next_entry;
		prefetch(p_next);

		/* read the status of the incoming frame */
1449 1450
		status = (priv->hw->desc->rx_status(&priv->dev->stats,
						    &priv->xstats, p));
1451 1452 1453 1454
		if (unlikely(status == discard_frame))
			priv->dev->stats.rx_errors++;
		else {
			struct sk_buff *skb;
1455
			int frame_len;
1456

1457 1458
			frame_len = priv->hw->desc->get_rx_frame_len(p,
					priv->plat->rx_coe);
1459 1460 1461 1462
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

1494
			if (unlikely(!priv->plat->rx_coe)) {
1495
				/* No RX COE for old mac10/100 devices */
1496
				skb_checksum_none_assert(skb);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
				netif_receive_skb(skb);
			} else {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
				napi_gro_receive(&priv->napi, skb);
			}

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
		p = p_next;	/* use prefetched values */
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
 *   This function implements the the reception process.
 *   Also it runs the TX completion thread
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

	priv->xstats.poll_n++;
	stmmac_tx(priv);
	work_done = stmmac_rx(priv, budget);

	if (work_done < budget) {
		napi_complete(napi);
		stmmac_enable_irq(priv);
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
 *   complete within a reasonable tmrate. The driver will mark the error in the
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
1582
 *  stmmac_set_rx_mode - entry point for multicast addressing
1583 1584 1585 1586 1587 1588 1589
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
1590
static void stmmac_set_rx_mode(struct net_device *dev)
1591 1592 1593 1594
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
1595
	priv->hw->mac->set_filter(dev, priv->synopsys_id);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

1620
	if (priv->plat->enh_desc)
1621 1622
		max_mtu = JUMBO_LEN;
	else
1623
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1624 1625 1626 1627 1628 1629

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

1630 1631 1632 1633 1634 1635
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

1636 1637
static netdev_features_t stmmac_fix_features(struct net_device *dev,
	netdev_features_t features)
1638 1639 1640
{
	struct stmmac_priv *priv = netdev_priv(dev);

1641
	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1642
		features &= ~NETIF_F_RXCSUM;
1643 1644
	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
		features &= ~NETIF_F_IPV6_CSUM;
1645 1646 1647
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

1648 1649 1650 1651
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
1652 1653
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
1654

1655
	return features;
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	/* To handle GMAC own interrupts */
	if (priv->plat->has_gmac) {
		int status = priv->hw->mac->host_irq_status((void __iomem *)
							    dev->base_addr);
		if (unlikely(status)) {
			if (status & core_mmc_tx_irq)
				priv->xstats.mmc_tx_irq_n++;
			if (status & core_mmc_rx_irq)
				priv->xstats.mmc_rx_irq_n++;
			if (status & core_mmc_rx_csum_offload_irq)
				priv->xstats.mmc_rx_csum_offload_irq_n++;
			if (status & core_irq_receive_pmt_irq)
				priv->xstats.irq_receive_pmt_irq_n++;

			/* For LPI we need to save the tx status */
			if (status & core_irq_tx_path_in_lpi_mode) {
				priv->xstats.irq_tx_path_in_lpi_mode_n++;
				priv->tx_path_in_lpi_mode = true;
			}
			if (status & core_irq_tx_path_exit_lpi_mode) {
				priv->xstats.irq_tx_path_exit_lpi_mode_n++;
				priv->tx_path_in_lpi_mode = false;
			}
			if (status & core_irq_rx_path_in_lpi_mode)
				priv->xstats.irq_rx_path_in_lpi_mode_n++;
			if (status & core_irq_rx_path_exit_lpi_mode)
				priv->xstats.irq_rx_path_exit_lpi_mode_n++;
		}
	}
1697

1698
	/* To handle DMA interrupts */
1699
	stmmac_dma_interrupt(priv);
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, just the
 *  phy_mii_ioctl(...) can be invoked.
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1728
	int ret;
1729 1730 1731 1732

	if (!netif_running(dev))
		return -EINVAL;

1733 1734 1735 1736 1737
	if (!priv->phydev)
		return -EINVAL;

	ret = phy_mii_ioctl(priv->phydev, rq, cmd);

1738 1739 1740
	return ret;
}

1741 1742 1743
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
1744
static struct dentry *stmmac_dma_cap;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

	seq_printf(seq, "=======================\n");
	seq_printf(seq, " RX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	seq_printf(seq, "\n");
	seq_printf(seq, "=======================\n");
	seq_printf(seq, "  TX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_tx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
1795
	.release = single_release,
1796 1797
};

1798 1799 1800 1801 1802
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

1803
	if (!priv->hw_cap_support) {
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
1867
	.release = single_release,
1868 1869
};

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1906 1907 1908 1909 1910 1911
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
1912
	debugfs_remove(stmmac_dma_cap);
1913 1914 1915 1916
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

1917 1918 1919 1920 1921
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
1922
	.ndo_fix_features = stmmac_fix_features,
1923
	.ndo_set_rx_mode = stmmac_set_rx_mode,
1924 1925 1926 1927 1928 1929 1930 1931 1932
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
/**
 *  stmmac_hw_init - Init the MAC device
 *  @priv : pointer to the private device structure.
 *  Description: this function detects which MAC device
 *  (GMAC/MAC10-100) has to attached, checks the HW capability
 *  (if supported) and sets the driver's features (for example
 *  to use the ring or chaine mode or support the normal/enh
 *  descriptor structure).
 */
static int stmmac_hw_init(struct stmmac_priv *priv)
{
	int ret = 0;
	struct mac_device_info *mac;

	/* Identify the MAC HW device */
1948 1949
	if (priv->plat->has_gmac) {
		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1950
		mac = dwmac1000_setup(priv->ioaddr);
1951
	} else {
1952
		mac = dwmac100_setup(priv->ioaddr);
1953
	}
1954 1955 1956 1957 1958 1959 1960 1961 1962
	if (!mac)
		return -ENOMEM;

	priv->hw = mac;

	/* To use the chained or ring mode */
	priv->hw->ring = &ring_mode_ops;

	/* Get and dump the chip ID */
1963
	priv->synopsys_id = stmmac_get_synopsys_id(priv);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976

	/* Get the HW capability (new GMAC newer than 3.50a) */
	priv->hw_cap_support = stmmac_get_hw_features(priv);
	if (priv->hw_cap_support) {
		pr_info(" DMA HW capability register supported");

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1977 1978 1979 1980 1981 1982 1983 1984

		priv->plat->tx_coe = priv->dma_cap.tx_coe;

		if (priv->dma_cap.rx_coe_type2)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
		else if (priv->dma_cap.rx_coe_type1)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;

1985 1986 1987 1988 1989 1990
	} else
		pr_info(" No HW DMA feature register supported");

	/* Select the enhnaced/normal descriptor structures */
	stmmac_selec_desc_mode(priv);

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	/* Enable the IPC (Checksum Offload) and check if the feature has been
	 * enabled during the core configuration. */
	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
	if (!ret) {
		pr_warning(" RX IPC Checksum Offload not configured.\n");
		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
	}

	if (priv->plat->rx_coe)
		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
			priv->plat->rx_coe);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	if (priv->plat->tx_coe)
		pr_info(" TX Checksum insertion supported\n");

	if (priv->plat->pmt) {
		pr_info(" Wake-Up On Lan supported\n");
		device_set_wakeup_capable(priv->device, 1);
	}

	return ret;
}

2013
/**
2014 2015
 * stmmac_dvr_probe
 * @device: device pointer
2016 2017
 * @plat_dat: platform data pointer
 * @addr: iobase memory address
2018 2019
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
2020
 */
2021
struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2022 2023
				     struct plat_stmmacenet_data *plat_dat,
				     void __iomem *addr)
2024 2025
{
	int ret = 0;
2026 2027
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
2028

2029
	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2030
	if (!ndev)
2031 2032 2033 2034 2035 2036 2037
		return NULL;

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
2038

2039
	ether_setup(ndev);
2040

2041
	stmmac_set_ethtool_ops(ndev);
2042 2043 2044 2045 2046 2047 2048
	priv->pause = pause;
	priv->plat = plat_dat;
	priv->ioaddr = addr;
	priv->dev->base_addr = (unsigned long)addr;

	/* Verify driver arguments */
	stmmac_verify_args();
2049

2050 2051 2052 2053 2054 2055 2056 2057 2058
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

	/* Init MAC and get the capabilities */
	stmmac_hw_init(priv);

	ndev->netdev_ops = &stmmac_netdev_ops;
2059

2060 2061
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			    NETIF_F_RXCSUM;
2062 2063
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2064 2065
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
2066
	ndev->features |= NETIF_F_HW_VLAN_RX;
2067 2068 2069 2070 2071 2072
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

2073
	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2074

2075
	spin_lock_init(&priv->lock);
2076
	spin_lock_init(&priv->tx_lock);
2077

2078
	ret = register_netdev(ndev);
2079
	if (ret) {
2080
		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2081
		goto error;
2082 2083
	}

2084
	if (stmmac_clk_get(priv))
2085
		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2086

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	/* If a specific clk_csr value is passed from the platform
	 * this means that the CSR Clock Range selection cannot be
	 * changed at run-time and it is fixed. Viceversa the driver'll try to
	 * set the MDC clock dynamically according to the csr actual
	 * clock input.
	 */
	if (!priv->plat->clk_csr)
		stmmac_clk_csr_set(priv);
	else
		priv->clk_csr = priv->plat->clk_csr;

2098 2099 2100 2101 2102 2103 2104 2105
	/* MDIO bus Registration */
	ret = stmmac_mdio_register(ndev);
	if (ret < 0) {
		pr_debug("%s: MDIO bus (id: %d) registration failed",
			 __func__, priv->plat->bus_id);
		goto error;
	}

2106
	return priv;
2107

2108 2109
error:
	netif_napi_del(&priv->napi);
2110

2111 2112
	unregister_netdev(ndev);
	free_netdev(ndev);
2113

2114
	return NULL;
2115 2116 2117 2118
}

/**
 * stmmac_dvr_remove
2119
 * @ndev: net device pointer
2120
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2121
 * changes the link status, releases the DMA descriptor rings.
2122
 */
2123
int stmmac_dvr_remove(struct net_device *ndev)
2124
{
2125
	struct stmmac_priv *priv = netdev_priv(ndev);
2126 2127 2128

	pr_info("%s:\n\tremoving driver", __func__);

2129 2130
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
2131

2132
	stmmac_set_mac(priv->ioaddr, false);
2133
	stmmac_mdio_unregister(ndev);
2134 2135 2136 2137 2138 2139 2140 2141
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
2142
int stmmac_suspend(struct net_device *ndev)
2143
{
2144
	struct stmmac_priv *priv = netdev_priv(ndev);
2145
	int dis_ic = 0;
2146
	unsigned long flags;
2147

2148
	if (!ndev || !netif_running(ndev))
2149 2150
		return 0;

2151 2152 2153
	if (priv->phydev)
		phy_stop(priv->phydev);

2154
	spin_lock_irqsave(&priv->lock, flags);
2155

2156 2157
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
2158 2159

#ifdef CONFIG_STMMAC_TIMER
2160 2161 2162
	priv->tm->timer_stop();
	if (likely(priv->tm->enable))
		dis_ic = 1;
2163
#endif
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
	/* Clear the Rx/Tx descriptors */
	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
				     dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2177
	else {
2178
		stmmac_set_mac(priv->ioaddr, false);
2179 2180 2181
		/* Disable clock in case of PWM is off */
		stmmac_clk_disable(priv);
	}
2182
	spin_unlock_irqrestore(&priv->lock, flags);
2183 2184 2185
	return 0;
}

2186
int stmmac_resume(struct net_device *ndev)
2187
{
2188
	struct stmmac_priv *priv = netdev_priv(ndev);
2189
	unsigned long flags;
2190

2191
	if (!netif_running(ndev))
2192 2193
		return 0;

2194
	spin_lock_irqsave(&priv->lock, flags);
2195

2196 2197 2198 2199 2200
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
2201
	if (device_may_wakeup(priv->device))
2202
		priv->hw->mac->pmt(priv->ioaddr, 0);
2203 2204 2205
	else
		/* enable the clk prevously disabled */
		stmmac_clk_enable(priv);
2206

2207
	netif_device_attach(ndev);
2208 2209

	/* Enable the MAC and DMA */
2210
	stmmac_set_mac(priv->ioaddr, true);
2211 2212
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
2213 2214

#ifdef CONFIG_STMMAC_TIMER
2215 2216
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
2217 2218 2219
#endif
	napi_enable(&priv->napi);

2220
	netif_start_queue(ndev);
2221

2222
	spin_unlock_irqrestore(&priv->lock, flags);
2223 2224 2225 2226

	if (priv->phydev)
		phy_start(priv->phydev);

2227 2228 2229
	return 0;
}

2230
int stmmac_freeze(struct net_device *ndev)
2231 2232 2233 2234 2235 2236 2237
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

2238
int stmmac_restore(struct net_device *ndev)
2239 2240 2241 2242 2243 2244 2245
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}
#endif /* CONFIG_PM */
2246

2247 2248 2249
/* Driver can be configured w/ and w/ both PCI and Platf drivers
 * depending on the configuration selected.
 */
2250 2251
static int __init stmmac_init(void)
{
2252 2253
	int err_plt = 0;
	int err_pci = 0;
2254

2255 2256
	err_plt = stmmac_register_platform();
	err_pci = stmmac_register_pci();
2257

2258 2259 2260
	if ((err_pci) && (err_plt)) {
		pr_err("stmmac: driver registration failed\n");
		return -EINVAL;
2261 2262
	}

2263
	return 0;
2264 2265 2266 2267
}

static void __exit stmmac_exit(void)
{
2268 2269
	stmmac_unregister_platform();
	stmmac_unregister_pci();
2270 2271 2272 2273 2274
}

module_init(stmmac_init);
module_exit(stmmac_exit);

2275 2276 2277 2278 2279 2280 2281 2282
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
2283
		if (!strncmp(opt, "debug:", 6)) {
2284
			if (kstrtoint(opt + 6, 0, &debug))
2285 2286
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
2287
			if (kstrtoint(opt + 8, 0, &phyaddr))
2288 2289
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2290
			if (kstrtoint(opt + 11, 0, &dma_txsize))
2291 2292
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2293
			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2294 2295
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
2296
			if (kstrtoint(opt + 7, 0, &buf_sz))
2297 2298
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
2299
			if (kstrtoint(opt + 3, 0, &tc))
2300 2301
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
2302
			if (kstrtoint(opt + 9, 0, &watchdog))
2303 2304
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2305
			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2306 2307
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
2308
			if (kstrtoint(opt + 6, 0, &pause))
2309
				goto err;
2310 2311 2312
		} else if (!strncmp(opt, "eee_timer:", 6)) {
			if (kstrtoint(opt + 10, 0, &eee_timer))
				goto err;
2313
#ifdef CONFIG_STMMAC_TIMER
2314
		} else if (!strncmp(opt, "tmrate:", 7)) {
2315
			if (kstrtoint(opt + 7, 0, &tmrate))
2316
				goto err;
2317
#endif
2318
		}
2319 2320
	}
	return 0;
2321 2322 2323 2324

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2325 2326 2327 2328
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif
2329 2330 2331 2332

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");