core.c 264.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
49
#include <linux/sched/clock.h>
50
#include <linux/sched/mm.h>
51 52
#include <linux/proc_ns.h>
#include <linux/mount.h>
T
Thomas Gleixner 已提交
53

54 55
#include "internal.h"

56 57
#include <asm/irq_regs.h>

58 59
typedef int (*remote_function_f)(void *);

60
struct remote_function_call {
61
	struct task_struct	*p;
62
	remote_function_f	func;
63 64
	void			*info;
	int			ret;
65 66 67 68 69 70 71 72
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
73 74 75 76 77 78 79 80 81 82 83
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
104
task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 106
{
	struct remote_function_call data = {
107 108 109
		.p	= p,
		.func	= func,
		.info	= info,
110
		.ret	= -EAGAIN,
111
	};
112
	int ret;
113

114 115 116 117 118
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
119

120
	return ret;
121 122 123 124 125 126 127 128 129 130 131
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
132
static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 134
{
	struct remote_function_call data = {
135 136 137 138
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
139 140 141 142 143 144 145
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

146 147 148 149 150 151 152 153
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
154
{
155 156 157 158 159 160 161 162 163 164 165 166 167
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

168 169 170 171
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
172
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

194 195 196 197 198 199 200 201 202 203 204 205 206
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
207
	struct perf_event_context *ctx = event->ctx;
208 209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210
	int ret = 0;
211 212 213

	WARN_ON_ONCE(!irqs_disabled());

214
	perf_ctx_lock(cpuctx, task_ctx);
215 216 217 218 219
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
220
		if (ctx->task != current) {
221
			ret = -ESRCH;
222 223
			goto unlock;
		}
224 225 226 227 228 229 230 231 232 233 234 235 236

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
237 238 239
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240
	}
241

242
	efs->func(event, cpuctx, ctx, efs->data);
243
unlock:
244 245
	perf_ctx_unlock(cpuctx, task_ctx);

246
	return ret;
247 248 249
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
250 251
{
	struct perf_event_context *ctx = event->ctx;
252
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 254 255 256 257
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
258

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
267 268

	if (!task) {
269
		cpu_function_call(event->cpu, event_function, &efs);
270 271 272
		return;
	}

273 274 275
	if (task == TASK_TOMBSTONE)
		return;

276
again:
277
	if (!task_function_call(task, event_function, &efs))
278 279 280
		return;

	raw_spin_lock_irq(&ctx->lock);
281 282 283 284 285
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
286 287 288
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
289
	}
290 291 292 293 294
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
346 347
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
348 349
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
350

351 352 353 354 355 356 357
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

358 359 360
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
361
	EVENT_TIME = 0x4,
362 363
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
364 365 366
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
367 368 369 370
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
371 372 373 374 375 376 377

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
378
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
381

382 383
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
384
static atomic_t nr_namespaces_events __read_mostly;
385
static atomic_t nr_task_events __read_mostly;
386
static atomic_t nr_freq_events __read_mostly;
387
static atomic_t nr_switch_events __read_mostly;
388

P
Peter Zijlstra 已提交
389 390 391
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;
392
static cpumask_var_t perf_online_mask;
P
Peter Zijlstra 已提交
393

394
/*
395
 * perf event paranoia level:
396 397
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
398
 *   1 - disallow cpu events for unpriv
399
 *   2 - disallow kernel profiling for unpriv
400
 */
401
int sysctl_perf_event_paranoid __read_mostly = 2;
402

403 404
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 406

/*
407
 * max perf event sample rate
408
 */
409 410 411 412 413 414 415 416 417
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
418 419
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420

421
static void update_perf_cpu_limits(void)
422 423 424 425
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
426 427 428 429 430
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431
}
P
Peter Zijlstra 已提交
432

433 434
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
435 436 437 438
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
439
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
440 441 442 443

	if (ret || !write)
		return ret;

444 445 446 447 448 449 450
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
451
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 453 454 455 456 457 458 459 460 461 462 463
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
464
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 466 467 468

	if (ret || !write)
		return ret;

469 470
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
471 472 473 474 475 476
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
477 478 479

	return 0;
}
480

481 482 483 484 485 486 487
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
488
static DEFINE_PER_CPU(u64, running_sample_length);
489

490 491 492
static u64 __report_avg;
static u64 __report_allowed;

493
static void perf_duration_warn(struct irq_work *w)
494
{
495
	printk_ratelimited(KERN_INFO
496 497 498 499
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
500 501 502 503 504 505
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
506 507 508 509
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
510

511
	if (max_len == 0)
512 513
		return;

514 515 516 517 518
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
519 520

	/*
521 522
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 524
	 * from having to maintain a count.
	 */
525 526
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
527 528
		return;

529 530
	__report_avg = avg_len;
	__report_allowed = max_len;
531

532 533 534 535 536 537 538 539 540
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
541

542 543 544 545 546
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547

548
	if (!irq_work_queue(&perf_duration_work)) {
549
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550
			     "kernel.perf_event_max_sample_rate to %d\n",
551
			     __report_avg, __report_allowed,
552 553
			     sysctl_perf_event_sample_rate);
	}
554 555
}

556
static atomic64_t perf_event_id;
557

558 559 560 561
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
562 563 564 565 566
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
567

568
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
569

570
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
571
{
572
	return "pmu";
T
Thomas Gleixner 已提交
573 574
}

575 576 577 578 579
static inline u64 perf_clock(void)
{
	return local_clock();
}

580 581 582 583 584
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
609 610 611 612
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
613
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
652 653
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
654
	/*
655 656
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
657
	 */
658
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
659 660
		return;

661
	cgrp = perf_cgroup_from_task(current, event->ctx);
662 663 664 665 666
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
667 668 669
}

static inline void
670 671
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
672 673 674 675
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

676 677 678 679 680 681
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
682 683
		return;

684
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
685
	info = this_cpu_ptr(cgrp->info);
686
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
687 688
}

689 690
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
691 692 693 694 695 696 697 698 699
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
700
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
701 702
{
	struct perf_cpu_context *cpuctx;
703
	struct list_head *list;
S
Stephane Eranian 已提交
704 705 706
	unsigned long flags;

	/*
707 708
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
709 710 711
	 */
	local_irq_save(flags);

712 713 714
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
715

716 717
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
718

719 720 721 722 723 724 725 726
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
727

728 729 730 731 732 733 734 735 736 737 738 739
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
740
		}
741 742
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
743 744 745 746 747
	}

	local_irq_restore(flags);
}

748 749
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
750
{
751 752 753
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

754
	rcu_read_lock();
755 756
	/*
	 * we come here when we know perf_cgroup_events > 0
757 758
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
759
	 */
760
	cgrp1 = perf_cgroup_from_task(task, NULL);
761
	cgrp2 = perf_cgroup_from_task(next, NULL);
762 763 764 765 766 767 768 769

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770 771

	rcu_read_unlock();
S
Stephane Eranian 已提交
772 773
}

774 775
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
776
{
777 778 779
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

780
	rcu_read_lock();
781 782
	/*
	 * we come here when we know perf_cgroup_events > 0
783 784
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
785
	 */
786 787
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
788 789 790 791 792 793 794 795

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796 797

	rcu_read_unlock();
S
Stephane Eranian 已提交
798 799 800 801 802 803 804 805
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
806 807
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
808

809
	if (!f.file)
S
Stephane Eranian 已提交
810 811
		return -EBADF;

A
Al Viro 已提交
812
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
813
					 &perf_event_cgrp_subsys);
814 815 816 817
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
831
out:
832
	fdput(f);
S
Stephane Eranian 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
877 878 879 880 881 882 883 884 885 886

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
887
	struct list_head *cpuctx_entry;
888 889 890 891 892 893 894 895 896 897 898 899 900

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
901 902 903 904 905 906 907 908
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
			cpuctx->cgrp = event->cgrp;
	} else {
		list_del(cpuctx_entry);
909
		cpuctx->cgrp = NULL;
910
	}
911 912
}

S
Stephane Eranian 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

937 938
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
939 940 941
{
}

942 943
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
944 945 946 947 948 949 950 951 952 953 954
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
955 956
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
985 986 987 988 989 990 991

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
992 993
#endif

994 995 996 997 998 999
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
1000
 * function must be called with interrupts disabled
1001
 */
1002
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 1004 1005 1006 1007 1008 1009 1010 1011
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1012 1013
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1014
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1015 1016 1017
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018

P
Peter Zijlstra 已提交
1019
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 1021
}

1022
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023
{
1024
	struct hrtimer *timer = &cpuctx->hrtimer;
1025
	struct pmu *pmu = cpuctx->ctx.pmu;
1026
	u64 interval;
1027 1028 1029 1030 1031

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1032 1033 1034 1035
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1036 1037 1038
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039

1040
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041

P
Peter Zijlstra 已提交
1042 1043
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044
	timer->function = perf_mux_hrtimer_handler;
1045 1046
}

1047
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048
{
1049
	struct hrtimer *timer = &cpuctx->hrtimer;
1050
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1051
	unsigned long flags;
1052 1053 1054

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1055
		return 0;
1056

P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062 1063
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064

1065
	return 0;
1066 1067
}

P
Peter Zijlstra 已提交
1068
void perf_pmu_disable(struct pmu *pmu)
1069
{
P
Peter Zijlstra 已提交
1070 1071 1072
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1073 1074
}

P
Peter Zijlstra 已提交
1075
void perf_pmu_enable(struct pmu *pmu)
1076
{
P
Peter Zijlstra 已提交
1077 1078 1079
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1080 1081
}

1082
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 1084

/*
1085 1086 1087 1088
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1089
 */
1090
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091
{
1092
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093

1094
	WARN_ON(!irqs_disabled());
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1108 1109
}

1110
static void get_ctx(struct perf_event_context *ctx)
1111
{
1112
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1124
static void put_ctx(struct perf_event_context *ctx)
1125
{
1126 1127 1128
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1129
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130
			put_task_struct(ctx->task);
1131
		call_rcu(&ctx->rcu_head, free_ctx);
1132
	}
1133 1134
}

P
Peter Zijlstra 已提交
1135 1136 1137 1138 1139 1140 1141
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1142 1143 1144 1145
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1146 1147
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1188
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1189 1190 1191
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1192
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1193 1194 1195
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1196 1197
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1210
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1220 1221 1222 1223 1224 1225
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1226 1227 1228 1229 1230 1231 1232
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1233 1234 1235 1236 1237 1238 1239
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1240
{
1241 1242 1243 1244 1245
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1246
		ctx->parent_ctx = NULL;
1247
	ctx->generation++;
1248 1249

	return parent_ctx;
1250 1251
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1274
/*
1275
 * If we inherit events we want to return the parent event id
1276 1277
 * to userspace.
 */
1278
static u64 primary_event_id(struct perf_event *event)
1279
{
1280
	u64 id = event->id;
1281

1282 1283
	if (event->parent)
		id = event->parent->id;
1284 1285 1286 1287

	return id;
}

1288
/*
1289
 * Get the perf_event_context for a task and lock it.
1290
 *
1291 1292 1293
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1294
static struct perf_event_context *
P
Peter Zijlstra 已提交
1295
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296
{
1297
	struct perf_event_context *ctx;
1298

P
Peter Zijlstra 已提交
1299
retry:
1300 1301 1302
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303
	 * part of the read side critical section was irqs-enabled -- see
1304 1305 1306
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307
	 * side critical section has interrupts disabled.
1308
	 */
1309
	local_irq_save(*flags);
1310
	rcu_read_lock();
P
Peter Zijlstra 已提交
1311
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 1313 1314 1315
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1316
		 * perf_event_task_sched_out, though the
1317 1318 1319 1320 1321 1322
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1323
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1324
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325
			raw_spin_unlock(&ctx->lock);
1326
			rcu_read_unlock();
1327
			local_irq_restore(*flags);
1328 1329
			goto retry;
		}
1330

1331 1332
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1333
			raw_spin_unlock(&ctx->lock);
1334
			ctx = NULL;
P
Peter Zijlstra 已提交
1335 1336
		} else {
			WARN_ON_ONCE(ctx->task != task);
1337
		}
1338 1339
	}
	rcu_read_unlock();
1340 1341
	if (!ctx)
		local_irq_restore(*flags);
1342 1343 1344 1345 1346 1347 1348 1349
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1350 1351
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1352
{
1353
	struct perf_event_context *ctx;
1354 1355
	unsigned long flags;

P
Peter Zijlstra 已提交
1356
	ctx = perf_lock_task_context(task, ctxn, &flags);
1357 1358
	if (ctx) {
		++ctx->pin_count;
1359
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 1361 1362 1363
	}
	return ctx;
}

1364
static void perf_unpin_context(struct perf_event_context *ctx)
1365 1366 1367
{
	unsigned long flags;

1368
	raw_spin_lock_irqsave(&ctx->lock, flags);
1369
	--ctx->pin_count;
1370
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 1372
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1384 1385 1386
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1387 1388 1389 1390

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1391 1392 1393
	return ctx ? ctx->time : 0;
}

1394 1395 1396 1397 1398 1399 1400 1401
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1402 1403
	lockdep_assert_held(&ctx->lock);

1404 1405 1406
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1407

S
Stephane Eranian 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1419
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1420 1421
	else if (ctx->is_active)
		run_end = ctx->time;
1422 1423 1424 1425
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1426 1427 1428 1429

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1430
		run_end = perf_event_time(event);
1431 1432

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1433

1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1448 1449 1450 1451 1452 1453 1454
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

1455 1456 1457 1458 1459 1460 1461
	/*
	 * It's 'group type', really, because if our group leader is
	 * pinned, so are we.
	 */
	if (event->group_leader != event)
		event = event->group_leader;

1462 1463 1464 1465 1466 1467 1468
	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1469 1470 1471 1472 1473 1474 1475 1476 1477
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1478
/*
1479
 * Add a event from the lists for its context.
1480 1481
 * Must be called with ctx->mutex and ctx->lock held.
 */
1482
static void
1483
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1484
{
P
Peter Zijlstra 已提交
1485 1486
	lockdep_assert_held(&ctx->lock);

1487 1488
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1489 1490

	/*
1491 1492 1493
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1494
	 */
1495
	if (event->group_leader == event) {
1496 1497
		struct list_head *list;

1498
		event->group_caps = event->event_caps;
1499

1500 1501
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1502
	}
P
Peter Zijlstra 已提交
1503

1504
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1505

1506 1507 1508
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1509
		ctx->nr_stat++;
1510 1511

	ctx->generation++;
1512 1513
}

J
Jiri Olsa 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1523
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1539
		nr += nr_siblings;
1540 1541 1542 1543 1544 1545 1546
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1547
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1548 1549 1550 1551 1552 1553 1554
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1555 1556 1557 1558 1559 1560
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1561 1562 1563
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1564 1565 1566
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1567 1568 1569
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1570 1571 1572
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1573 1574 1575
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1587 1588 1589 1590 1591 1592
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1593 1594 1595 1596 1597 1598
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1599 1600 1601
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1611
	event->id_header_size = size;
1612 1613
}

P
Peter Zijlstra 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1635 1636
static void perf_group_attach(struct perf_event *event)
{
1637
	struct perf_event *group_leader = event->group_leader, *pos;
1638

1639 1640
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1641 1642 1643 1644 1645 1646
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1647 1648 1649 1650 1651
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1652 1653
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1654
	group_leader->group_caps &= event->event_caps;
1655 1656 1657

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1658 1659 1660 1661 1662

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1663 1664
}

1665
/*
1666
 * Remove a event from the lists for its context.
1667
 * Must be called with ctx->mutex and ctx->lock held.
1668
 */
1669
static void
1670
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1671
{
P
Peter Zijlstra 已提交
1672 1673 1674
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1675 1676 1677 1678
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1679
		return;
1680 1681 1682

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1683
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1684

1685 1686
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1687
		ctx->nr_stat--;
1688

1689
	list_del_rcu(&event->event_entry);
1690

1691 1692
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1693

1694
	update_group_times(event);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1705 1706

	ctx->generation++;
1707 1708
}

1709
static void perf_group_detach(struct perf_event *event)
1710 1711
{
	struct perf_event *sibling, *tmp;
1712 1713
	struct list_head *list = NULL;

1714 1715
	lockdep_assert_held(&event->ctx->lock);

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1730
		goto out;
1731 1732 1733 1734
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1735

1736
	/*
1737 1738
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1739
	 * to whatever list we are on.
1740
	 */
1741
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1742 1743
		if (list)
			list_move_tail(&sibling->group_entry, list);
1744
		sibling->group_leader = sibling;
1745 1746

		/* Inherit group flags from the previous leader */
1747
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1748 1749

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1750
	}
1751 1752 1753 1754 1755 1756

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1757 1758
}

1759 1760
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1761
	return event->state == PERF_EVENT_STATE_DEAD;
1762 1763
}

1764
static inline int __pmu_filter_match(struct perf_event *event)
1765 1766 1767 1768 1769
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1791 1792 1793
static inline int
event_filter_match(struct perf_event *event)
{
1794 1795
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1796 1797
}

1798 1799
static void
event_sched_out(struct perf_event *event,
1800
		  struct perf_cpu_context *cpuctx,
1801
		  struct perf_event_context *ctx)
1802
{
1803
	u64 tstamp = perf_event_time(event);
1804
	u64 delta;
P
Peter Zijlstra 已提交
1805 1806 1807 1808

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1809 1810 1811 1812 1813 1814
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1815 1816
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1817
		delta = tstamp - event->tstamp_stopped;
1818
		event->tstamp_running += delta;
1819
		event->tstamp_stopped = tstamp;
1820 1821
	}

1822
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1823
		return;
1824

1825 1826
	perf_pmu_disable(event->pmu);

1827 1828 1829
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1830 1831 1832 1833
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1834
	}
1835

1836
	if (!is_software_event(event))
1837
		cpuctx->active_oncpu--;
1838 1839
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1840 1841
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1842
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1843
		cpuctx->exclusive = 0;
1844 1845

	perf_pmu_enable(event->pmu);
1846 1847
}

1848
static void
1849
group_sched_out(struct perf_event *group_event,
1850
		struct perf_cpu_context *cpuctx,
1851
		struct perf_event_context *ctx)
1852
{
1853
	struct perf_event *event;
1854
	int state = group_event->state;
1855

1856 1857
	perf_pmu_disable(ctx->pmu);

1858
	event_sched_out(group_event, cpuctx, ctx);
1859 1860 1861 1862

	/*
	 * Schedule out siblings (if any):
	 */
1863 1864
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1865

1866 1867
	perf_pmu_enable(ctx->pmu);

1868
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1869 1870 1871
		cpuctx->exclusive = 0;
}

1872
#define DETACH_GROUP	0x01UL
1873

T
Thomas Gleixner 已提交
1874
/*
1875
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1876
 *
1877
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1878 1879
 * remove it from the context list.
 */
1880 1881 1882 1883 1884
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1885
{
1886
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1887

1888
	event_sched_out(event, cpuctx, ctx);
1889
	if (flags & DETACH_GROUP)
1890
		perf_group_detach(event);
1891
	list_del_event(event, ctx);
1892 1893

	if (!ctx->nr_events && ctx->is_active) {
1894
		ctx->is_active = 0;
1895 1896 1897 1898
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1899
	}
T
Thomas Gleixner 已提交
1900 1901 1902
}

/*
1903
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1904
 *
1905 1906
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1907 1908
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1909
 * When called from perf_event_exit_task, it's OK because the
1910
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1911
 */
1912
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1913
{
1914 1915 1916
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1917

1918
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1937 1938
}

1939
/*
1940
 * Cross CPU call to disable a performance event
1941
 */
1942 1943 1944 1945
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1946
{
1947 1948
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1949

1950 1951 1952 1953 1954 1955 1956 1957
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1958 1959
}

1960
/*
1961
 * Disable a event.
1962
 *
1963 1964
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1965
 * remains valid.  This condition is satisifed when called through
1966 1967
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1968 1969
 * goes to exit will block in perf_event_exit_event().
 *
1970
 * When called from perf_pending_event it's OK because event->ctx
1971
 * is the current context on this CPU and preemption is disabled,
1972
 * hence we can't get into perf_event_task_sched_out for this context.
1973
 */
P
Peter Zijlstra 已提交
1974
static void _perf_event_disable(struct perf_event *event)
1975
{
1976
	struct perf_event_context *ctx = event->ctx;
1977

1978
	raw_spin_lock_irq(&ctx->lock);
1979
	if (event->state <= PERF_EVENT_STATE_OFF) {
1980
		raw_spin_unlock_irq(&ctx->lock);
1981
		return;
1982
	}
1983
	raw_spin_unlock_irq(&ctx->lock);
1984

1985 1986 1987 1988 1989 1990
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1991
}
P
Peter Zijlstra 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
2005
EXPORT_SYMBOL_GPL(perf_event_disable);
2006

2007 2008 2009 2010 2011 2012
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2048 2049 2050
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2051
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2052

2053
static int
2054
event_sched_in(struct perf_event *event,
2055
		 struct perf_cpu_context *cpuctx,
2056
		 struct perf_event_context *ctx)
2057
{
2058
	u64 tstamp = perf_event_time(event);
2059
	int ret = 0;
2060

2061 2062
	lockdep_assert_held(&ctx->lock);

2063
	if (event->state <= PERF_EVENT_STATE_OFF)
2064 2065
		return 0;

2066 2067 2068 2069 2070 2071 2072
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2084 2085 2086 2087 2088
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2089 2090
	perf_pmu_disable(event->pmu);

2091 2092
	perf_set_shadow_time(event, ctx, tstamp);

2093 2094
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2095
	if (event->pmu->add(event, PERF_EF_START)) {
2096 2097
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2098 2099
		ret = -EAGAIN;
		goto out;
2100 2101
	}

2102 2103
	event->tstamp_running += tstamp - event->tstamp_stopped;

2104
	if (!is_software_event(event))
2105
		cpuctx->active_oncpu++;
2106 2107
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2108 2109
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2110

2111
	if (event->attr.exclusive)
2112 2113
		cpuctx->exclusive = 1;

2114 2115 2116 2117
out:
	perf_pmu_enable(event->pmu);

	return ret;
2118 2119
}

2120
static int
2121
group_sched_in(struct perf_event *group_event,
2122
	       struct perf_cpu_context *cpuctx,
2123
	       struct perf_event_context *ctx)
2124
{
2125
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2126
	struct pmu *pmu = ctx->pmu;
2127 2128
	u64 now = ctx->time;
	bool simulate = false;
2129

2130
	if (group_event->state == PERF_EVENT_STATE_OFF)
2131 2132
		return 0;

2133
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2134

2135
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2136
		pmu->cancel_txn(pmu);
2137
		perf_mux_hrtimer_restart(cpuctx);
2138
		return -EAGAIN;
2139
	}
2140 2141 2142 2143

	/*
	 * Schedule in siblings as one group (if any):
	 */
2144
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2145
		if (event_sched_in(event, cpuctx, ctx)) {
2146
			partial_group = event;
2147 2148 2149 2150
			goto group_error;
		}
	}

2151
	if (!pmu->commit_txn(pmu))
2152
		return 0;
2153

2154 2155 2156 2157
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2168
	 */
2169 2170
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2171 2172 2173 2174 2175 2176 2177 2178
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2179
	}
2180
	event_sched_out(group_event, cpuctx, ctx);
2181

P
Peter Zijlstra 已提交
2182
	pmu->cancel_txn(pmu);
2183

2184
	perf_mux_hrtimer_restart(cpuctx);
2185

2186 2187 2188
	return -EAGAIN;
}

2189
/*
2190
 * Work out whether we can put this event group on the CPU now.
2191
 */
2192
static int group_can_go_on(struct perf_event *event,
2193 2194 2195 2196
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2197
	 * Groups consisting entirely of software events can always go on.
2198
	 */
2199
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2200 2201 2202
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2203
	 * events can go on.
2204 2205 2206 2207 2208
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2209
	 * events on the CPU, it can't go on.
2210
	 */
2211
	if (event->attr.exclusive && cpuctx->active_oncpu)
2212 2213 2214 2215 2216 2217 2218 2219
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2220 2221
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2222
{
2223 2224
	u64 tstamp = perf_event_time(event);

2225
	list_add_event(event, ctx);
2226
	perf_group_attach(event);
2227 2228 2229
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2230 2231
}

2232 2233 2234
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2235 2236 2237 2238 2239
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2240

2241
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2242 2243
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2244 2245 2246 2247 2248 2249 2250
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2251
	ctx_sched_out(ctx, cpuctx, event_type);
2252 2253
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2281
static void ctx_resched(struct perf_cpu_context *cpuctx,
2282 2283
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2284
{
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2295 2296
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2311 2312
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2313 2314
}

T
Thomas Gleixner 已提交
2315
/*
2316
 * Cross CPU call to install and enable a performance event
2317
 *
2318 2319
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2320
 */
2321
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2322
{
2323 2324
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2325
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2326
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2327
	bool reprogram = true;
2328
	int ret = 0;
T
Thomas Gleixner 已提交
2329

2330
	raw_spin_lock(&cpuctx->ctx.lock);
2331
	if (ctx->task) {
2332 2333
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2334

2335
		reprogram = (ctx->task == current);
2336

2337
		/*
2338 2339 2340 2341 2342
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2343
		 */
2344 2345 2346 2347
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2348

2349
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2350 2351
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2352
	}
2353

2354
	if (reprogram) {
2355 2356
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2357
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2358 2359 2360 2361
	} else {
		add_event_to_ctx(event, ctx);
	}

2362
unlock:
2363
	perf_ctx_unlock(cpuctx, task_ctx);
2364

2365
	return ret;
T
Thomas Gleixner 已提交
2366 2367 2368
}

/*
2369 2370 2371
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2372 2373
 */
static void
2374 2375
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2376 2377
			int cpu)
{
2378
	struct task_struct *task = READ_ONCE(ctx->task);
2379

2380 2381
	lockdep_assert_held(&ctx->mutex);

2382 2383
	if (event->cpu != -1)
		event->cpu = cpu;
2384

2385 2386 2387 2388 2389 2390
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2402 2403 2404
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2424
	 */
2425

2426
	/*
2427 2428 2429 2430
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2431
	 */
2432 2433 2434
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2435 2436 2437 2438
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2439
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2440 2441 2442 2443 2444
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2445 2446 2447
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2448
	/*
2449 2450
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2451
	 */
2452 2453 2454 2455 2456 2457
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2458 2459
}

2460
/*
2461
 * Put a event into inactive state and update time fields.
2462 2463 2464 2465 2466 2467
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2468
static void __perf_event_mark_enabled(struct perf_event *event)
2469
{
2470
	struct perf_event *sub;
2471
	u64 tstamp = perf_event_time(event);
2472

2473
	event->state = PERF_EVENT_STATE_INACTIVE;
2474
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2475
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2476 2477
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2478
	}
2479 2480
}

2481
/*
2482
 * Cross CPU call to enable a performance event
2483
 */
2484 2485 2486 2487
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2488
{
2489
	struct perf_event *leader = event->group_leader;
2490
	struct perf_event_context *task_ctx;
2491

P
Peter Zijlstra 已提交
2492 2493
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2494
		return;
2495

2496 2497 2498
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2499
	__perf_event_mark_enabled(event);
2500

2501 2502 2503
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2504
	if (!event_filter_match(event)) {
2505
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2506
			perf_cgroup_defer_enabled(event);
2507
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2508
		return;
S
Stephane Eranian 已提交
2509
	}
2510

2511
	/*
2512
	 * If the event is in a group and isn't the group leader,
2513
	 * then don't put it on unless the group is on.
2514
	 */
2515 2516
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2517
		return;
2518
	}
2519

2520 2521 2522
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2523

2524
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2525 2526
}

2527
/*
2528
 * Enable a event.
2529
 *
2530 2531
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2532
 * remains valid.  This condition is satisfied when called through
2533 2534
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2535
 */
P
Peter Zijlstra 已提交
2536
static void _perf_event_enable(struct perf_event *event)
2537
{
2538
	struct perf_event_context *ctx = event->ctx;
2539

2540
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2541 2542
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2543
		raw_spin_unlock_irq(&ctx->lock);
2544 2545 2546 2547
		return;
	}

	/*
2548
	 * If the event is in error state, clear that first.
2549 2550 2551 2552
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2553
	 */
2554 2555
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2556
	raw_spin_unlock_irq(&ctx->lock);
2557

2558
	event_function_call(event, __perf_event_enable, NULL);
2559
}
P
Peter Zijlstra 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2572
EXPORT_SYMBOL_GPL(perf_event_enable);
2573

2574 2575 2576 2577 2578
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2579 2580
static int __perf_event_stop(void *info)
{
2581 2582
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2583

2584
	/* if it's already INACTIVE, do nothing */
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2610
		event->pmu->start(event, 0);
2611

2612 2613 2614
	return 0;
}

2615
static int perf_event_stop(struct perf_event *event, int restart)
2616 2617 2618
{
	struct stop_event_data sd = {
		.event		= event,
2619
		.restart	= restart,
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2680
static int _perf_event_refresh(struct perf_event *event, int refresh)
2681
{
2682
	/*
2683
	 * not supported on inherited events
2684
	 */
2685
	if (event->attr.inherit || !is_sampling_event(event))
2686 2687
		return -EINVAL;

2688
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2689
	_perf_event_enable(event);
2690 2691

	return 0;
2692
}
P
Peter Zijlstra 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2708
EXPORT_SYMBOL_GPL(perf_event_refresh);
2709

2710 2711 2712
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2713
{
2714
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2715
	struct perf_event *event;
2716

P
Peter Zijlstra 已提交
2717
	lockdep_assert_held(&ctx->lock);
2718

2719 2720 2721 2722 2723 2724 2725
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2726
		return;
2727 2728
	}

2729
	ctx->is_active &= ~event_type;
2730 2731 2732
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2733 2734 2735 2736 2737
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2738

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2749 2750 2751 2752 2753 2754
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2755 2756
	is_active ^= ctx->is_active; /* changed bits */

2757
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2758
		return;
2759

P
Peter Zijlstra 已提交
2760
	perf_pmu_disable(ctx->pmu);
2761
	if (is_active & EVENT_PINNED) {
2762 2763
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2764
	}
2765

2766
	if (is_active & EVENT_FLEXIBLE) {
2767
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2768
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2769
	}
P
Peter Zijlstra 已提交
2770
	perf_pmu_enable(ctx->pmu);
2771 2772
}

2773
/*
2774 2775 2776 2777 2778 2779
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2780
 */
2781 2782
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2783
{
2784 2785 2786
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2809 2810
}

2811 2812
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2813 2814 2815
{
	u64 value;

2816
	if (!event->attr.inherit_stat)
2817 2818 2819
		return;

	/*
2820
	 * Update the event value, we cannot use perf_event_read()
2821 2822
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2823
	 * we know the event must be on the current CPU, therefore we
2824 2825
	 * don't need to use it.
	 */
2826 2827
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2828 2829
		event->pmu->read(event);
		/* fall-through */
2830

2831 2832
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2833 2834 2835 2836 2837 2838 2839
		break;

	default:
		break;
	}

	/*
2840
	 * In order to keep per-task stats reliable we need to flip the event
2841 2842
	 * values when we flip the contexts.
	 */
2843 2844 2845
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2846

2847 2848
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2849

2850
	/*
2851
	 * Since we swizzled the values, update the user visible data too.
2852
	 */
2853 2854
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2855 2856
}

2857 2858
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2859
{
2860
	struct perf_event *event, *next_event;
2861 2862 2863 2864

	if (!ctx->nr_stat)
		return;

2865 2866
	update_context_time(ctx);

2867 2868
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2869

2870 2871
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2872

2873 2874
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2875

2876
		__perf_event_sync_stat(event, next_event);
2877

2878 2879
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2880 2881 2882
	}
}

2883 2884
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2885
{
P
Peter Zijlstra 已提交
2886
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2887
	struct perf_event_context *next_ctx;
2888
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2889
	struct perf_cpu_context *cpuctx;
2890
	int do_switch = 1;
T
Thomas Gleixner 已提交
2891

P
Peter Zijlstra 已提交
2892 2893
	if (likely(!ctx))
		return;
2894

P
Peter Zijlstra 已提交
2895 2896
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2897 2898
		return;

2899
	rcu_read_lock();
P
Peter Zijlstra 已提交
2900
	next_ctx = next->perf_event_ctxp[ctxn];
2901 2902 2903 2904 2905 2906 2907
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2908
	if (!parent && !next_parent)
2909 2910 2911
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2912 2913 2914 2915 2916 2917 2918 2919 2920
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2921 2922
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2923
		if (context_equiv(ctx, next_ctx)) {
2924 2925
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2926 2927 2928

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2939
			do_switch = 0;
2940

2941
			perf_event_sync_stat(ctx, next_ctx);
2942
		}
2943 2944
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2945
	}
2946
unlock:
2947
	rcu_read_unlock();
2948

2949
	if (do_switch) {
2950
		raw_spin_lock(&ctx->lock);
2951
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2952
		raw_spin_unlock(&ctx->lock);
2953
	}
T
Thomas Gleixner 已提交
2954 2955
}

2956 2957
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2958 2959
void perf_sched_cb_dec(struct pmu *pmu)
{
2960 2961
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2962
	this_cpu_dec(perf_sched_cb_usages);
2963 2964 2965

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2966 2967
}

2968

2969 2970
void perf_sched_cb_inc(struct pmu *pmu)
{
2971 2972 2973 2974 2975
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2976 2977 2978 2979 2980 2981
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2982 2983 2984 2985
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2997
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2998
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2999

3000 3001
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
3002

3003 3004
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
3005

3006
		pmu->sched_task(cpuctx->task_ctx, sched_in);
3007

3008 3009
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3010 3011 3012
	}
}

3013 3014 3015
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
3030 3031
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
3032 3033 3034
{
	int ctxn;

3035 3036 3037
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

3038 3039 3040
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
3041 3042
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
3043 3044 3045 3046 3047 3048

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
3049
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3050
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
3051 3052
}

3053 3054 3055 3056 3057 3058 3059
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3060 3061
}

3062
static void
3063
ctx_pinned_sched_in(struct perf_event_context *ctx,
3064
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
3065
{
3066
	struct perf_event *event;
T
Thomas Gleixner 已提交
3067

3068 3069
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
3070
			continue;
3071
		if (!event_filter_match(event))
3072 3073
			continue;

S
Stephane Eranian 已提交
3074 3075 3076 3077
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

3078
		if (group_can_go_on(event, cpuctx, 1))
3079
			group_sched_in(event, cpuctx, ctx);
3080 3081 3082 3083 3084

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3085 3086 3087
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
3088
		}
3089
	}
3090 3091 3092 3093
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3094
		      struct perf_cpu_context *cpuctx)
3095 3096 3097
{
	struct perf_event *event;
	int can_add_hw = 1;
3098

3099 3100 3101
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3102
			continue;
3103 3104
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3105
		 * of events:
3106
		 */
3107
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3108 3109
			continue;

S
Stephane Eranian 已提交
3110 3111 3112 3113
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3114
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3115
			if (group_sched_in(event, cpuctx, ctx))
3116
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3117
		}
T
Thomas Gleixner 已提交
3118
	}
3119 3120 3121 3122 3123
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3124 3125
	     enum event_type_t event_type,
	     struct task_struct *task)
3126
{
3127
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3128 3129 3130
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3131

3132
	if (likely(!ctx->nr_events))
3133
		return;
3134

3135
	ctx->is_active |= (event_type | EVENT_TIME);
3136 3137 3138 3139 3140 3141 3142
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3143 3144 3145 3146 3147 3148 3149 3150 3151
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3152 3153 3154 3155
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3156
	if (is_active & EVENT_PINNED)
3157
		ctx_pinned_sched_in(ctx, cpuctx);
3158 3159

	/* Then walk through the lower prio flexible groups */
3160
	if (is_active & EVENT_FLEXIBLE)
3161
		ctx_flexible_sched_in(ctx, cpuctx);
3162 3163
}

3164
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3165 3166
			     enum event_type_t event_type,
			     struct task_struct *task)
3167 3168 3169
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3170
	ctx_sched_in(ctx, cpuctx, event_type, task);
3171 3172
}

S
Stephane Eranian 已提交
3173 3174
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3175
{
P
Peter Zijlstra 已提交
3176
	struct perf_cpu_context *cpuctx;
3177

P
Peter Zijlstra 已提交
3178
	cpuctx = __get_cpu_context(ctx);
3179 3180 3181
	if (cpuctx->task_ctx == ctx)
		return;

3182
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
3183
	perf_pmu_disable(ctx->pmu);
3184 3185 3186 3187
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3188 3189 3190
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3191
	 */
3192 3193
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3194
	perf_event_sched_in(cpuctx, ctx, task);
3195 3196
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
3197 3198
}

P
Peter Zijlstra 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3210 3211
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3212 3213 3214 3215
{
	struct perf_event_context *ctx;
	int ctxn;

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3226 3227 3228 3229 3230
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3231
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3232
	}
3233

3234 3235 3236
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3237 3238
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3239 3240
}

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3268
#define REDUCE_FLS(a, b)		\
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3308 3309 3310
	if (!divisor)
		return dividend;

3311 3312 3313
	return div64_u64(dividend, divisor);
}

3314 3315 3316
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3317
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3318
{
3319
	struct hw_perf_event *hwc = &event->hw;
3320
	s64 period, sample_period;
3321 3322
	s64 delta;

3323
	period = perf_calculate_period(event, nsec, count);
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3334

3335
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3336 3337 3338
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3339
		local64_set(&hwc->period_left, 0);
3340 3341 3342

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3343
	}
3344 3345
}

3346 3347 3348 3349 3350 3351 3352
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3353
{
3354 3355
	struct perf_event *event;
	struct hw_perf_event *hwc;
3356
	u64 now, period = TICK_NSEC;
3357
	s64 delta;
3358

3359 3360 3361 3362 3363 3364
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3365 3366
		return;

3367
	raw_spin_lock(&ctx->lock);
3368
	perf_pmu_disable(ctx->pmu);
3369

3370
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3371
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3372 3373
			continue;

3374
		if (!event_filter_match(event))
3375 3376
			continue;

3377 3378
		perf_pmu_disable(event->pmu);

3379
		hwc = &event->hw;
3380

3381
		if (hwc->interrupts == MAX_INTERRUPTS) {
3382
			hwc->interrupts = 0;
3383
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3384
			event->pmu->start(event, 0);
3385 3386
		}

3387
		if (!event->attr.freq || !event->attr.sample_freq)
3388
			goto next;
3389

3390 3391 3392 3393 3394
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3395
		now = local64_read(&event->count);
3396 3397
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3398

3399 3400 3401
		/*
		 * restart the event
		 * reload only if value has changed
3402 3403 3404
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3405
		 */
3406
		if (delta > 0)
3407
			perf_adjust_period(event, period, delta, false);
3408 3409

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3410 3411
	next:
		perf_pmu_enable(event->pmu);
3412
	}
3413

3414
	perf_pmu_enable(ctx->pmu);
3415
	raw_spin_unlock(&ctx->lock);
3416 3417
}

3418
/*
3419
 * Round-robin a context's events:
3420
 */
3421
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3422
{
3423 3424 3425 3426 3427 3428
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3429 3430
}

3431
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3432
{
P
Peter Zijlstra 已提交
3433
	struct perf_event_context *ctx = NULL;
3434
	int rotate = 0;
3435

3436 3437 3438 3439
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3440

P
Peter Zijlstra 已提交
3441
	ctx = cpuctx->task_ctx;
3442 3443 3444 3445
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3446

3447
	if (!rotate)
3448 3449
		goto done;

3450
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3451
	perf_pmu_disable(cpuctx->ctx.pmu);
3452

3453 3454 3455
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3456

3457 3458 3459
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3460

3461
	perf_event_sched_in(cpuctx, ctx, current);
3462

3463 3464
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3465
done:
3466 3467

	return rotate;
3468 3469 3470 3471
}

void perf_event_task_tick(void)
{
3472 3473
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3474
	int throttled;
3475

3476 3477
	WARN_ON(!irqs_disabled());

3478 3479
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3480
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3481

3482
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3483
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3484 3485
}

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3496
	__perf_event_mark_enabled(event);
3497 3498 3499 3500

	return 1;
}

3501
/*
3502
 * Enable all of a task's events that have been marked enable-on-exec.
3503 3504
 * This expects task == current.
 */
3505
static void perf_event_enable_on_exec(int ctxn)
3506
{
3507
	struct perf_event_context *ctx, *clone_ctx = NULL;
3508
	enum event_type_t event_type = 0;
3509
	struct perf_cpu_context *cpuctx;
3510
	struct perf_event *event;
3511 3512 3513 3514
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3515
	ctx = current->perf_event_ctxp[ctxn];
3516
	if (!ctx || !ctx->nr_events)
3517 3518
		goto out;

3519 3520
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3521
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3522
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3523
		enabled |= event_enable_on_exec(event, ctx);
3524 3525
		event_type |= get_event_type(event);
	}
3526 3527

	/*
3528
	 * Unclone and reschedule this context if we enabled any event.
3529
	 */
3530
	if (enabled) {
3531
		clone_ctx = unclone_ctx(ctx);
3532
		ctx_resched(cpuctx, ctx, event_type);
3533 3534
	} else {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3535 3536
	}
	perf_ctx_unlock(cpuctx, ctx);
3537

P
Peter Zijlstra 已提交
3538
out:
3539
	local_irq_restore(flags);
3540 3541 3542

	if (clone_ctx)
		put_ctx(clone_ctx);
3543 3544
}

3545 3546 3547
struct perf_read_data {
	struct perf_event *event;
	bool group;
3548
	int ret;
3549 3550
};

3551
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3552 3553 3554 3555
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3556 3557 3558 3559
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3560 3561 3562 3563 3564 3565 3566 3567

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3568
/*
3569
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3570
 */
3571
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3572
{
3573 3574
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3575
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3576
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3577
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3578

3579 3580 3581 3582
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3583 3584
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3585 3586 3587 3588
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3589
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3590
	if (ctx->is_active) {
3591
		update_context_time(ctx);
S
Stephane Eranian 已提交
3592 3593
		update_cgrp_time_from_event(event);
	}
3594

3595
	update_event_times(event);
3596 3597
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3598

3599 3600 3601
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3602
		goto unlock;
3603 3604 3605 3606 3607
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3608 3609 3610

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3611 3612 3613 3614 3615
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3616
			sub->pmu->read(sub);
3617
		}
3618
	}
3619 3620

	data->ret = pmu->commit_txn(pmu);
3621 3622

unlock:
3623
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3624 3625
}

P
Peter Zijlstra 已提交
3626 3627
static inline u64 perf_event_count(struct perf_event *event)
{
3628 3629 3630 3631
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3632 3633
}

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3687
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3688
{
3689
	int event_cpu, ret = 0;
3690

T
Thomas Gleixner 已提交
3691
	/*
3692 3693
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3694
	 */
3695
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3696 3697 3698
		struct perf_read_data data = {
			.event = event,
			.group = group,
3699
			.ret = 0,
3700
		};
3701

3702 3703 3704 3705 3706 3707
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
3708

3709 3710 3711 3712
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
3713
		 * If event_cpu isn't a valid CPU it means the event got
3714 3715 3716 3717 3718
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3719 3720
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
3721
		ret = data.ret;
3722
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3723 3724 3725
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3726
		raw_spin_lock_irqsave(&ctx->lock, flags);
3727 3728 3729 3730 3731
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3732
		if (ctx->is_active) {
3733
			update_context_time(ctx);
S
Stephane Eranian 已提交
3734 3735
			update_cgrp_time_from_event(event);
		}
3736 3737 3738 3739
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3740
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3741
	}
3742 3743

	return ret;
T
Thomas Gleixner 已提交
3744 3745
}

3746
/*
3747
 * Initialize the perf_event context in a task_struct:
3748
 */
3749
static void __perf_event_init_context(struct perf_event_context *ctx)
3750
{
3751
	raw_spin_lock_init(&ctx->lock);
3752
	mutex_init(&ctx->mutex);
3753
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3754 3755
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3756 3757
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3773
	}
3774 3775 3776
	ctx->pmu = pmu;

	return ctx;
3777 3778
}

3779 3780 3781 3782
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3783 3784

	rcu_read_lock();
3785
	if (!vpid)
T
Thomas Gleixner 已提交
3786 3787
		task = current;
	else
3788
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3789 3790 3791 3792 3793 3794 3795
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3796 3797 3798
	return task;
}

3799 3800 3801
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3802
static struct perf_event_context *
3803 3804
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3805
{
3806
	struct perf_event_context *ctx, *clone_ctx = NULL;
3807
	struct perf_cpu_context *cpuctx;
3808
	void *task_ctx_data = NULL;
3809
	unsigned long flags;
P
Peter Zijlstra 已提交
3810
	int ctxn, err;
3811
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3812

3813
	if (!task) {
3814
		/* Must be root to operate on a CPU event: */
3815
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3816 3817
			return ERR_PTR(-EACCES);

P
Peter Zijlstra 已提交
3818
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3819
		ctx = &cpuctx->ctx;
3820
		get_ctx(ctx);
3821
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3822 3823 3824 3825

		return ctx;
	}

P
Peter Zijlstra 已提交
3826 3827 3828 3829 3830
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3831 3832 3833 3834 3835 3836 3837 3838
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3839
retry:
P
Peter Zijlstra 已提交
3840
	ctx = perf_lock_task_context(task, ctxn, &flags);
3841
	if (ctx) {
3842
		clone_ctx = unclone_ctx(ctx);
3843
		++ctx->pin_count;
3844 3845 3846 3847 3848

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3849
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3850 3851 3852

		if (clone_ctx)
			put_ctx(clone_ctx);
3853
	} else {
3854
		ctx = alloc_perf_context(pmu, task);
3855 3856 3857
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3858

3859 3860 3861 3862 3863
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3874
		else {
3875
			get_ctx(ctx);
3876
			++ctx->pin_count;
3877
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3878
		}
3879 3880 3881
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3882
			put_ctx(ctx);
3883 3884 3885 3886

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3887 3888 3889
		}
	}

3890
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3891
	return ctx;
3892

P
Peter Zijlstra 已提交
3893
errout:
3894
	kfree(task_ctx_data);
3895
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3896 3897
}

L
Li Zefan 已提交
3898
static void perf_event_free_filter(struct perf_event *event);
3899
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3900

3901
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3902
{
3903
	struct perf_event *event;
P
Peter Zijlstra 已提交
3904

3905 3906 3907
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3908
	perf_event_free_filter(event);
3909
	kfree(event);
P
Peter Zijlstra 已提交
3910 3911
}

3912 3913
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3914

3915 3916 3917 3918 3919 3920 3921 3922 3923
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3924
static bool is_sb_event(struct perf_event *event)
3925
{
3926 3927
	struct perf_event_attr *attr = &event->attr;

3928
	if (event->parent)
3929
		return false;
3930 3931

	if (event->attach_state & PERF_ATTACH_TASK)
3932
		return false;
3933

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3946 3947
}

3948
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3949
{
3950 3951 3952 3953 3954 3955
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3956

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3979 3980
static void unaccount_event(struct perf_event *event)
{
3981 3982
	bool dec = false;

3983 3984 3985 3986
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3987
		dec = true;
3988 3989 3990 3991
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
3992 3993
	if (event->attr.namespaces)
		atomic_dec(&nr_namespaces_events);
3994 3995
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3996
	if (event->attr.freq)
3997
		unaccount_freq_event();
3998
	if (event->attr.context_switch) {
3999
		dec = true;
4000 4001
		atomic_dec(&nr_switch_events);
	}
4002
	if (is_cgroup_event(event))
4003
		dec = true;
4004
	if (has_branch_stack(event))
4005 4006
		dec = true;

4007 4008 4009 4010
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
4011 4012

	unaccount_event_cpu(event, event->cpu);
4013 4014

	unaccount_pmu_sb_event(event);
4015
}
4016

4017 4018 4019 4020 4021 4022 4023 4024
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
4035
 * _free_event()), the latter -- before the first perf_install_in_context().
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4084
	if ((e1->pmu == e2->pmu) &&
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4110 4111 4112
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4113
static void _free_event(struct perf_event *event)
4114
{
4115
	irq_work_sync(&event->pending);
4116

4117
	unaccount_event(event);
4118

4119
	if (event->rb) {
4120 4121 4122 4123 4124 4125 4126
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4127
		ring_buffer_attach(event, NULL);
4128
		mutex_unlock(&event->mmap_mutex);
4129 4130
	}

S
Stephane Eranian 已提交
4131 4132 4133
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4134 4135 4136 4137 4138 4139
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4140 4141
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4142 4143 4144 4145 4146 4147 4148

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4149 4150
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4151 4152

	call_rcu(&event->rcu_head, free_event_rcu);
4153 4154
}

P
Peter Zijlstra 已提交
4155 4156 4157 4158 4159
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4160
{
P
Peter Zijlstra 已提交
4161 4162 4163 4164 4165 4166
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4167

P
Peter Zijlstra 已提交
4168
	_free_event(event);
T
Thomas Gleixner 已提交
4169 4170
}

4171
/*
4172
 * Remove user event from the owner task.
4173
 */
4174
static void perf_remove_from_owner(struct perf_event *event)
4175
{
P
Peter Zijlstra 已提交
4176
	struct task_struct *owner;
4177

P
Peter Zijlstra 已提交
4178 4179
	rcu_read_lock();
	/*
4180 4181 4182
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4183 4184
	 * owner->perf_event_mutex.
	 */
4185
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4207 4208 4209 4210 4211 4212
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4213
		if (event->owner) {
P
Peter Zijlstra 已提交
4214
			list_del_init(&event->owner_entry);
4215 4216
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4217 4218 4219
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4220 4221 4222 4223 4224 4225 4226
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4237
	struct perf_event_context *ctx = event->ctx;
4238 4239
	struct perf_event *child, *tmp;

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4250 4251
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4252

4253
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4254
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4255
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4256

P
Peter Zijlstra 已提交
4257
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4258
	/*
4259
	 * Mark this event as STATE_DEAD, there is no external reference to it
P
Peter Zijlstra 已提交
4260
	 * anymore.
P
Peter Zijlstra 已提交
4261
	 *
P
Peter Zijlstra 已提交
4262 4263 4264
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4265
	 *
4266 4267
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4268
	 */
P
Peter Zijlstra 已提交
4269 4270 4271 4272
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4273

4274 4275 4276
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4277

4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4327 4328
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4329 4330 4331 4332
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4333 4334 4335
/*
 * Called when the last reference to the file is gone.
 */
4336 4337
static int perf_release(struct inode *inode, struct file *file)
{
4338
	perf_event_release_kernel(file->private_data);
4339
	return 0;
4340 4341
}

4342
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343
{
4344
	struct perf_event *child;
4345 4346
	u64 total = 0;

4347 4348 4349
	*enabled = 0;
	*running = 0;

4350
	mutex_lock(&event->child_mutex);
4351

4352
	(void)perf_event_read(event, false);
4353 4354
	total += perf_event_count(event);

4355 4356 4357 4358 4359 4360
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4361
		(void)perf_event_read(child, false);
4362
		total += perf_event_count(child);
4363 4364 4365
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4366
	mutex_unlock(&event->child_mutex);
4367 4368 4369

	return total;
}
4370
EXPORT_SYMBOL_GPL(perf_event_read_value);
4371

4372
static int __perf_read_group_add(struct perf_event *leader,
4373
					u64 read_format, u64 *values)
4374
{
4375
	struct perf_event_context *ctx = leader->ctx;
4376
	struct perf_event *sub;
4377
	unsigned long flags;
4378
	int n = 1; /* skip @nr */
4379
	int ret;
P
Peter Zijlstra 已提交
4380

4381 4382 4383
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4384

4385 4386 4387 4388 4389 4390 4391 4392 4393
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4394

4395 4396 4397 4398 4399 4400 4401 4402 4403
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4404 4405
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4406

4407 4408
	raw_spin_lock_irqsave(&ctx->lock, flags);

4409 4410 4411 4412 4413
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4414

4415
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4416
	return 0;
4417
}
4418

4419 4420 4421 4422 4423
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4424
	int ret;
4425
	u64 *values;
4426

4427
	lockdep_assert_held(&ctx->mutex);
4428

4429 4430 4431
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4432

4433 4434 4435 4436 4437 4438 4439
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4440

4441 4442 4443 4444 4445 4446 4447 4448 4449
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4450

4451
	mutex_unlock(&leader->child_mutex);
4452

4453
	ret = event->read_size;
4454 4455
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4456
	goto out;
4457

4458 4459 4460
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4461
	kfree(values);
4462
	return ret;
4463 4464
}

4465
static int perf_read_one(struct perf_event *event,
4466 4467
				 u64 read_format, char __user *buf)
{
4468
	u64 enabled, running;
4469 4470 4471
	u64 values[4];
	int n = 0;

4472 4473 4474 4475 4476
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4477
	if (read_format & PERF_FORMAT_ID)
4478
		values[n++] = primary_event_id(event);
4479 4480 4481 4482 4483 4484 4485

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4486 4487 4488 4489
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4490
	if (event->state > PERF_EVENT_STATE_EXIT)
4491 4492 4493 4494 4495 4496 4497 4498
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4499
/*
4500
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4501 4502
 */
static ssize_t
4503
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4504
{
4505
	u64 read_format = event->attr.read_format;
4506
	int ret;
T
Thomas Gleixner 已提交
4507

4508
	/*
4509
	 * Return end-of-file for a read on a event that is in
4510 4511 4512
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4513
	if (event->state == PERF_EVENT_STATE_ERROR)
4514 4515
		return 0;

4516
	if (count < event->read_size)
4517 4518
		return -ENOSPC;

4519
	WARN_ON_ONCE(event->ctx->parent_ctx);
4520
	if (read_format & PERF_FORMAT_GROUP)
4521
		ret = perf_read_group(event, read_format, buf);
4522
	else
4523
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4524

4525
	return ret;
T
Thomas Gleixner 已提交
4526 4527 4528 4529 4530
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4531
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4532 4533
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4534

P
Peter Zijlstra 已提交
4535
	ctx = perf_event_ctx_lock(event);
4536
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4537 4538 4539
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4540 4541 4542 4543
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4544
	struct perf_event *event = file->private_data;
4545
	struct ring_buffer *rb;
4546
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4547

4548
	poll_wait(file, &event->waitq, wait);
4549

4550
	if (is_event_hup(event))
4551
		return events;
P
Peter Zijlstra 已提交
4552

4553
	/*
4554 4555
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4556 4557
	 */
	mutex_lock(&event->mmap_mutex);
4558 4559
	rb = event->rb;
	if (rb)
4560
		events = atomic_xchg(&rb->poll, 0);
4561
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4562 4563 4564
	return events;
}

P
Peter Zijlstra 已提交
4565
static void _perf_event_reset(struct perf_event *event)
4566
{
4567
	(void)perf_event_read(event, false);
4568
	local64_set(&event->count, 0);
4569
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4570 4571
}

4572
/*
4573 4574
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4575
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4576
 * task existence requirements of perf_event_enable/disable.
4577
 */
4578 4579
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4580
{
4581
	struct perf_event *child;
P
Peter Zijlstra 已提交
4582

4583
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4584

4585 4586 4587
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4588
		func(child);
4589
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4590 4591
}

4592 4593
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4594
{
4595 4596
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4597

P
Peter Zijlstra 已提交
4598 4599
	lockdep_assert_held(&ctx->mutex);

4600
	event = event->group_leader;
4601

4602 4603
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4604
		perf_event_for_each_child(sibling, func);
4605 4606
}

4607 4608 4609 4610
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4611
{
4612
	u64 value = *((u64 *)info);
4613
	bool active;
4614

4615 4616
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4617
	} else {
4618 4619
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4620
	}
4621 4622 4623 4624

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4625 4626 4627 4628 4629 4630 4631 4632
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4633 4634 4635 4636 4637 4638 4639 4640 4641
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4660
	event_function_call(event, __perf_event_period, &value);
4661

4662
	return 0;
4663 4664
}

4665 4666
static const struct file_operations perf_fops;

4667
static inline int perf_fget_light(int fd, struct fd *p)
4668
{
4669 4670 4671
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4672

4673 4674 4675
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4676
	}
4677 4678
	*p = f;
	return 0;
4679 4680 4681 4682
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4683
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4684
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4685

P
Peter Zijlstra 已提交
4686
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4687
{
4688
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4689
	u32 flags = arg;
4690 4691

	switch (cmd) {
4692
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4693
		func = _perf_event_enable;
4694
		break;
4695
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4696
		func = _perf_event_disable;
4697
		break;
4698
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4699
		func = _perf_event_reset;
4700
		break;
P
Peter Zijlstra 已提交
4701

4702
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4703
		return _perf_event_refresh(event, arg);
4704

4705 4706
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4707

4708 4709 4710 4711 4712 4713 4714 4715 4716
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4717
	case PERF_EVENT_IOC_SET_OUTPUT:
4718 4719 4720
	{
		int ret;
		if (arg != -1) {
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4731 4732 4733
		}
		return ret;
	}
4734

L
Li Zefan 已提交
4735 4736 4737
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4738 4739 4740
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4754
	default:
P
Peter Zijlstra 已提交
4755
		return -ENOTTY;
4756
	}
P
Peter Zijlstra 已提交
4757 4758

	if (flags & PERF_IOC_FLAG_GROUP)
4759
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4760
	else
4761
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4762 4763

	return 0;
4764 4765
}

P
Peter Zijlstra 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4799
int perf_event_task_enable(void)
4800
{
P
Peter Zijlstra 已提交
4801
	struct perf_event_context *ctx;
4802
	struct perf_event *event;
4803

4804
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4805 4806 4807 4808 4809
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4810
	mutex_unlock(&current->perf_event_mutex);
4811 4812 4813 4814

	return 0;
}

4815
int perf_event_task_disable(void)
4816
{
P
Peter Zijlstra 已提交
4817
	struct perf_event_context *ctx;
4818
	struct perf_event *event;
4819

4820
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4821 4822 4823 4824 4825
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4826
	mutex_unlock(&current->perf_event_mutex);
4827 4828 4829 4830

	return 0;
}

4831
static int perf_event_index(struct perf_event *event)
4832
{
P
Peter Zijlstra 已提交
4833 4834 4835
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4836
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4837 4838
		return 0;

4839
	return event->pmu->event_idx(event);
4840 4841
}

4842
static void calc_timer_values(struct perf_event *event,
4843
				u64 *now,
4844 4845
				u64 *enabled,
				u64 *running)
4846
{
4847
	u64 ctx_time;
4848

4849 4850
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4851 4852 4853 4854
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4870 4871
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4872 4873 4874 4875 4876

unlock:
	rcu_read_unlock();
}

4877 4878
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4879 4880 4881
{
}

4882 4883 4884 4885 4886
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4887
void perf_event_update_userpage(struct perf_event *event)
4888
{
4889
	struct perf_event_mmap_page *userpg;
4890
	struct ring_buffer *rb;
4891
	u64 enabled, running, now;
4892 4893

	rcu_read_lock();
4894 4895 4896 4897
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4898 4899 4900 4901 4902 4903 4904 4905 4906
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4907
	calc_timer_values(event, &now, &enabled, &running);
4908

4909
	userpg = rb->user_page;
4910 4911 4912 4913 4914
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4915
	++userpg->lock;
4916
	barrier();
4917
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4918
	userpg->offset = perf_event_count(event);
4919
	if (userpg->index)
4920
		userpg->offset -= local64_read(&event->hw.prev_count);
4921

4922
	userpg->time_enabled = enabled +
4923
			atomic64_read(&event->child_total_time_enabled);
4924

4925
	userpg->time_running = running +
4926
			atomic64_read(&event->child_total_time_running);
4927

4928
	arch_perf_update_userpage(event, userpg, now);
4929

4930
	barrier();
4931
	++userpg->lock;
4932
	preempt_enable();
4933
unlock:
4934
	rcu_read_unlock();
4935 4936
}

4937
static int perf_mmap_fault(struct vm_fault *vmf)
4938
{
4939
	struct perf_event *event = vmf->vma->vm_file->private_data;
4940
	struct ring_buffer *rb;
4941 4942 4943 4944 4945 4946 4947 4948 4949
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4950 4951
	rb = rcu_dereference(event->rb);
	if (!rb)
4952 4953 4954 4955 4956
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4957
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4958 4959 4960 4961
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
4962
	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4963 4964 4965 4966 4967 4968 4969 4970 4971
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4972 4973 4974
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4975
	struct ring_buffer *old_rb = NULL;
4976 4977
	unsigned long flags;

4978 4979 4980 4981 4982 4983
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4984

4985 4986 4987 4988
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4989

4990 4991
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4992
	}
4993

4994
	if (rb) {
4995 4996 4997 4998 4999
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

5000 5001 5002 5003 5004
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5029 5030 5031 5032 5033 5034 5035 5036
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5037 5038 5039 5040
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5041 5042 5043
	rcu_read_unlock();
}

5044
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5045
{
5046
	struct ring_buffer *rb;
5047

5048
	rcu_read_lock();
5049 5050 5051 5052
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5053 5054 5055
	}
	rcu_read_unlock();

5056
	return rb;
5057 5058
}

5059
void ring_buffer_put(struct ring_buffer *rb)
5060
{
5061
	if (!atomic_dec_and_test(&rb->refcount))
5062
		return;
5063

5064
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5065

5066
	call_rcu(&rb->rcu_head, rb_free_rcu);
5067 5068 5069 5070
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5071
	struct perf_event *event = vma->vm_file->private_data;
5072

5073
	atomic_inc(&event->mmap_count);
5074
	atomic_inc(&event->rb->mmap_count);
5075

5076 5077 5078
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5079 5080
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
5081 5082
}

5083 5084
static void perf_pmu_output_stop(struct perf_event *event);

5085 5086 5087 5088 5089 5090 5091 5092
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5093 5094
static void perf_mmap_close(struct vm_area_struct *vma)
{
5095
	struct perf_event *event = vma->vm_file->private_data;
5096

5097
	struct ring_buffer *rb = ring_buffer_get(event);
5098 5099 5100
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5101

5102 5103 5104
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

5105 5106 5107 5108 5109 5110 5111
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5112 5113 5114 5115 5116 5117 5118 5119 5120
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5121 5122 5123
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5124
		/* this has to be the last one */
5125
		rb_free_aux(rb);
5126 5127
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5128 5129 5130
		mutex_unlock(&event->mmap_mutex);
	}

5131 5132 5133
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5134
		goto out_put;
5135

5136
	ring_buffer_attach(event, NULL);
5137 5138 5139
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5140 5141
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5142

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5159

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5171 5172 5173
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5174
		mutex_unlock(&event->mmap_mutex);
5175
		put_event(event);
5176

5177 5178 5179 5180 5181
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5182
	}
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5198
out_put:
5199
	ring_buffer_put(rb); /* could be last */
5200 5201
}

5202
static const struct vm_operations_struct perf_mmap_vmops = {
5203
	.open		= perf_mmap_open,
5204
	.close		= perf_mmap_close, /* non mergable */
5205 5206
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5207 5208 5209 5210
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5211
	struct perf_event *event = file->private_data;
5212
	unsigned long user_locked, user_lock_limit;
5213
	struct user_struct *user = current_user();
5214
	unsigned long locked, lock_limit;
5215
	struct ring_buffer *rb = NULL;
5216 5217
	unsigned long vma_size;
	unsigned long nr_pages;
5218
	long user_extra = 0, extra = 0;
5219
	int ret = 0, flags = 0;
5220

5221 5222 5223
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5224
	 * same rb.
5225 5226 5227 5228
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5229
	if (!(vma->vm_flags & VM_SHARED))
5230
		return -EINVAL;
5231 5232

	vma_size = vma->vm_end - vma->vm_start;
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5293

5294
	/*
5295
	 * If we have rb pages ensure they're a power-of-two number, so we
5296 5297
	 * can do bitmasks instead of modulo.
	 */
5298
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5299 5300
		return -EINVAL;

5301
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5302 5303
		return -EINVAL;

5304
	WARN_ON_ONCE(event->ctx->parent_ctx);
5305
again:
5306
	mutex_lock(&event->mmap_mutex);
5307
	if (event->rb) {
5308
		if (event->rb->nr_pages != nr_pages) {
5309
			ret = -EINVAL;
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5323 5324 5325
		goto unlock;
	}

5326
	user_extra = nr_pages + 1;
5327 5328

accounting:
5329
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5330 5331 5332 5333 5334 5335

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5336
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5337

5338 5339
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5340

5341
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5342
	lock_limit >>= PAGE_SHIFT;
5343
	locked = vma->vm_mm->pinned_vm + extra;
5344

5345 5346
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5347 5348 5349
		ret = -EPERM;
		goto unlock;
	}
5350

5351
	WARN_ON(!rb && event->rb);
5352

5353
	if (vma->vm_flags & VM_WRITE)
5354
		flags |= RING_BUFFER_WRITABLE;
5355

5356
	if (!rb) {
5357 5358 5359
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5360

5361 5362 5363 5364
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5365

5366 5367 5368
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5369

5370
		ring_buffer_attach(event, rb);
5371

5372 5373 5374
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5375 5376
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5377 5378 5379
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5380

5381
unlock:
5382 5383 5384 5385
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5386
		atomic_inc(&event->mmap_count);
5387 5388 5389 5390
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5391
	mutex_unlock(&event->mmap_mutex);
5392

5393 5394 5395 5396
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5397
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5398
	vma->vm_ops = &perf_mmap_vmops;
5399

5400 5401 5402
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5403
	return ret;
5404 5405
}

P
Peter Zijlstra 已提交
5406 5407
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5408
	struct inode *inode = file_inode(filp);
5409
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5410 5411
	int retval;

A
Al Viro 已提交
5412
	inode_lock(inode);
5413
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5414
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5415 5416 5417 5418 5419 5420 5421

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5422
static const struct file_operations perf_fops = {
5423
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5424 5425 5426
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5427
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5428
	.compat_ioctl		= perf_compat_ioctl,
5429
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5430
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5431 5432
};

5433
/*
5434
 * Perf event wakeup
5435 5436 5437 5438 5439
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5440 5441 5442 5443 5444 5445 5446 5447
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5448
void perf_event_wakeup(struct perf_event *event)
5449
{
5450
	ring_buffer_wakeup(event);
5451

5452
	if (event->pending_kill) {
5453
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5454
		event->pending_kill = 0;
5455
	}
5456 5457
}

5458
static void perf_pending_event(struct irq_work *entry)
5459
{
5460 5461
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5462 5463 5464 5465 5466 5467 5468
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5469

5470 5471
	if (event->pending_disable) {
		event->pending_disable = 0;
5472
		perf_event_disable_local(event);
5473 5474
	}

5475 5476 5477
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5478
	}
5479 5480 5481

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5482 5483
}

5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5505 5506 5507 5508 5509
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5510
	DECLARE_BITMAP(_mask, 64);
5511

5512 5513
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5514 5515 5516 5517 5518 5519 5520
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5521
static void perf_sample_regs_user(struct perf_regs *regs_user,
5522 5523
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5524
{
5525 5526
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5527
		regs_user->regs = regs;
5528 5529
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5530 5531 5532
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5533 5534 5535
	}
}

5536 5537 5538 5539 5540 5541 5542 5543
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5639 5640 5641
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5655
		data->time = perf_event_clock(event);
5656

5657
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5669 5670 5671
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5696 5697 5698

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5699 5700
}

5701 5702 5703
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5704 5705 5706 5707 5708
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5709
static void perf_output_read_one(struct perf_output_handle *handle,
5710 5711
				 struct perf_event *event,
				 u64 enabled, u64 running)
5712
{
5713
	u64 read_format = event->attr.read_format;
5714 5715 5716
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5717
	values[n++] = perf_event_count(event);
5718
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5719
		values[n++] = enabled +
5720
			atomic64_read(&event->child_total_time_enabled);
5721 5722
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5723
		values[n++] = running +
5724
			atomic64_read(&event->child_total_time_running);
5725 5726
	}
	if (read_format & PERF_FORMAT_ID)
5727
		values[n++] = primary_event_id(event);
5728

5729
	__output_copy(handle, values, n * sizeof(u64));
5730 5731 5732
}

static void perf_output_read_group(struct perf_output_handle *handle,
5733 5734
			    struct perf_event *event,
			    u64 enabled, u64 running)
5735
{
5736 5737
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5738 5739 5740 5741 5742 5743
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5744
		values[n++] = enabled;
5745 5746

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5747
		values[n++] = running;
5748

5749
	if (leader != event)
5750 5751
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5752
	values[n++] = perf_event_count(leader);
5753
	if (read_format & PERF_FORMAT_ID)
5754
		values[n++] = primary_event_id(leader);
5755

5756
	__output_copy(handle, values, n * sizeof(u64));
5757

5758
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5759 5760
		n = 0;

5761 5762
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5763 5764
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5765
		values[n++] = perf_event_count(sub);
5766
		if (read_format & PERF_FORMAT_ID)
5767
			values[n++] = primary_event_id(sub);
5768

5769
		__output_copy(handle, values, n * sizeof(u64));
5770 5771 5772
	}
}

5773 5774 5775
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5776 5777 5778 5779 5780 5781 5782
/*
 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 *
 * The problem is that its both hard and excessively expensive to iterate the
 * child list, not to mention that its impossible to IPI the children running
 * on another CPU, from interrupt/NMI context.
 */
5783
static void perf_output_read(struct perf_output_handle *handle,
5784
			     struct perf_event *event)
5785
{
5786
	u64 enabled = 0, running = 0, now;
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5798
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5799
		calc_timer_values(event, &now, &enabled, &running);
5800

5801
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5802
		perf_output_read_group(handle, event, enabled, running);
5803
	else
5804
		perf_output_read_one(handle, event, enabled, running);
5805 5806
}

5807 5808 5809
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5810
			struct perf_event *event)
5811 5812 5813 5814 5815
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5816 5817 5818
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5844
		perf_output_read(handle, event);
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5855
			__output_copy(handle, data->callchain, size);
5856 5857 5858 5859 5860 5861 5862
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5894

5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5929

5930
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5931 5932 5933
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5934
	}
A
Andi Kleen 已提交
5935 5936 5937

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5938 5939 5940

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5941

A
Andi Kleen 已提交
5942 5943 5944
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5975 5976 5977 5978
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5979
			 struct perf_event *event,
5980
			 struct pt_regs *regs)
5981
{
5982
	u64 sample_type = event->attr.sample_type;
5983

5984
	header->type = PERF_RECORD_SAMPLE;
5985
	header->size = sizeof(*header) + event->header_size;
5986 5987 5988

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5989

5990
	__perf_event_header__init_id(header, data, event);
5991

5992
	if (sample_type & PERF_SAMPLE_IP)
5993 5994
		data->ip = perf_instruction_pointer(regs);

5995
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5996
		int size = 1;
5997

5998
		data->callchain = perf_callchain(event, regs);
5999 6000 6001 6002 6003

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
6004 6005
	}

6006
	if (sample_type & PERF_SAMPLE_RAW) {
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6027

6028
		header->size += size;
6029
	}
6030 6031 6032 6033 6034 6035 6036 6037 6038

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6039

6040
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6041 6042
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6043

6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6067
						     data->regs_user.regs);
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6095
}
6096

6097 6098 6099 6100 6101 6102 6103
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6104 6105 6106
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6107

6108 6109 6110
	/* protect the callchain buffers */
	rcu_read_lock();

6111
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6112

6113
	if (output_begin(&handle, event, header.size))
6114
		goto exit;
6115

6116
	perf_output_sample(&handle, &header, data, event);
6117

6118
	perf_output_end(&handle);
6119 6120 6121

exit:
	rcu_read_unlock();
6122 6123
}

6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6148
/*
6149
 * read event_id
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6160
perf_event_read_event(struct perf_event *event,
6161 6162 6163
			struct task_struct *task)
{
	struct perf_output_handle handle;
6164
	struct perf_sample_data sample;
6165
	struct perf_read_event read_event = {
6166
		.header = {
6167
			.type = PERF_RECORD_READ,
6168
			.misc = 0,
6169
			.size = sizeof(read_event) + event->read_size,
6170
		},
6171 6172
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6173
	};
6174
	int ret;
6175

6176
	perf_event_header__init_id(&read_event.header, &sample, event);
6177
	ret = perf_output_begin(&handle, event, read_event.header.size);
6178 6179 6180
	if (ret)
		return;

6181
	perf_output_put(&handle, read_event);
6182
	perf_output_read(&handle, event);
6183
	perf_event__output_id_sample(event, &handle, &sample);
6184

6185 6186 6187
	perf_output_end(&handle);
}

6188
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6189 6190

static void
6191 6192
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6193
		   void *data, bool all)
6194 6195 6196 6197
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6198 6199 6200 6201 6202 6203 6204
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6205
		output(event, data);
6206 6207 6208
	}
}

6209
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6210 6211 6212 6213 6214
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6215 6216 6217 6218 6219 6220 6221 6222
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6223 6224 6225 6226 6227 6228 6229 6230
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6231 6232 6233 6234 6235 6236
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6237
static void
6238
perf_iterate_sb(perf_iterate_f output, void *data,
6239 6240 6241 6242 6243
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6244 6245 6246
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6247
	/*
6248 6249
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6250 6251 6252
	 * context.
	 */
	if (task_ctx) {
6253 6254
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6255 6256
	}

6257
	perf_iterate_sb_cpu(output, data);
6258 6259

	for_each_task_context_nr(ctxn) {
6260 6261
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6262
			perf_iterate_ctx(ctx, output, data, false);
6263
	}
6264
done:
6265
	preempt_enable();
6266
	rcu_read_unlock();
6267 6268
}

6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6298
		perf_event_stop(event, 1);
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6314
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6315 6316 6317 6318 6319
				   true);
	}
	rcu_read_unlock();
}

6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6330 6331 6332
	struct stop_event_data sd = {
		.event	= event,
	};
6333 6334 6335 6336 6337 6338 6339 6340 6341

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6342 6343 6344 6345 6346 6347 6348
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6349 6350
	 */
	if (rcu_dereference(parent->rb) == rb)
6351
		ro->err = __perf_event_stop(&sd);
6352 6353 6354 6355 6356 6357
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6358
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6359 6360 6361 6362 6363
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6364
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6365
	if (cpuctx->task_ctx)
6366
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6367
				   &ro, false);
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6401 6402
}

P
Peter Zijlstra 已提交
6403
/*
P
Peter Zijlstra 已提交
6404 6405
 * task tracking -- fork/exit
 *
6406
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6407 6408
 */

P
Peter Zijlstra 已提交
6409
struct perf_task_event {
6410
	struct task_struct		*task;
6411
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6412 6413 6414 6415 6416 6417

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6418 6419
		u32				tid;
		u32				ptid;
6420
		u64				time;
6421
	} event_id;
P
Peter Zijlstra 已提交
6422 6423
};

6424 6425
static int perf_event_task_match(struct perf_event *event)
{
6426 6427 6428
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6429 6430
}

6431
static void perf_event_task_output(struct perf_event *event,
6432
				   void *data)
P
Peter Zijlstra 已提交
6433
{
6434
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6435
	struct perf_output_handle handle;
6436
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6437
	struct task_struct *task = task_event->task;
6438
	int ret, size = task_event->event_id.header.size;
6439

6440 6441 6442
	if (!perf_event_task_match(event))
		return;

6443
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6444

6445
	ret = perf_output_begin(&handle, event,
6446
				task_event->event_id.header.size);
6447
	if (ret)
6448
		goto out;
P
Peter Zijlstra 已提交
6449

6450 6451
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6452

6453 6454
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6455

6456 6457
	task_event->event_id.time = perf_event_clock(event);

6458
	perf_output_put(&handle, task_event->event_id);
6459

6460 6461
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6462
	perf_output_end(&handle);
6463 6464
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6465 6466
}

6467 6468
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6469
			      int new)
P
Peter Zijlstra 已提交
6470
{
P
Peter Zijlstra 已提交
6471
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6472

6473 6474 6475
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6476 6477
		return;

P
Peter Zijlstra 已提交
6478
	task_event = (struct perf_task_event){
6479 6480
		.task	  = task,
		.task_ctx = task_ctx,
6481
		.event_id    = {
P
Peter Zijlstra 已提交
6482
			.header = {
6483
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6484
				.misc = 0,
6485
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6486
			},
6487 6488
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6489 6490
			/* .tid  */
			/* .ptid */
6491
			/* .time */
P
Peter Zijlstra 已提交
6492 6493 6494
		},
	};

6495
	perf_iterate_sb(perf_event_task_output,
6496 6497
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6498 6499
}

6500
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6501
{
6502
	perf_event_task(task, NULL, 1);
6503
	perf_event_namespaces(task);
P
Peter Zijlstra 已提交
6504 6505
}

6506 6507 6508 6509 6510
/*
 * comm tracking
 */

struct perf_comm_event {
6511 6512
	struct task_struct	*task;
	char			*comm;
6513 6514 6515 6516 6517 6518 6519
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6520
	} event_id;
6521 6522
};

6523 6524 6525 6526 6527
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6528
static void perf_event_comm_output(struct perf_event *event,
6529
				   void *data)
6530
{
6531
	struct perf_comm_event *comm_event = data;
6532
	struct perf_output_handle handle;
6533
	struct perf_sample_data sample;
6534
	int size = comm_event->event_id.header.size;
6535 6536
	int ret;

6537 6538 6539
	if (!perf_event_comm_match(event))
		return;

6540 6541
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6542
				comm_event->event_id.header.size);
6543 6544

	if (ret)
6545
		goto out;
6546

6547 6548
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6549

6550
	perf_output_put(&handle, comm_event->event_id);
6551
	__output_copy(&handle, comm_event->comm,
6552
				   comm_event->comm_size);
6553 6554 6555

	perf_event__output_id_sample(event, &handle, &sample);

6556
	perf_output_end(&handle);
6557 6558
out:
	comm_event->event_id.header.size = size;
6559 6560
}

6561
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6562
{
6563
	char comm[TASK_COMM_LEN];
6564 6565
	unsigned int size;

6566
	memset(comm, 0, sizeof(comm));
6567
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6568
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6569 6570 6571 6572

	comm_event->comm = comm;
	comm_event->comm_size = size;

6573
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6574

6575
	perf_iterate_sb(perf_event_comm_output,
6576 6577
		       comm_event,
		       NULL);
6578 6579
}

6580
void perf_event_comm(struct task_struct *task, bool exec)
6581
{
6582 6583
	struct perf_comm_event comm_event;

6584
	if (!atomic_read(&nr_comm_events))
6585
		return;
6586

6587
	comm_event = (struct perf_comm_event){
6588
		.task	= task,
6589 6590
		/* .comm      */
		/* .comm_size */
6591
		.event_id  = {
6592
			.header = {
6593
				.type = PERF_RECORD_COMM,
6594
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6595 6596 6597 6598
				/* .size */
			},
			/* .pid */
			/* .tid */
6599 6600 6601
		},
	};

6602
	perf_event_comm_event(&comm_event);
6603 6604
}

6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
/*
 * namespaces tracking
 */

struct perf_namespaces_event {
	struct task_struct		*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				nr_namespaces;
		struct perf_ns_link_info	link_info[NR_NAMESPACES];
	} event_id;
};

static int perf_event_namespaces_match(struct perf_event *event)
{
	return event->attr.namespaces;
}

static void perf_event_namespaces_output(struct perf_event *event,
					 void *data)
{
	struct perf_namespaces_event *namespaces_event = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_namespaces_match(event))
		return;

	perf_event_header__init_id(&namespaces_event->event_id.header,
				   &sample, event);
	ret = perf_output_begin(&handle, event,
				namespaces_event->event_id.header.size);
	if (ret)
		return;

	namespaces_event->event_id.pid = perf_event_pid(event,
							namespaces_event->task);
	namespaces_event->event_id.tid = perf_event_tid(event,
							namespaces_event->task);

	perf_output_put(&handle, namespaces_event->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
				   struct task_struct *task,
				   const struct proc_ns_operations *ns_ops)
{
	struct path ns_path;
	struct inode *ns_inode;
	void *error;

	error = ns_get_path(&ns_path, task, ns_ops);
	if (!error) {
		ns_inode = ns_path.dentry->d_inode;
		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
		ns_link_info->ino = ns_inode->i_ino;
	}
}

void perf_event_namespaces(struct task_struct *task)
{
	struct perf_namespaces_event namespaces_event;
	struct perf_ns_link_info *ns_link_info;

	if (!atomic_read(&nr_namespaces_events))
		return;

	namespaces_event = (struct perf_namespaces_event){
		.task	= task,
		.event_id  = {
			.header = {
				.type = PERF_RECORD_NAMESPACES,
				.misc = 0,
				.size = sizeof(namespaces_event.event_id),
			},
			/* .pid */
			/* .tid */
			.nr_namespaces = NR_NAMESPACES,
			/* .link_info[NR_NAMESPACES] */
		},
	};

	ns_link_info = namespaces_event.event_id.link_info;

	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
			       task, &mntns_operations);

#ifdef CONFIG_USER_NS
	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
			       task, &userns_operations);
#endif
#ifdef CONFIG_NET_NS
	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
			       task, &netns_operations);
#endif
#ifdef CONFIG_UTS_NS
	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
			       task, &utsns_operations);
#endif
#ifdef CONFIG_IPC_NS
	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
			       task, &ipcns_operations);
#endif
#ifdef CONFIG_PID_NS
	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
			       task, &pidns_operations);
#endif
#ifdef CONFIG_CGROUPS
	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
			       task, &cgroupns_operations);
#endif

	perf_iterate_sb(perf_event_namespaces_output,
			&namespaces_event,
			NULL);
}

6731 6732 6733 6734 6735
/*
 * mmap tracking
 */

struct perf_mmap_event {
6736 6737 6738 6739
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6740 6741 6742
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6743
	u32			prot, flags;
6744 6745 6746 6747 6748 6749 6750 6751 6752

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6753
	} event_id;
6754 6755
};

6756 6757 6758 6759 6760 6761 6762 6763
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6764
	       (executable && (event->attr.mmap || event->attr.mmap2));
6765 6766
}

6767
static void perf_event_mmap_output(struct perf_event *event,
6768
				   void *data)
6769
{
6770
	struct perf_mmap_event *mmap_event = data;
6771
	struct perf_output_handle handle;
6772
	struct perf_sample_data sample;
6773
	int size = mmap_event->event_id.header.size;
6774
	int ret;
6775

6776 6777 6778
	if (!perf_event_mmap_match(event, data))
		return;

6779 6780 6781 6782 6783
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6784
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6785 6786
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6787 6788
	}

6789 6790
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6791
				mmap_event->event_id.header.size);
6792
	if (ret)
6793
		goto out;
6794

6795 6796
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6797

6798
	perf_output_put(&handle, mmap_event->event_id);
6799 6800 6801 6802 6803 6804

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6805 6806
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6807 6808
	}

6809
	__output_copy(&handle, mmap_event->file_name,
6810
				   mmap_event->file_size);
6811 6812 6813

	perf_event__output_id_sample(event, &handle, &sample);

6814
	perf_output_end(&handle);
6815 6816
out:
	mmap_event->event_id.header.size = size;
6817 6818
}

6819
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6820
{
6821 6822
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6823 6824
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6825
	u32 prot = 0, flags = 0;
6826 6827 6828
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6829
	char *name;
6830

6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6852
	if (file) {
6853 6854
		struct inode *inode;
		dev_t dev;
6855

6856
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6857
		if (!buf) {
6858 6859
			name = "//enomem";
			goto cpy_name;
6860
		}
6861
		/*
6862
		 * d_path() works from the end of the rb backwards, so we
6863 6864 6865
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6866
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6867
		if (IS_ERR(name)) {
6868 6869
			name = "//toolong";
			goto cpy_name;
6870
		}
6871 6872 6873 6874 6875 6876
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6877

6878
		goto got_name;
6879
	} else {
6880 6881 6882 6883 6884 6885
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6886
		name = (char *)arch_vma_name(vma);
6887 6888
		if (name)
			goto cpy_name;
6889

6890
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6891
				vma->vm_end >= vma->vm_mm->brk) {
6892 6893
			name = "[heap]";
			goto cpy_name;
6894 6895
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6896
				vma->vm_end >= vma->vm_mm->start_stack) {
6897 6898
			name = "[stack]";
			goto cpy_name;
6899 6900
		}

6901 6902
		name = "//anon";
		goto cpy_name;
6903 6904
	}

6905 6906 6907
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6908
got_name:
6909 6910 6911 6912 6913 6914 6915 6916
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6917 6918 6919

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6920 6921 6922 6923
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6924 6925
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6926

6927 6928 6929
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6930
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6931

6932
	perf_iterate_sb(perf_event_mmap_output,
6933 6934
		       mmap_event,
		       NULL);
6935

6936 6937 6938
	kfree(buf);
}

6939 6940 6941 6942 6943 6944 6945
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
6946
	if (filter->inode != file_inode(file))
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6989
		perf_event_stop(event, 1);
6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

7000 7001 7002 7003 7004 7005 7006
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

7007 7008 7009 7010 7011 7012
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

7013
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7014 7015 7016 7017
	}
	rcu_read_unlock();
}

7018
void perf_event_mmap(struct vm_area_struct *vma)
7019
{
7020 7021
	struct perf_mmap_event mmap_event;

7022
	if (!atomic_read(&nr_mmap_events))
7023 7024 7025
		return;

	mmap_event = (struct perf_mmap_event){
7026
		.vma	= vma,
7027 7028
		/* .file_name */
		/* .file_size */
7029
		.event_id  = {
7030
			.header = {
7031
				.type = PERF_RECORD_MMAP,
7032
				.misc = PERF_RECORD_MISC_USER,
7033 7034 7035 7036
				/* .size */
			},
			/* .pid */
			/* .tid */
7037 7038
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
7039
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7040
		},
7041 7042 7043 7044
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
7045 7046
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
7047 7048
	};

7049
	perf_addr_filters_adjust(vma);
7050
	perf_event_mmap_event(&mmap_event);
7051 7052
}

A
Alexander Shishkin 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7200
	perf_iterate_sb(perf_event_switch_output,
7201 7202 7203 7204
		       &switch_event,
		       NULL);
}

7205 7206 7207 7208
/*
 * IRQ throttle logging
 */

7209
static void perf_log_throttle(struct perf_event *event, int enable)
7210 7211
{
	struct perf_output_handle handle;
7212
	struct perf_sample_data sample;
7213 7214 7215 7216 7217
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7218
		u64				id;
7219
		u64				stream_id;
7220 7221
	} throttle_event = {
		.header = {
7222
			.type = PERF_RECORD_THROTTLE,
7223 7224 7225
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7226
		.time		= perf_event_clock(event),
7227 7228
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7229 7230
	};

7231
	if (enable)
7232
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7233

7234 7235 7236
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7237
				throttle_event.header.size);
7238 7239 7240 7241
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7242
	perf_event__output_id_sample(event, &handle, &sample);
7243 7244 7245
	perf_output_end(&handle);
}

7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7282 7283
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7284
{
7285
	struct hw_perf_event *hwc = &event->hw;
7286
	int ret = 0;
7287
	u64 seq;
7288

7289 7290 7291 7292 7293 7294 7295 7296 7297
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7298
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7299 7300
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7301 7302
			ret = 1;
		}
7303
	}
7304

7305
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7306
		u64 now = perf_clock();
7307
		s64 delta = now - hwc->freq_time_stamp;
7308

7309
		hwc->freq_time_stamp = now;
7310

7311
		if (delta > 0 && delta < 2*TICK_NSEC)
7312
			perf_adjust_period(event, delta, hwc->last_period, true);
7313 7314
	}

7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);

7343 7344
	/*
	 * XXX event_limit might not quite work as expected on inherited
7345
	 * events
7346 7347
	 */

7348 7349
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7350
		ret = 1;
7351
		event->pending_kill = POLL_HUP;
7352 7353

		perf_event_disable_inatomic(event);
7354 7355
	}

7356
	READ_ONCE(event->overflow_handler)(event, data, regs);
7357

7358
	if (*perf_event_fasync(event) && event->pending_kill) {
7359 7360
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7361 7362
	}

7363
	return ret;
7364 7365
}

7366
int perf_event_overflow(struct perf_event *event,
7367 7368
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7369
{
7370
	return __perf_event_overflow(event, 1, data, regs);
7371 7372
}

7373
/*
7374
 * Generic software event infrastructure
7375 7376
 */

7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7388
/*
7389 7390
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7391 7392 7393 7394
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7395
u64 perf_swevent_set_period(struct perf_event *event)
7396
{
7397
	struct hw_perf_event *hwc = &event->hw;
7398 7399 7400 7401 7402
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7403 7404

again:
7405
	old = val = local64_read(&hwc->period_left);
7406 7407
	if (val < 0)
		return 0;
7408

7409 7410 7411
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7412
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7413
		goto again;
7414

7415
	return nr;
7416 7417
}

7418
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7419
				    struct perf_sample_data *data,
7420
				    struct pt_regs *regs)
7421
{
7422
	struct hw_perf_event *hwc = &event->hw;
7423
	int throttle = 0;
7424

7425 7426
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7427

7428 7429
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7430

7431
	for (; overflow; overflow--) {
7432
		if (__perf_event_overflow(event, throttle,
7433
					    data, regs)) {
7434 7435 7436 7437 7438 7439
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7440
		throttle = 1;
7441
	}
7442 7443
}

P
Peter Zijlstra 已提交
7444
static void perf_swevent_event(struct perf_event *event, u64 nr,
7445
			       struct perf_sample_data *data,
7446
			       struct pt_regs *regs)
7447
{
7448
	struct hw_perf_event *hwc = &event->hw;
7449

7450
	local64_add(nr, &event->count);
7451

7452 7453 7454
	if (!regs)
		return;

7455
	if (!is_sampling_event(event))
7456
		return;
7457

7458 7459 7460 7461 7462 7463
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7464
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7465
		return perf_swevent_overflow(event, 1, data, regs);
7466

7467
	if (local64_add_negative(nr, &hwc->period_left))
7468
		return;
7469

7470
	perf_swevent_overflow(event, 0, data, regs);
7471 7472
}

7473 7474 7475
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7476
	if (event->hw.state & PERF_HES_STOPPED)
7477
		return 1;
P
Peter Zijlstra 已提交
7478

7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7490
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7491
				enum perf_type_id type,
L
Li Zefan 已提交
7492 7493 7494
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7495
{
7496
	if (event->attr.type != type)
7497
		return 0;
7498

7499
	if (event->attr.config != event_id)
7500 7501
		return 0;

7502 7503
	if (perf_exclude_event(event, regs))
		return 0;
7504 7505 7506 7507

	return 1;
}

7508 7509 7510 7511 7512 7513 7514
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7515 7516
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7517
{
7518 7519 7520 7521
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7522

7523 7524
/* For the read side: events when they trigger */
static inline struct hlist_head *
7525
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7526 7527
{
	struct swevent_hlist *hlist;
7528

7529
	hlist = rcu_dereference(swhash->swevent_hlist);
7530 7531 7532
	if (!hlist)
		return NULL;

7533 7534 7535 7536 7537
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7538
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7549
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7550 7551 7552 7553 7554
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7555 7556 7557
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7558
				    u64 nr,
7559 7560
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7561
{
7562
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7563
	struct perf_event *event;
7564
	struct hlist_head *head;
7565

7566
	rcu_read_lock();
7567
	head = find_swevent_head_rcu(swhash, type, event_id);
7568 7569 7570
	if (!head)
		goto end;

7571
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7572
		if (perf_swevent_match(event, type, event_id, data, regs))
7573
			perf_swevent_event(event, nr, data, regs);
7574
	}
7575 7576
end:
	rcu_read_unlock();
7577 7578
}

7579 7580
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7581
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7582
{
7583
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7584

7585
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7586
}
I
Ingo Molnar 已提交
7587
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7588

7589
void perf_swevent_put_recursion_context(int rctx)
7590
{
7591
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7592

7593
	put_recursion_context(swhash->recursion, rctx);
7594
}
7595

7596
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7597
{
7598
	struct perf_sample_data data;
7599

7600
	if (WARN_ON_ONCE(!regs))
7601
		return;
7602

7603
	perf_sample_data_init(&data, addr, 0);
7604
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7617 7618

	perf_swevent_put_recursion_context(rctx);
7619
fail:
7620
	preempt_enable_notrace();
7621 7622
}

7623
static void perf_swevent_read(struct perf_event *event)
7624 7625 7626
{
}

P
Peter Zijlstra 已提交
7627
static int perf_swevent_add(struct perf_event *event, int flags)
7628
{
7629
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7630
	struct hw_perf_event *hwc = &event->hw;
7631 7632
	struct hlist_head *head;

7633
	if (is_sampling_event(event)) {
7634
		hwc->last_period = hwc->sample_period;
7635
		perf_swevent_set_period(event);
7636
	}
7637

P
Peter Zijlstra 已提交
7638 7639
	hwc->state = !(flags & PERF_EF_START);

7640
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7641
	if (WARN_ON_ONCE(!head))
7642 7643 7644
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7645
	perf_event_update_userpage(event);
7646

7647 7648 7649
	return 0;
}

P
Peter Zijlstra 已提交
7650
static void perf_swevent_del(struct perf_event *event, int flags)
7651
{
7652
	hlist_del_rcu(&event->hlist_entry);
7653 7654
}

P
Peter Zijlstra 已提交
7655
static void perf_swevent_start(struct perf_event *event, int flags)
7656
{
P
Peter Zijlstra 已提交
7657
	event->hw.state = 0;
7658
}
I
Ingo Molnar 已提交
7659

P
Peter Zijlstra 已提交
7660
static void perf_swevent_stop(struct perf_event *event, int flags)
7661
{
P
Peter Zijlstra 已提交
7662
	event->hw.state = PERF_HES_STOPPED;
7663 7664
}

7665 7666
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7667
swevent_hlist_deref(struct swevent_htable *swhash)
7668
{
7669 7670
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7671 7672
}

7673
static void swevent_hlist_release(struct swevent_htable *swhash)
7674
{
7675
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7676

7677
	if (!hlist)
7678 7679
		return;

7680
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7681
	kfree_rcu(hlist, rcu_head);
7682 7683
}

7684
static void swevent_hlist_put_cpu(int cpu)
7685
{
7686
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7687

7688
	mutex_lock(&swhash->hlist_mutex);
7689

7690 7691
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7692

7693
	mutex_unlock(&swhash->hlist_mutex);
7694 7695
}

7696
static void swevent_hlist_put(void)
7697 7698 7699 7700
{
	int cpu;

	for_each_possible_cpu(cpu)
7701
		swevent_hlist_put_cpu(cpu);
7702 7703
}

7704
static int swevent_hlist_get_cpu(int cpu)
7705
{
7706
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7707 7708
	int err = 0;

7709
	mutex_lock(&swhash->hlist_mutex);
7710 7711
	if (!swevent_hlist_deref(swhash) &&
	    cpumask_test_cpu(cpu, perf_online_mask)) {
7712 7713 7714 7715 7716 7717 7718
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7719
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7720
	}
7721
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7722
exit:
7723
	mutex_unlock(&swhash->hlist_mutex);
7724 7725 7726 7727

	return err;
}

7728
static int swevent_hlist_get(void)
7729
{
7730
	int err, cpu, failed_cpu;
7731

7732
	mutex_lock(&pmus_lock);
7733
	for_each_possible_cpu(cpu) {
7734
		err = swevent_hlist_get_cpu(cpu);
7735 7736 7737 7738 7739
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
7740
	mutex_unlock(&pmus_lock);
7741
	return 0;
P
Peter Zijlstra 已提交
7742
fail:
7743 7744 7745
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7746
		swevent_hlist_put_cpu(cpu);
7747
	}
7748
	mutex_unlock(&pmus_lock);
7749 7750 7751
	return err;
}

7752
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7753

7754 7755 7756
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7757

7758 7759
	WARN_ON(event->parent);

7760
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7761
	swevent_hlist_put();
7762 7763 7764 7765
}

static int perf_swevent_init(struct perf_event *event)
{
7766
	u64 event_id = event->attr.config;
7767 7768 7769 7770

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7771 7772 7773 7774 7775 7776
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7777 7778 7779 7780 7781 7782 7783 7784 7785
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7786
	if (event_id >= PERF_COUNT_SW_MAX)
7787 7788 7789 7790 7791
		return -ENOENT;

	if (!event->parent) {
		int err;

7792
		err = swevent_hlist_get();
7793 7794 7795
		if (err)
			return err;

7796
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7797 7798 7799 7800 7801 7802 7803
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7804
	.task_ctx_nr	= perf_sw_context,
7805

7806 7807
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7808
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7809 7810 7811 7812
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7813 7814 7815
	.read		= perf_swevent_read,
};

7816 7817
#ifdef CONFIG_EVENT_TRACING

7818 7819 7820
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7821
	void *record = data->raw->frag.data;
7822

7823 7824 7825 7826
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7827 7828 7829 7830 7831 7832 7833 7834 7835
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7836 7837
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7838 7839 7840 7841
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7842 7843 7844 7845 7846 7847 7848 7849
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
		      rctx, task);
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7869
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7870 7871
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7872 7873
{
	struct perf_sample_data data;
7874 7875
	struct perf_event *event;

7876
	struct perf_raw_record raw = {
7877 7878 7879 7880
		.frag = {
			.size = entry_size,
			.data = record,
		},
7881 7882
	};

7883
	perf_sample_data_init(&data, 0, 0);
7884 7885
	data.raw = &raw;

7886 7887
	perf_trace_buf_update(record, event_type);

7888
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7889
		if (perf_tp_event_match(event, &data, regs))
7890
			perf_swevent_event(event, count, &data, regs);
7891
	}
7892

7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7918
	perf_swevent_put_recursion_context(rctx);
7919 7920 7921
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7922
static void tp_perf_event_destroy(struct perf_event *event)
7923
{
7924
	perf_trace_destroy(event);
7925 7926
}

7927
static int perf_tp_event_init(struct perf_event *event)
7928
{
7929 7930
	int err;

7931 7932 7933
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7934 7935 7936 7937 7938 7939
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7940 7941
	err = perf_trace_init(event);
	if (err)
7942
		return err;
7943

7944
	event->destroy = tp_perf_event_destroy;
7945

7946 7947 7948 7949
	return 0;
}

static struct pmu perf_tracepoint = {
7950 7951
	.task_ctx_nr	= perf_sw_context,

7952
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7953 7954 7955 7956
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7957 7958 7959 7960 7961
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7962
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7963
}
L
Li Zefan 已提交
7964 7965 7966 7967 7968 7969

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
7985
	ret = BPF_PROG_RUN(event->prog, &ctx);
7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

8038 8039
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
8040
	bool is_kprobe, is_tracepoint;
8041 8042
	struct bpf_prog *prog;

8043 8044 8045 8046
	if (event->attr.type == PERF_TYPE_HARDWARE ||
	    event->attr.type == PERF_TYPE_SOFTWARE)
		return perf_event_set_bpf_handler(event, prog_fd);

8047 8048 8049 8050 8051 8052
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

8053 8054 8055 8056
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
	if (!is_kprobe && !is_tracepoint)
		/* bpf programs can only be attached to u/kprobe or tracepoint */
8057 8058 8059 8060 8061 8062
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

8063 8064
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8065 8066 8067 8068 8069
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

8070 8071 8072 8073 8074 8075 8076 8077
	if (is_tracepoint) {
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
8078 8079 8080 8081 8082 8083 8084 8085 8086
	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

8087 8088
	perf_event_free_bpf_handler(event);

8089 8090 8091 8092 8093 8094
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
8095
		bpf_prog_put(prog);
8096 8097 8098
	}
}

8099
#else
L
Li Zefan 已提交
8100

8101
static inline void perf_tp_register(void)
8102 8103
{
}
L
Li Zefan 已提交
8104 8105 8106 8107 8108

static void perf_event_free_filter(struct perf_event *event)
{
}

8109 8110 8111 8112 8113 8114 8115 8116
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
8117
#endif /* CONFIG_EVENT_TRACING */
8118

8119
#ifdef CONFIG_HAVE_HW_BREAKPOINT
8120
void perf_bp_event(struct perf_event *bp, void *data)
8121
{
8122 8123 8124
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

8125
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8126

P
Peter Zijlstra 已提交
8127
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8128
		perf_swevent_event(bp, 1, &sample, regs);
8129 8130 8131
}
#endif

8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8237 8238 8239
	if (!ifh->nr_file_filters)
		return;

8240 8241 8242 8243 8244 8245 8246 8247 8248 8249
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8250 8251 8252 8253 8254
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8269
	perf_event_stop(event, 1);
8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8291
	IF_ACT_NONE = -1,
8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8315
	{ IF_ACT_NONE,		NULL },
8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8387 8388 8389 8390
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8410
			ret = -EINVAL;
8411 8412 8413 8414 8415 8416 8417
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444
				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
8445 8446

				event->addr_filters.nr_file_filters++;
8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
8488
		goto fail_clear_files;
8489 8490

	ret = event->pmu->addr_filters_validate(&filters);
8491 8492
	if (ret)
		goto fail_free_filters;
8493 8494 8495 8496 8497 8498 8499

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

8500 8501 8502 8503 8504 8505 8506 8507
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

8508 8509 8510
	return ret;
}

8511 8512 8513 8514 8515
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8516 8517 8518
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8529 8530
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8531 8532 8533 8534 8535

	kfree(filter_str);
	return ret;
}

8536 8537 8538
/*
 * hrtimer based swevent callback
 */
8539

8540
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8541
{
8542 8543 8544 8545 8546
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8547

8548
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8549 8550 8551 8552

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8553
	event->pmu->read(event);
8554

8555
	perf_sample_data_init(&data, 0, event->hw.last_period);
8556 8557 8558
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8559
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8560
			if (__perf_event_overflow(event, 1, &data, regs))
8561 8562
				ret = HRTIMER_NORESTART;
	}
8563

8564 8565
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8566

8567
	return ret;
8568 8569
}

8570
static void perf_swevent_start_hrtimer(struct perf_event *event)
8571
{
8572
	struct hw_perf_event *hwc = &event->hw;
8573 8574 8575 8576
	s64 period;

	if (!is_sampling_event(event))
		return;
8577

8578 8579 8580 8581
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8582

8583 8584 8585 8586
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8587 8588
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8589
}
8590 8591

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8592
{
8593 8594
	struct hw_perf_event *hwc = &event->hw;

8595
	if (is_sampling_event(event)) {
8596
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8597
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8598 8599 8600

		hrtimer_cancel(&hwc->hrtimer);
	}
8601 8602
}

P
Peter Zijlstra 已提交
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8623
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8624 8625 8626 8627
		event->attr.freq = 0;
	}
}

8628 8629 8630 8631 8632
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8633
{
8634 8635 8636
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8637
	now = local_clock();
8638 8639
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8640 8641
}

P
Peter Zijlstra 已提交
8642
static void cpu_clock_event_start(struct perf_event *event, int flags)
8643
{
P
Peter Zijlstra 已提交
8644
	local64_set(&event->hw.prev_count, local_clock());
8645 8646 8647
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8648
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8649
{
8650 8651 8652
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8653

P
Peter Zijlstra 已提交
8654 8655 8656 8657
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8658
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8659 8660 8661 8662 8663 8664 8665 8666 8667

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8668 8669 8670 8671
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8672

8673 8674 8675 8676 8677 8678 8679 8680
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8681 8682 8683 8684 8685 8686
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8687 8688
	perf_swevent_init_hrtimer(event);

8689
	return 0;
8690 8691
}

8692
static struct pmu perf_cpu_clock = {
8693 8694
	.task_ctx_nr	= perf_sw_context,

8695 8696
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8697
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8698 8699 8700 8701
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8702 8703 8704 8705 8706 8707 8708 8709
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8710
{
8711 8712
	u64 prev;
	s64 delta;
8713

8714 8715 8716 8717
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8718

P
Peter Zijlstra 已提交
8719
static void task_clock_event_start(struct perf_event *event, int flags)
8720
{
P
Peter Zijlstra 已提交
8721
	local64_set(&event->hw.prev_count, event->ctx->time);
8722 8723 8724
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8725
static void task_clock_event_stop(struct perf_event *event, int flags)
8726 8727 8728
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8729 8730 8731 8732 8733 8734
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8735
	perf_event_update_userpage(event);
8736

P
Peter Zijlstra 已提交
8737 8738 8739 8740 8741 8742
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8743 8744 8745 8746
}

static void task_clock_event_read(struct perf_event *event)
{
8747 8748 8749
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8750 8751 8752 8753 8754

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8755
{
8756 8757 8758 8759 8760 8761
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8762 8763 8764 8765 8766 8767
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8768 8769
	perf_swevent_init_hrtimer(event);

8770
	return 0;
L
Li Zefan 已提交
8771 8772
}

8773
static struct pmu perf_task_clock = {
8774 8775
	.task_ctx_nr	= perf_sw_context,

8776 8777
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8778
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8779 8780 8781 8782
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8783 8784
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8785

P
Peter Zijlstra 已提交
8786
static void perf_pmu_nop_void(struct pmu *pmu)
8787 8788
{
}
L
Li Zefan 已提交
8789

8790 8791 8792 8793
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8794
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8795
{
P
Peter Zijlstra 已提交
8796
	return 0;
L
Li Zefan 已提交
8797 8798
}

8799
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8800 8801

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8802
{
8803 8804 8805 8806 8807
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8808
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8809 8810
}

P
Peter Zijlstra 已提交
8811 8812
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8813 8814 8815 8816 8817 8818 8819
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8820 8821 8822
	perf_pmu_enable(pmu);
	return 0;
}
8823

P
Peter Zijlstra 已提交
8824
static void perf_pmu_cancel_txn(struct pmu *pmu)
8825
{
8826 8827 8828 8829 8830 8831 8832
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8833
	perf_pmu_enable(pmu);
8834 8835
}

8836 8837
static int perf_event_idx_default(struct perf_event *event)
{
8838
	return 0;
8839 8840
}

P
Peter Zijlstra 已提交
8841 8842 8843 8844
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8845
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8846
{
P
Peter Zijlstra 已提交
8847
	struct pmu *pmu;
8848

P
Peter Zijlstra 已提交
8849 8850
	if (ctxn < 0)
		return NULL;
8851

P
Peter Zijlstra 已提交
8852 8853 8854 8855
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8856

P
Peter Zijlstra 已提交
8857
	return NULL;
8858 8859
}

8860 8861
static void free_pmu_context(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
8862
	mutex_lock(&pmus_lock);
8863
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8864
	mutex_unlock(&pmus_lock);
8865
}
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8880
static struct idr pmu_idr;
8881

P
Peter Zijlstra 已提交
8882 8883 8884 8885 8886 8887 8888
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8889
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8890

8891 8892 8893 8894 8895 8896 8897 8898 8899 8900
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8901 8902
static DEFINE_MUTEX(mux_interval_mutex);

8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8922
	mutex_lock(&mux_interval_mutex);
8923 8924 8925
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8926
	cpus_read_lock();
8927
	for_each_online_cpu(cpu) {
8928 8929 8930 8931
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8932 8933
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8934
	}
8935
	cpus_read_unlock();
8936
	mutex_unlock(&mux_interval_mutex);
8937 8938 8939

	return count;
}
8940
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8941

8942 8943 8944 8945
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8946
};
8947
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8948 8949 8950 8951

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8952
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8968
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8981 8982 8983 8984 8985 8986 8987
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8988 8989 8990
out:
	return ret;

8991 8992 8993
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
8994 8995 8996 8997 8998
free_dev:
	put_device(pmu->dev);
	goto out;
}

8999
static struct lock_class_key cpuctx_mutex;
9000
static struct lock_class_key cpuctx_lock;
9001

9002
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9003
{
P
Peter Zijlstra 已提交
9004
	int cpu, ret;
9005

9006
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
9007 9008 9009 9010
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
9011

P
Peter Zijlstra 已提交
9012 9013 9014 9015 9016 9017
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
9018 9019 9020
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
9021 9022 9023 9024 9025
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
9026 9027 9028 9029 9030 9031
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
9032
skip_type:
9033 9034 9035
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

9036 9037 9038 9039 9040 9041 9042
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9043 9044 9045 9046 9047
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
9048 9049 9050
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
9051

W
Wei Yongjun 已提交
9052
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
9053 9054
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
9055
		goto free_dev;
9056

P
Peter Zijlstra 已提交
9057 9058 9059 9060
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9061
		__perf_event_init_context(&cpuctx->ctx);
9062
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9063
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
9064
		cpuctx->ctx.pmu = pmu;
9065
		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9066

9067
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
9068
	}
9069

P
Peter Zijlstra 已提交
9070
got_cpu_context:
P
Peter Zijlstra 已提交
9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
9082
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
9083 9084
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
9085
		}
9086
	}
9087

P
Peter Zijlstra 已提交
9088 9089 9090 9091 9092
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

9093 9094 9095
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

9096
	list_add_rcu(&pmu->entry, &pmus);
9097
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
9098 9099
	ret = 0;
unlock:
9100 9101
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
9102
	return ret;
P
Peter Zijlstra 已提交
9103

P
Peter Zijlstra 已提交
9104 9105 9106 9107
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
9108 9109 9110 9111
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
9112 9113 9114
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
9115
}
9116
EXPORT_SYMBOL_GPL(perf_pmu_register);
9117

9118
void perf_pmu_unregister(struct pmu *pmu)
9119
{
9120 9121
	int remove_device;

9122
	mutex_lock(&pmus_lock);
9123
	remove_device = pmu_bus_running;
9124 9125
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
9126

9127
	/*
P
Peter Zijlstra 已提交
9128 9129
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
9130
	 */
9131
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
9132
	synchronize_rcu();
9133

P
Peter Zijlstra 已提交
9134
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
9135 9136
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
9137 9138 9139 9140 9141 9142
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9143
	free_pmu_context(pmu);
9144
}
9145
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9146

9147 9148
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9149
	struct perf_event_context *ctx = NULL;
9150 9151 9152 9153
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9154 9155

	if (event->group_leader != event) {
9156 9157 9158 9159 9160 9161
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9162 9163 9164
		BUG_ON(!ctx);
	}

9165 9166
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9167 9168 9169 9170

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9171 9172 9173 9174 9175 9176
	if (ret)
		module_put(pmu->module);

	return ret;
}

9177
static struct pmu *perf_init_event(struct perf_event *event)
9178
{
D
Dan Carpenter 已提交
9179
	struct pmu *pmu;
9180
	int idx;
9181
	int ret;
9182 9183

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9184

9185 9186 9187 9188 9189 9190 9191 9192
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9193 9194 9195
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9196
	if (pmu) {
9197
		ret = perf_try_init_event(pmu, event);
9198 9199
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9200
		goto unlock;
9201
	}
P
Peter Zijlstra 已提交
9202

9203
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9204
		ret = perf_try_init_event(pmu, event);
9205
		if (!ret)
P
Peter Zijlstra 已提交
9206
			goto unlock;
9207

9208 9209
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9210
			goto unlock;
9211
		}
9212
	}
P
Peter Zijlstra 已提交
9213 9214
	pmu = ERR_PTR(-ENOENT);
unlock:
9215
	srcu_read_unlock(&pmus_srcu, idx);
9216

9217
	return pmu;
9218 9219
}

9220 9221 9222 9223 9224 9225 9226 9227 9228
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9229 9230 9231 9232 9233 9234 9235
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9236 9237
static void account_pmu_sb_event(struct perf_event *event)
{
9238
	if (is_sb_event(event))
9239 9240 9241
		attach_sb_event(event);
}

9242 9243 9244 9245 9246 9247 9248 9249 9250
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9272 9273
static void account_event(struct perf_event *event)
{
9274 9275
	bool inc = false;

9276 9277 9278
	if (event->parent)
		return;

9279
	if (event->attach_state & PERF_ATTACH_TASK)
9280
		inc = true;
9281 9282 9283 9284
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
9285 9286
	if (event->attr.namespaces)
		atomic_inc(&nr_namespaces_events);
9287 9288
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9289 9290
	if (event->attr.freq)
		account_freq_event();
9291 9292
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9293
		inc = true;
9294
	}
9295
	if (has_branch_stack(event))
9296
		inc = true;
9297
	if (is_cgroup_event(event))
9298 9299
		inc = true;

9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9322 9323

	account_event_cpu(event, event->cpu);
9324 9325

	account_pmu_sb_event(event);
9326 9327
}

T
Thomas Gleixner 已提交
9328
/*
9329
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9330
 */
9331
static struct perf_event *
9332
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9333 9334 9335
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9336
		 perf_overflow_handler_t overflow_handler,
9337
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9338
{
P
Peter Zijlstra 已提交
9339
	struct pmu *pmu;
9340 9341
	struct perf_event *event;
	struct hw_perf_event *hwc;
9342
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9343

9344 9345 9346 9347 9348
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9349
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9350
	if (!event)
9351
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9352

9353
	/*
9354
	 * Single events are their own group leaders, with an
9355 9356 9357
	 * empty sibling list:
	 */
	if (!group_leader)
9358
		group_leader = event;
9359

9360 9361
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9362

9363 9364 9365
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9366
	INIT_LIST_HEAD(&event->rb_entry);
9367
	INIT_LIST_HEAD(&event->active_entry);
9368
	INIT_LIST_HEAD(&event->addr_filters.list);
9369 9370
	INIT_HLIST_NODE(&event->hlist_entry);

9371

9372
	init_waitqueue_head(&event->waitq);
9373
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9374

9375
	mutex_init(&event->mmap_mutex);
9376
	raw_spin_lock_init(&event->addr_filters.lock);
9377

9378
	atomic_long_set(&event->refcount, 1);
9379 9380 9381 9382 9383
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9384

9385
	event->parent		= parent_event;
9386

9387
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9388
	event->id		= atomic64_inc_return(&perf_event_id);
9389

9390
	event->state		= PERF_EVENT_STATE_INACTIVE;
9391

9392 9393 9394
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9395 9396 9397
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9398
		 */
9399
		event->hw.target = task;
9400 9401
	}

9402 9403 9404 9405
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9406
	if (!overflow_handler && parent_event) {
9407
		overflow_handler = parent_event->overflow_handler;
9408
		context = parent_event->overflow_handler_context;
9409
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9422
	}
9423

9424 9425 9426
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9427 9428 9429
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9430
	} else {
9431
		event->overflow_handler = perf_event_output_forward;
9432 9433
		event->overflow_handler_context = NULL;
	}
9434

J
Jiri Olsa 已提交
9435
	perf_event__state_init(event);
9436

9437
	pmu = NULL;
9438

9439
	hwc = &event->hw;
9440
	hwc->sample_period = attr->sample_period;
9441
	if (attr->freq && attr->sample_freq)
9442
		hwc->sample_period = 1;
9443
	hwc->last_period = hwc->sample_period;
9444

9445
	local64_set(&hwc->period_left, hwc->sample_period);
9446

9447
	/*
9448 9449
	 * We currently do not support PERF_SAMPLE_READ on inherited events.
	 * See perf_output_read().
9450
	 */
9451
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9452
		goto err_ns;
9453 9454 9455

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9456

9457 9458 9459 9460 9461 9462
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9463
	pmu = perf_init_event(event);
D
Dan Carpenter 已提交
9464
	if (IS_ERR(pmu)) {
9465
		err = PTR_ERR(pmu);
9466
		goto err_ns;
I
Ingo Molnar 已提交
9467
	}
9468

9469 9470 9471 9472
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9473 9474 9475 9476
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
9477 9478
		if (!event->addr_filters_offs) {
			err = -ENOMEM;
9479
			goto err_per_task;
9480
		}
9481 9482 9483 9484 9485

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9486
	if (!event->parent) {
9487
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9488
			err = get_callchain_buffers(attr->sample_max_stack);
9489
			if (err)
9490
				goto err_addr_filters;
9491
		}
9492
	}
9493

9494 9495 9496
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9497
	return event;
9498

9499 9500 9501
err_addr_filters:
	kfree(event->addr_filters_offs);

9502 9503 9504
err_per_task:
	exclusive_event_destroy(event);

9505 9506 9507
err_pmu:
	if (event->destroy)
		event->destroy(event);
9508
	module_put(pmu->module);
9509
err_ns:
9510 9511
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9512 9513 9514 9515 9516
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9517 9518
}

9519 9520
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9521 9522
{
	u32 size;
9523
	int ret;
9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9548 9549 9550
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9551 9552
	 */
	if (size > sizeof(*attr)) {
9553 9554 9555
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9556

9557 9558
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9559

9560
		for (; addr < end; addr++) {
9561 9562 9563 9564 9565 9566
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9567
		size = sizeof(*attr);
9568 9569 9570 9571 9572 9573
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9574
	if (attr->__reserved_1)
9575 9576 9577 9578 9579 9580 9581 9582
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9611 9612
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9613 9614
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9615
	}
9616

9617
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9618
		ret = perf_reg_validate(attr->sample_regs_user);
9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9637

9638 9639
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9640 9641 9642 9643 9644 9645 9646 9647 9648
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9649 9650
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9651
{
9652
	struct ring_buffer *rb = NULL;
9653 9654
	int ret = -EINVAL;

9655
	if (!output_event)
9656 9657
		goto set;

9658 9659
	/* don't allow circular references */
	if (event == output_event)
9660 9661
		goto out;

9662 9663 9664 9665 9666 9667 9668
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9669
	 * If its not a per-cpu rb, it must be the same task.
9670 9671 9672 9673
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9674 9675 9676 9677 9678 9679
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9680 9681 9682 9683 9684 9685 9686
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9687 9688 9689 9690 9691 9692 9693
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9694
set:
9695
	mutex_lock(&event->mmap_mutex);
9696 9697 9698
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9699

9700
	if (output_event) {
9701 9702 9703
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9704
			goto unlock;
9705 9706
	}

9707
	ring_buffer_attach(event, rb);
9708

9709
	ret = 0;
9710 9711 9712
unlock:
	mutex_unlock(&event->mmap_mutex);

9713 9714 9715 9716
out:
	return ret;
}

P
Peter Zijlstra 已提交
9717 9718 9719 9720 9721 9722 9723 9724 9725
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9794
/**
9795
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9796
 *
9797
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9798
 * @pid:		target pid
I
Ingo Molnar 已提交
9799
 * @cpu:		target cpu
9800
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9801
 */
9802 9803
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9804
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9805
{
9806 9807
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9808
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9809
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9810
	struct file *event_file = NULL;
9811
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9812
	struct task_struct *task = NULL;
9813
	struct pmu *pmu;
9814
	int event_fd;
9815
	int move_group = 0;
9816
	int err;
9817
	int f_flags = O_RDWR;
9818
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9819

9820
	/* for future expandability... */
S
Stephane Eranian 已提交
9821
	if (flags & ~PERF_FLAG_ALL)
9822 9823
		return -EINVAL;

9824 9825 9826
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9827

9828 9829 9830 9831 9832
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9833 9834 9835 9836 9837
	if (attr.namespaces) {
		if (!capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9838
	if (attr.freq) {
9839
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9840
			return -EINVAL;
9841 9842 9843
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9844 9845
	}

9846 9847 9848
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9849 9850 9851 9852 9853 9854 9855 9856 9857
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9858 9859 9860 9861
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9862 9863 9864
	if (event_fd < 0)
		return event_fd;

9865
	if (group_fd != -1) {
9866 9867
		err = perf_fget_light(group_fd, &group);
		if (err)
9868
			goto err_fd;
9869
		group_leader = group.file->private_data;
9870 9871 9872 9873 9874 9875
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9876
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9877 9878 9879 9880 9881 9882 9883
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9884 9885 9886 9887 9888 9889
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9890 9891 9892
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
9893
			goto err_task;
9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9908 9909 9910
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9911
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9912
				 NULL, NULL, cgroup_fd);
9913 9914
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9915
		goto err_cred;
9916 9917
	}

9918 9919
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9920
			err = -EOPNOTSUPP;
9921 9922 9923 9924
			goto err_alloc;
		}
	}

9925 9926 9927 9928 9929
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9930

9931 9932 9933 9934 9935 9936
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9937 9938 9939
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
9953
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9954 9955 9956 9957 9958 9959 9960 9961
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9962 9963 9964 9965

	/*
	 * Get the target context (task or percpu):
	 */
9966
	ctx = find_get_context(pmu, task, event);
9967 9968
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9969
		goto err_alloc;
9970 9971
	}

9972 9973 9974 9975 9976
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9977
	/*
9978
	 * Look up the group leader (we will attach this event to it):
9979
	 */
9980
	if (group_leader) {
9981
		err = -EINVAL;
9982 9983

		/*
I
Ingo Molnar 已提交
9984 9985 9986 9987
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9988
			goto err_context;
9989 9990 9991 9992 9993

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
9994 9995 9996
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
9997
		 */
9998
		if (move_group) {
9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
10012 10013 10014 10015 10016 10017
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

10018 10019 10020
		/*
		 * Only a group leader can be exclusive or pinned
		 */
10021
		if (attr.exclusive || attr.pinned)
10022
			goto err_context;
10023 10024 10025 10026 10027
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
10028
			goto err_context;
10029
	}
T
Thomas Gleixner 已提交
10030

10031 10032
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
10033 10034
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
10035
		event_file = NULL;
10036
		goto err_context;
10037
	}
10038

10039
	if (move_group) {
10040 10041
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

10042 10043 10044 10045
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
10065 10066 10067 10068
	} else {
		mutex_lock(&ctx->mutex);
	}

10069 10070 10071 10072 10073
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
10074 10075 10076 10077 10078
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);

		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_locked;
		}
	}


10096 10097 10098 10099 10100 10101 10102
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
10103

10104 10105 10106
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
10107

10108 10109
	WARN_ON_ONCE(ctx->parent_ctx);

10110 10111 10112 10113 10114
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

10115
	if (move_group) {
P
Peter Zijlstra 已提交
10116 10117 10118 10119
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
10120
		perf_remove_from_context(group_leader, 0);
10121
		put_ctx(gctx);
J
Jiri Olsa 已提交
10122

10123 10124
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10125
			perf_remove_from_context(sibling, 0);
10126 10127 10128
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
10129 10130 10131 10132
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
10133
		synchronize_rcu();
P
Peter Zijlstra 已提交
10134

10135 10136 10137 10138 10139 10140 10141 10142 10143 10144
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
10145 10146
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10147
			perf_event__state_init(sibling);
10148
			perf_install_in_context(ctx, sibling, sibling->cpu);
10149 10150
			get_ctx(ctx);
		}
10151 10152 10153 10154 10155 10156 10157 10158 10159

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
10160 10161
	}

10162 10163 10164 10165 10166 10167 10168 10169 10170
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10171 10172
	event->owner = current;

10173
	perf_install_in_context(ctx, event, event->cpu);
10174
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10175

10176
	if (move_group)
10177
		perf_event_ctx_unlock(group_leader, gctx);
10178
	mutex_unlock(&ctx->mutex);
10179

10180 10181 10182 10183 10184
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10185 10186 10187
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10188

10189 10190 10191 10192 10193 10194
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10195
	fdput(group);
10196 10197
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10198

10199 10200
err_locked:
	if (move_group)
10201
		perf_event_ctx_unlock(group_leader, gctx);
10202 10203 10204
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10205
err_context:
10206
	perf_unpin_context(ctx);
10207
	put_ctx(ctx);
10208
err_alloc:
P
Peter Zijlstra 已提交
10209 10210 10211 10212 10213 10214
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10215 10216 10217
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10218
err_task:
P
Peter Zijlstra 已提交
10219 10220
	if (task)
		put_task_struct(task);
10221
err_group_fd:
10222
	fdput(group);
10223 10224
err_fd:
	put_unused_fd(event_fd);
10225
	return err;
T
Thomas Gleixner 已提交
10226 10227
}

10228 10229 10230 10231 10232
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10233
 * @task: task to profile (NULL for percpu)
10234 10235 10236
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10237
				 struct task_struct *task,
10238 10239
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10240 10241
{
	struct perf_event_context *ctx;
10242
	struct perf_event *event;
10243
	int err;
10244

10245 10246 10247
	/*
	 * Get the target context (task or percpu):
	 */
10248

10249
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10250
				 overflow_handler, context, -1);
10251 10252 10253 10254
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10255

10256
	/* Mark owner so we could distinguish it from user events. */
10257
	event->owner = TASK_TOMBSTONE;
10258

10259
	ctx = find_get_context(event->pmu, task, event);
10260 10261
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10262
		goto err_free;
10263
	}
10264 10265 10266

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10267 10268 10269 10270 10271
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);
		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_unlock;
		}
	}

10287 10288
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10289
		goto err_unlock;
10290 10291
	}

10292
	perf_install_in_context(ctx, event, cpu);
10293
	perf_unpin_context(ctx);
10294 10295 10296 10297
	mutex_unlock(&ctx->mutex);

	return event;

10298 10299 10300 10301
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10302 10303 10304
err_free:
	free_event(event);
err:
10305
	return ERR_PTR(err);
10306
}
10307
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10308

10309 10310 10311 10312 10313 10314 10315 10316 10317 10318
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10319 10320 10321 10322 10323
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10324 10325
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10326
		perf_remove_from_context(event, 0);
10327
		unaccount_event_cpu(event, src_cpu);
10328
		put_ctx(src_ctx);
10329
		list_add(&event->migrate_entry, &events);
10330 10331
	}

10332 10333 10334
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10335 10336
	synchronize_rcu();

10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10361 10362
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10363 10364
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10365
		account_event_cpu(event, dst_cpu);
10366 10367 10368 10369
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10370
	mutex_unlock(&src_ctx->mutex);
10371 10372 10373
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10374
static void sync_child_event(struct perf_event *child_event,
10375
			       struct task_struct *child)
10376
{
10377
	struct perf_event *parent_event = child_event->parent;
10378
	u64 child_val;
10379

10380 10381
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10382

P
Peter Zijlstra 已提交
10383
	child_val = perf_event_count(child_event);
10384 10385 10386 10387

	/*
	 * Add back the child's count to the parent's count:
	 */
10388
	atomic64_add(child_val, &parent_event->child_count);
10389 10390 10391 10392
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10393 10394
}

10395
static void
10396 10397 10398
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10399
{
10400 10401
	struct perf_event *parent_event = child_event->parent;

10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10414 10415 10416
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10417
	if (parent_event)
10418 10419
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10420
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10421
	raw_spin_unlock_irq(&child_ctx->lock);
10422

10423
	/*
10424
	 * Parent events are governed by their filedesc, retain them.
10425
	 */
10426
	if (!parent_event) {
10427
		perf_event_wakeup(child_event);
10428
		return;
10429
	}
10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10450 10451
}

P
Peter Zijlstra 已提交
10452
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10453
{
10454
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10455 10456 10457
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10458

10459
	child_ctx = perf_pin_task_context(child, ctxn);
10460
	if (!child_ctx)
10461 10462
		return;

10463
	/*
10464 10465 10466 10467 10468 10469 10470 10471
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10472
	 */
10473
	mutex_lock(&child_ctx->mutex);
10474 10475

	/*
10476 10477 10478
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10479
	 */
10480
	raw_spin_lock_irq(&child_ctx->lock);
10481
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10482

10483
	/*
10484 10485
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10486
	 */
10487 10488 10489 10490
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10491

10492
	clone_ctx = unclone_ctx(child_ctx);
10493
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10494

10495 10496
	if (clone_ctx)
		put_ctx(clone_ctx);
10497

P
Peter Zijlstra 已提交
10498
	/*
10499 10500 10501
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10502
	 */
10503
	perf_event_task(child, child_ctx, 0);
10504

10505
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10506
		perf_event_exit_event(child_event, child_ctx, child);
10507

10508 10509 10510
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10511 10512
}

P
Peter Zijlstra 已提交
10513 10514
/*
 * When a child task exits, feed back event values to parent events.
10515 10516 10517
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10518 10519 10520
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10521
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10522 10523
	int ctxn;

P
Peter Zijlstra 已提交
10524 10525 10526 10527 10528 10529 10530 10531 10532 10533
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10534
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10535 10536 10537
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10538 10539
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10540 10541 10542 10543 10544 10545 10546 10547

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10548 10549
}

10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10562
	put_event(parent);
10563

P
Peter Zijlstra 已提交
10564
	raw_spin_lock_irq(&ctx->lock);
10565
	perf_group_detach(event);
10566
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10567
	raw_spin_unlock_irq(&ctx->lock);
10568 10569 10570
	free_event(event);
}

10571
/*
P
Peter Zijlstra 已提交
10572
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10573
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10574 10575 10576
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10577
 */
10578
void perf_event_free_task(struct task_struct *task)
10579
{
P
Peter Zijlstra 已提交
10580
	struct perf_event_context *ctx;
10581
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10582
	int ctxn;
10583

P
Peter Zijlstra 已提交
10584 10585 10586 10587
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10588

P
Peter Zijlstra 已提交
10589
		mutex_lock(&ctx->mutex);
10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600
		raw_spin_lock_irq(&ctx->lock);
		/*
		 * Destroy the task <-> ctx relation and mark the context dead.
		 *
		 * This is important because even though the task hasn't been
		 * exposed yet the context has been (through child_list).
		 */
		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
		put_task_struct(task); /* cannot be last */
		raw_spin_unlock_irq(&ctx->lock);
10601

10602
		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
P
Peter Zijlstra 已提交
10603
			perf_free_event(event, ctx);
10604

P
Peter Zijlstra 已提交
10605 10606 10607
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
	}
10608 10609
}

10610 10611 10612 10613 10614 10615 10616 10617
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10618
struct file *perf_event_get(unsigned int fd)
10619
{
10620
	struct file *file;
10621

10622 10623 10624
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10625

10626 10627 10628 10629
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10630

10631
	return file;
10632 10633 10634 10635 10636 10637 10638 10639 10640 10641
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10642
/*
10643 10644 10645 10646 10647 10648
 * Inherit a event from parent task to child task.
 *
 * Returns:
 *  - valid pointer on success
 *  - NULL for orphaned events
 *  - IS_ERR() on error
P
Peter Zijlstra 已提交
10649 10650 10651 10652 10653 10654 10655 10656 10657
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10658
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10659
	struct perf_event *child_event;
10660
	unsigned long flags;
P
Peter Zijlstra 已提交
10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10673
					   child,
P
Peter Zijlstra 已提交
10674
					   group_leader, parent_event,
10675
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10676 10677
	if (IS_ERR(child_event))
		return child_event;
10678

10679 10680 10681 10682 10683 10684 10685
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10686 10687
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10688
		mutex_unlock(&parent_event->child_mutex);
10689 10690 10691 10692
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10693 10694 10695 10696 10697 10698 10699
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10700
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10717 10718
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10719

10720 10721 10722 10723
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10724
	perf_event__id_header_size(child_event);
10725

P
Peter Zijlstra 已提交
10726 10727 10728
	/*
	 * Link it up in the child's context:
	 */
10729
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10730
	add_event_to_ctx(child_event, child_ctx);
10731
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10732 10733 10734 10735 10736 10737 10738 10739 10740 10741

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

10742 10743 10744 10745 10746 10747 10748 10749 10750 10751
/*
 * Inherits an event group.
 *
 * This will quietly suppress orphaned events; !inherit_event() is not an error.
 * This matches with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
P
Peter Zijlstra 已提交
10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765
static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
10766 10767 10768 10769 10770
	/*
	 * @leader can be NULL here because of is_orphaned_event(). In this
	 * case inherit_event() will create individual events, similar to what
	 * perf_group_detach() would do anyway.
	 */
P
Peter Zijlstra 已提交
10771 10772 10773 10774 10775 10776 10777
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10778 10779
}

10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790
/*
 * Creates the child task context and tries to inherit the event-group.
 *
 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 * inherited_all set when we 'fail' to inherit an orphaned event; this is
 * consistent with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
10791 10792 10793
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10794
		   struct task_struct *child, int ctxn,
10795 10796 10797
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10798
	struct perf_event_context *child_ctx;
10799 10800 10801 10802

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10803 10804
	}

10805
	child_ctx = child->perf_event_ctxp[ctxn];
10806 10807 10808 10809 10810 10811 10812
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10813
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10814 10815
		if (!child_ctx)
			return -ENOMEM;
10816

P
Peter Zijlstra 已提交
10817
		child->perf_event_ctxp[ctxn] = child_ctx;
10818 10819 10820 10821 10822 10823 10824 10825 10826
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10827 10828
}

10829
/*
10830
 * Initialize the perf_event context in task_struct
10831
 */
10832
static int perf_event_init_context(struct task_struct *child, int ctxn)
10833
{
10834
	struct perf_event_context *child_ctx, *parent_ctx;
10835 10836
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10837
	struct task_struct *parent = current;
10838
	int inherited_all = 1;
10839
	unsigned long flags;
10840
	int ret = 0;
10841

P
Peter Zijlstra 已提交
10842
	if (likely(!parent->perf_event_ctxp[ctxn]))
10843 10844
		return 0;

10845
	/*
10846 10847
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10848
	 */
P
Peter Zijlstra 已提交
10849
	parent_ctx = perf_pin_task_context(parent, ctxn);
10850 10851
	if (!parent_ctx)
		return 0;
10852

10853 10854 10855 10856 10857 10858 10859
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10860 10861 10862 10863
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10864
	mutex_lock(&parent_ctx->mutex);
10865 10866 10867 10868 10869

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10870
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10871 10872
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10873
		if (ret)
10874
			goto out_unlock;
10875
	}
10876

10877 10878 10879 10880 10881 10882 10883 10884 10885
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10886
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10887 10888
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10889
		if (ret)
10890
			goto out_unlock;
10891 10892
	}

10893 10894 10895
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10896
	child_ctx = child->perf_event_ctxp[ctxn];
10897

10898
	if (child_ctx && inherited_all) {
10899 10900 10901
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10902 10903 10904
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10905
		 */
P
Peter Zijlstra 已提交
10906
		cloned_ctx = parent_ctx->parent_ctx;
10907 10908
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10909
			child_ctx->parent_gen = parent_ctx->parent_gen;
10910 10911 10912 10913 10914
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10915 10916
	}

P
Peter Zijlstra 已提交
10917
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10918
out_unlock:
10919
	mutex_unlock(&parent_ctx->mutex);
10920

10921
	perf_unpin_context(parent_ctx);
10922
	put_ctx(parent_ctx);
10923

10924
	return ret;
10925 10926
}

P
Peter Zijlstra 已提交
10927 10928 10929 10930 10931 10932 10933
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10934 10935 10936 10937
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10938 10939
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10940 10941
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10942
			return ret;
P
Peter Zijlstra 已提交
10943
		}
P
Peter Zijlstra 已提交
10944 10945 10946 10947 10948
	}

	return 0;
}

10949 10950
static void __init perf_event_init_all_cpus(void)
{
10951
	struct swevent_htable *swhash;
10952 10953
	int cpu;

10954 10955
	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);

10956
	for_each_possible_cpu(cpu) {
10957 10958
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10959
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10960 10961 10962

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10963

10964 10965 10966
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
10967
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10968 10969 10970
	}
}

10971
void perf_swevent_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10972
{
P
Peter Zijlstra 已提交
10973
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10974

10975
	mutex_lock(&swhash->hlist_mutex);
10976
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10977 10978
		struct swevent_hlist *hlist;

10979 10980 10981
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10982
	}
10983
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
10984 10985
}

10986
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10987
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10988
{
P
Peter Zijlstra 已提交
10989
	struct perf_event_context *ctx = __info;
10990 10991
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
10992

10993 10994
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
10995
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10996
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
10997
}
P
Peter Zijlstra 已提交
10998 10999 11000

static void perf_event_exit_cpu_context(int cpu)
{
11001
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
11002 11003 11004
	struct perf_event_context *ctx;
	struct pmu *pmu;

11005 11006 11007 11008
	mutex_lock(&pmus_lock);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;
P
Peter Zijlstra 已提交
11009 11010 11011

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11012
		cpuctx->online = 0;
P
Peter Zijlstra 已提交
11013 11014
		mutex_unlock(&ctx->mutex);
	}
11015 11016
	cpumask_clear_cpu(cpu, perf_online_mask);
	mutex_unlock(&pmus_lock);
P
Peter Zijlstra 已提交
11017
}
11018 11019 11020 11021 11022
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
11023

11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046
int perf_event_init_cpu(unsigned int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;

	perf_swevent_init_cpu(cpu);

	mutex_lock(&pmus_lock);
	cpumask_set_cpu(cpu, perf_online_mask);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		mutex_lock(&ctx->mutex);
		cpuctx->online = 1;
		mutex_unlock(&ctx->mutex);
	}
	mutex_unlock(&pmus_lock);

	return 0;
}

11047
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11048
{
P
Peter Zijlstra 已提交
11049
	perf_event_exit_cpu_context(cpu);
11050
	return 0;
T
Thomas Gleixner 已提交
11051 11052
}

P
Peter Zijlstra 已提交
11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

11073
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
11074
{
11075 11076
	int ret;

P
Peter Zijlstra 已提交
11077 11078
	idr_init(&pmu_idr);

11079
	perf_event_init_all_cpus();
11080
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
11081 11082 11083
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
11084
	perf_tp_register();
11085
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
11086
	register_reboot_notifier(&perf_reboot_notifier);
11087 11088 11089

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11090

11091 11092 11093 11094 11095 11096
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
11097
}
P
Peter Zijlstra 已提交
11098

11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
11110
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11111

P
Peter Zijlstra 已提交
11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
11139 11140

#ifdef CONFIG_CGROUP_PERF
11141 11142
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
11143 11144 11145
{
	struct perf_cgroup *jc;

11146
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

11159
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
11160
{
11161 11162
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
11163 11164 11165 11166 11167 11168 11169
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
11170
	rcu_read_lock();
S
Stephane Eranian 已提交
11171
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11172
	rcu_read_unlock();
S
Stephane Eranian 已提交
11173 11174 11175
	return 0;
}

11176
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
11177
{
11178
	struct task_struct *task;
11179
	struct cgroup_subsys_state *css;
11180

11181
	cgroup_taskset_for_each(task, css, tset)
11182
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
11183 11184
}

11185
struct cgroup_subsys perf_event_cgrp_subsys = {
11186 11187
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
11188
	.attach		= perf_cgroup_attach,
11189 11190 11191 11192 11193 11194
	/*
	 * Implicitly enable on dfl hierarchy so that perf events can
	 * always be filtered by cgroup2 path as long as perf_event
	 * controller is not mounted on a legacy hierarchy.
	 */
	.implicit_on_dfl = true,
S
Stephane Eranian 已提交
11195 11196
};
#endif /* CONFIG_CGROUP_PERF */