timer.c 47.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched.h>
42
#include <linux/sched/sysctl.h>
43
#include <linux/slab.h>
44
#include <linux/compat.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

52 53
#include "tick-internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

A
Andi Kleen 已提交
57
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
T
Thomas Gleixner 已提交
58 59 60

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
70
#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
L
Linus Torvalds 已提交
71

72
struct tvec {
L
Linus Torvalds 已提交
73
	struct list_head vec[TVN_SIZE];
74
};
L
Linus Torvalds 已提交
75

76
struct tvec_root {
L
Linus Torvalds 已提交
77
	struct list_head vec[TVR_SIZE];
78
};
L
Linus Torvalds 已提交
79

80
struct tvec_base {
81 82
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
83
	unsigned long timer_jiffies;
84
	unsigned long next_timer;
85
	unsigned long active_timers;
86
	unsigned long all_timers;
87
	int cpu;
88 89 90 91 92
	struct tvec_root tv1;
	struct tvec tv2;
	struct tvec tv3;
	struct tvec tv4;
	struct tvec tv5;
93
} ____cacheline_aligned;
L
Linus Torvalds 已提交
94

95 96 97 98 99 100 101 102 103
/*
 * __TIMER_INITIALIZER() needs to set ->base to a valid pointer (because we've
 * made NULL special, hint: lock_timer_base()) and we cannot get a compile time
 * pointer to per-cpu entries because we don't know where we'll map the section,
 * even for the boot cpu.
 *
 * And so we use boot_tvec_bases for boot CPU and per-cpu __tvec_bases for the
 * rest of them.
 */
104
struct tvec_base boot_tvec_bases;
105
EXPORT_SYMBOL(boot_tvec_bases);
106

107
static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
L
Linus Torvalds 已提交
108

109
/* Functions below help us manage 'deferrable' flag */
110
static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
111
{
112
	return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
113 114
}

T
Tejun Heo 已提交
115 116 117 118 119
static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
{
	return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
}

120
static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
121
{
122
	return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
123 124 125
}

static inline void
126
timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
127
{
128 129 130
	unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;

	timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
131 132
}

133 134
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
156
	 * But never round down if @force_up is set.
157
	 */
158
	if (rem < HZ/4 && !force_up) /* round down */
159 160 161 162 163 164 165
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

166 167 168 169 170
	/*
	 * Make sure j is still in the future. Otherwise return the
	 * unmodified value.
	 */
	return time_is_after_jiffies(j) ? j : original;
171
}
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
197 198 199 200 201 202 203
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
204
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
205 206 207 208 209 210 211 212 213 214 215 216
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
217
 * The return value is the rounded version of the @j parameter.
218 219 220
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
221 222 223 224
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
225 226 227 228 229 230 231
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
232
 * round_jiffies() rounds an absolute time in the future (in jiffies)
233 234 235 236 237 238 239 240
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
241
 * The return value is the rounded version of the @j parameter.
242 243 244
 */
unsigned long round_jiffies(unsigned long j)
{
245
	return round_jiffies_common(j, raw_smp_processor_id(), false);
246 247 248 249 250 251 252
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
253
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
254 255 256 257 258 259 260 261
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
262
 * The return value is the rounded version of the @j parameter.
263 264 265 266 267 268 269
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

335 336
/**
 * set_timer_slack - set the allowed slack for a timer
337
 * @timer: the timer to be modified
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
 * @slack_hz: the amount of time (in jiffies) allowed for rounding
 *
 * Set the amount of time, in jiffies, that a certain timer has
 * in terms of slack. By setting this value, the timer subsystem
 * will schedule the actual timer somewhere between
 * the time mod_timer() asks for, and that time plus the slack.
 *
 * By setting the slack to -1, a percentage of the delay is used
 * instead.
 */
void set_timer_slack(struct timer_list *timer, int slack_hz)
{
	timer->slack = slack_hz;
}
EXPORT_SYMBOL_GPL(set_timer_slack);

354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * If the list is empty, catch up ->timer_jiffies to the current time.
 * The caller must hold the tvec_base lock.  Returns true if the list
 * was empty and therefore ->timer_jiffies was updated.
 */
static bool catchup_timer_jiffies(struct tvec_base *base)
{
	if (!base->all_timers) {
		base->timer_jiffies = jiffies;
		return true;
	}
	return false;
}

368 369
static void
__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
L
Linus Torvalds 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
	struct list_head *vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
395 396 397
		/* If the timeout is larger than MAX_TVAL (on 64-bit
		 * architectures or with CONFIG_BASE_SMALL=1) then we
		 * use the maximum timeout.
L
Linus Torvalds 已提交
398
		 */
399 400
		if (idx > MAX_TVAL) {
			idx = MAX_TVAL;
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410 411
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
	/*
	 * Timers are FIFO:
	 */
	list_add_tail(&timer->entry, vec);
}

412 413
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
{
414
	(void)catchup_timer_jiffies(base);
415 416
	__internal_add_timer(base, timer);
	/*
417
	 * Update base->active_timers and base->next_timer
418
	 */
419
	if (!tbase_get_deferrable(timer->base)) {
420 421
		if (!base->active_timers++ ||
		    time_before(timer->expires, base->next_timer))
422 423
			base->next_timer = timer->expires;
	}
424
	base->all_timers++;
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

	/*
	 * Check whether the other CPU is in dynticks mode and needs
	 * to be triggered to reevaluate the timer wheel.
	 * We are protected against the other CPU fiddling
	 * with the timer by holding the timer base lock. This also
	 * makes sure that a CPU on the way to stop its tick can not
	 * evaluate the timer wheel.
	 *
	 * Spare the IPI for deferrable timers on idle targets though.
	 * The next busy ticks will take care of it. Except full dynticks
	 * require special care against races with idle_cpu(), lets deal
	 * with that later.
	 */
	if (!tbase_get_deferrable(base) || tick_nohz_full_cpu(base->cpu))
		wake_up_nohz_cpu(base->cpu);
441 442
}

443 444 445 446 447 448 449 450 451 452
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
453 454 455 456 457

static void timer_stats_account_timer(struct timer_list *timer)
{
	unsigned int flag = 0;

458 459
	if (likely(!timer->start_site))
		return;
460 461 462 463 464 465 466 467 468
	if (unlikely(tbase_get_deferrable(timer->base)))
		flag |= TIMER_STATS_FLAG_DEFERRABLE;

	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, flag);
}

#else
static void timer_stats_account_timer(struct timer_list *timer) {}
469 470
#endif

471 472 473 474
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

475 476 477 478 479
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

480 481 482
/*
 * fixup_init is called when:
 * - an active object is initialized
483
 */
484 485 486 487 488 489 490 491 492 493 494 495 496 497
static int timer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

498 499 500 501 502 503
/* Stub timer callback for improperly used timers. */
static void stub_timer(unsigned long data)
{
	WARN_ON(1);
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int timer_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The timer was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
		if (timer->entry.next == NULL &&
		    timer->entry.prev == TIMER_ENTRY_STATIC) {
			debug_object_init(timer, &timer_debug_descr);
			debug_object_activate(timer, &timer_debug_descr);
			return 0;
		} else {
527 528
			setup_timer(timer, stub_timer, 0);
			return 1;
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		}
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int timer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
		if (timer->entry.prev == TIMER_ENTRY_STATIC) {
			/*
			 * This is not really a fixup. The timer was
			 * statically initialized. We just make sure that it
			 * is tracked in the object tracker.
			 */
			debug_object_init(timer, &timer_debug_descr);
			return 0;
		} else {
			setup_timer(timer, stub_timer, 0);
			return 1;
		}
	default:
		return 0;
	}
}

585
static struct debug_obj_descr timer_debug_descr = {
586 587 588 589 590 591
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

614 615 616 617 618
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

T
Tejun Heo 已提交
619 620
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key);
621

T
Tejun Heo 已提交
622 623
void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
			     const char *name, struct lock_class_key *key)
624 625
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
T
Tejun Heo 已提交
626
	do_init_timer(timer, flags, name, key);
627
}
628
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
629 630 631 632 633 634 635 636 637 638 639

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
640
static inline void debug_timer_assert_init(struct timer_list *timer) { }
641 642
#endif

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
	trace_timer_start(timer, expires);
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

662 663 664 665 666
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

T
Tejun Heo 已提交
667 668
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key)
669
{
670
	struct tvec_base *base = raw_cpu_read(tvec_bases);
T
Tejun Heo 已提交
671

672
	timer->entry.next = NULL;
T
Tejun Heo 已提交
673
	timer->base = (void *)((unsigned long)base | flags);
674
	timer->slack = -1;
675 676 677 678 679
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
680
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
681
}
682 683

/**
R
Randy Dunlap 已提交
684
 * init_timer_key - initialize a timer
685
 * @timer: the timer to be initialized
T
Tejun Heo 已提交
686
 * @flags: timer flags
R
Randy Dunlap 已提交
687 688 689
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
690
 *
R
Randy Dunlap 已提交
691
 * init_timer_key() must be done to a timer prior calling *any* of the
692 693
 * other timer functions.
 */
T
Tejun Heo 已提交
694 695
void init_timer_key(struct timer_list *timer, unsigned int flags,
		    const char *name, struct lock_class_key *key)
696
{
697
	debug_init(timer);
T
Tejun Heo 已提交
698
	do_init_timer(timer, flags, name, key);
699
}
700
EXPORT_SYMBOL(init_timer_key);
701

702
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
703 704 705
{
	struct list_head *entry = &timer->entry;

706
	debug_deactivate(timer);
707

708 709 710 711 712 713
	__list_del(entry->prev, entry->next);
	if (clear_pending)
		entry->next = NULL;
	entry->prev = LIST_POISON2;
}

714 715 716 717 718
static inline void
detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
{
	detach_timer(timer, true);
	if (!tbase_get_deferrable(timer->base))
719
		base->active_timers--;
720
	base->all_timers--;
721
	(void)catchup_timer_jiffies(base);
722 723
}

724 725 726 727 728 729 730
static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
			     bool clear_pending)
{
	if (!timer_pending(timer))
		return 0;

	detach_timer(timer, clear_pending);
731
	if (!tbase_get_deferrable(timer->base)) {
732
		base->active_timers--;
733 734 735
		if (timer->expires == base->next_timer)
			base->next_timer = base->timer_jiffies;
	}
736
	base->all_timers--;
737
	(void)catchup_timer_jiffies(base);
738 739 740
	return 1;
}

741
/*
742
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
743 744 745 746 747 748 749 750 751 752
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
753
static struct tvec_base *lock_timer_base(struct timer_list *timer,
754
					unsigned long *flags)
755
	__acquires(timer->base->lock)
756
{
757
	struct tvec_base *base;
758 759

	for (;;) {
760
		struct tvec_base *prelock_base = timer->base;
761
		base = tbase_get_base(prelock_base);
762 763
		if (likely(base != NULL)) {
			spin_lock_irqsave(&base->lock, *flags);
764
			if (likely(prelock_base == timer->base))
765 766 767 768 769 770 771 772
				return base;
			/* The timer has migrated to another CPU */
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

I
Ingo Molnar 已提交
773
static inline int
774 775
__mod_timer(struct timer_list *timer, unsigned long expires,
						bool pending_only, int pinned)
L
Linus Torvalds 已提交
776
{
777
	struct tvec_base *base, *new_base;
L
Linus Torvalds 已提交
778
	unsigned long flags;
779
	int ret = 0 , cpu;
L
Linus Torvalds 已提交
780

781
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
782 783
	BUG_ON(!timer->function);

784 785
	base = lock_timer_base(timer, &flags);

786 787 788
	ret = detach_if_pending(timer, base, false);
	if (!ret && pending_only)
		goto out_unlock;
789

790
	debug_activate(timer, expires);
791

792
	cpu = get_nohz_timer_target(pinned);
793 794
	new_base = per_cpu(tvec_bases, cpu);

795
	if (base != new_base) {
L
Linus Torvalds 已提交
796
		/*
797 798 799 800 801
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
802
		 */
803
		if (likely(base->running_timer != timer)) {
804
			/* See the comment in lock_timer_base() */
805
			timer_set_base(timer, NULL);
806
			spin_unlock(&base->lock);
807 808
			base = new_base;
			spin_lock(&base->lock);
809
			timer_set_base(timer, base);
L
Linus Torvalds 已提交
810 811 812 813
		}
	}

	timer->expires = expires;
814
	internal_add_timer(base, timer);
I
Ingo Molnar 已提交
815 816

out_unlock:
817
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
818 819 820 821

	return ret;
}

822
/**
I
Ingo Molnar 已提交
823 824 825
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
826
 *
I
Ingo Molnar 已提交
827 828 829 830
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
831
 */
I
Ingo Molnar 已提交
832
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
833
{
834
	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
835
}
I
Ingo Molnar 已提交
836
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
837

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
/*
 * Decide where to put the timer while taking the slack into account
 *
 * Algorithm:
 *   1) calculate the maximum (absolute) time
 *   2) calculate the highest bit where the expires and new max are different
 *   3) use this bit to make a mask
 *   4) use the bitmask to round down the maximum time, so that all last
 *      bits are zeros
 */
static inline
unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
{
	unsigned long expires_limit, mask;
	int bit;

854
	if (timer->slack >= 0) {
855
		expires_limit = expires + timer->slack;
856
	} else {
857 858 859 860
		long delta = expires - jiffies;

		if (delta < 256)
			return expires;
861

862
		expires_limit = expires + delta / 256;
863
	}
864 865 866 867 868 869
	mask = expires ^ expires_limit;
	if (mask == 0)
		return expires;

	bit = find_last_bit(&mask, BITS_PER_LONG);

870
	mask = (1UL << bit) - 1;
871 872 873 874 875 876

	expires_limit = expires_limit & ~(mask);

	return expires_limit;
}

877
/**
L
Linus Torvalds 已提交
878 879
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
880
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
881
 *
882
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
899 900
	expires = apply_slack(timer, expires);

L
Linus Torvalds 已提交
901 902 903 904 905
	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
906
	if (timer_pending(timer) && timer->expires == expires)
L
Linus Torvalds 已提交
907 908
		return 1;

909
	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
910 911 912
}
EXPORT_SYMBOL(mod_timer);

913 914 915 916 917 918 919
/**
 * mod_timer_pinned - modify a timer's timeout
 * @timer: the timer to be modified
 * @expires: new timeout in jiffies
 *
 * mod_timer_pinned() is a way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
920 921 922 923 924 925 926
 * and to ensure that the timer is scheduled on the current CPU.
 *
 * Note that this does not prevent the timer from being migrated
 * when the current CPU goes offline.  If this is a problem for
 * you, use CPU-hotplug notifiers to handle it correctly, for
 * example, cancelling the timer when the corresponding CPU goes
 * offline.
927 928 929 930 931 932 933 934 935 936 937 938 939 940
 *
 * mod_timer_pinned(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 */
int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
{
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires, false, TIMER_PINNED);
}
EXPORT_SYMBOL(mod_timer_pinned);

I
Ingo Molnar 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
	struct tvec_base *base = per_cpu(tvec_bases, cpu);
	unsigned long flags;

	timer_stats_timer_set_start_info(timer);
	BUG_ON(timer_pending(timer) || !timer->function);
	spin_lock_irqsave(&base->lock, flags);
	timer_set_base(timer, base);
978
	debug_activate(timer, timer->expires);
I
Ingo Molnar 已提交
979 980 981
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
}
A
Andi Kleen 已提交
982
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
983

984
/**
L
Linus Torvalds 已提交
985 986 987 988 989 990 991 992 993 994 995 996
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
997
	struct tvec_base *base;
L
Linus Torvalds 已提交
998
	unsigned long flags;
999
	int ret = 0;
L
Linus Torvalds 已提交
1000

1001 1002
	debug_assert_init(timer);

1003
	timer_stats_timer_clear_start_info(timer);
1004 1005
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
1006
		ret = detach_if_pending(timer, base, true);
L
Linus Torvalds 已提交
1007 1008 1009
		spin_unlock_irqrestore(&base->lock, flags);
	}

1010
	return ret;
L
Linus Torvalds 已提交
1011 1012 1013
}
EXPORT_SYMBOL(del_timer);

1014 1015 1016 1017
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
1018 1019 1020 1021 1022
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
1023
	struct tvec_base *base;
1024 1025 1026
	unsigned long flags;
	int ret = -1;

1027 1028
	debug_assert_init(timer);

1029 1030
	base = lock_timer_base(timer, &flags);

1031 1032 1033
	if (base->running_timer != timer) {
		timer_stats_timer_clear_start_info(timer);
		ret = detach_if_pending(timer, base, true);
1034 1035 1036 1037 1038
	}
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}
1039 1040
EXPORT_SYMBOL(try_to_del_timer_sync);

1041
#ifdef CONFIG_SMP
1042 1043
static DEFINE_PER_CPU(struct tvec_base, __tvec_bases);

1044
/**
L
Linus Torvalds 已提交
1045 1046 1047 1048 1049 1050 1051
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
1052
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
1053
 * otherwise this function is meaningless. It must not be called from
T
Tejun Heo 已提交
1054 1055 1056 1057
 * interrupt contexts unless the timer is an irqsafe one. The caller must
 * not hold locks which would prevent completion of the timer's
 * handler. The timer's handler must not call add_timer_on(). Upon exit the
 * timer is not queued and the handler is not running on any CPU.
L
Linus Torvalds 已提交
1058
 *
T
Tejun Heo 已提交
1059 1060 1061
 * Note: For !irqsafe timers, you must not hold locks that are held in
 *   interrupt context while calling this function. Even if the lock has
 *   nothing to do with the timer in question.  Here's why:
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1078 1079 1080 1081
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1082
#ifdef CONFIG_LOCKDEP
1083 1084
	unsigned long flags;

1085 1086 1087 1088
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1089
	local_irq_save(flags);
1090 1091
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1092
	local_irq_restore(flags);
1093
#endif
1094 1095 1096 1097
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
T
Tejun Heo 已提交
1098
	WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
1099 1100 1101 1102
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1103
		cpu_relax();
1104
	}
L
Linus Torvalds 已提交
1105
}
1106
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1107 1108
#endif

1109
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
L
Linus Torvalds 已提交
1110 1111
{
	/* cascade all the timers from tv up one level */
1112 1113 1114 1115
	struct timer_list *timer, *tmp;
	struct list_head tv_list;

	list_replace_init(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
1116 1117

	/*
1118 1119
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
1120
	 */
1121
	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1122
		BUG_ON(tbase_get_base(timer->base) != base);
1123 1124
		/* No accounting, while moving them */
		__internal_add_timer(base, timer);
L
Linus Torvalds 已提交
1125 1126 1127 1128 1129
	}

	return index;
}

1130 1131 1132
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
			  unsigned long data)
{
1133
	int count = preempt_count();
1134 1135 1136 1137 1138 1139 1140 1141 1142

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1143 1144 1145
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
	fn(data);
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

1160
	if (count != preempt_count()) {
1161
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1162
			  fn, count, preempt_count());
1163 1164 1165 1166 1167 1168
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
1169
		preempt_count_set(count);
1170 1171 1172
	}
}

1173 1174 1175
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
1176 1177 1178 1179 1180 1181
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
1182
static inline void __run_timers(struct tvec_base *base)
L
Linus Torvalds 已提交
1183 1184 1185
{
	struct timer_list *timer;

1186
	spin_lock_irq(&base->lock);
1187 1188 1189 1190
	if (catchup_timer_jiffies(base)) {
		spin_unlock_irq(&base->lock);
		return;
	}
L
Linus Torvalds 已提交
1191
	while (time_after_eq(jiffies, base->timer_jiffies)) {
1192
		struct list_head work_list;
L
Linus Torvalds 已提交
1193
		struct list_head *head = &work_list;
1194
		int index = base->timer_jiffies & TVR_MASK;
1195

L
Linus Torvalds 已提交
1196 1197 1198 1199 1200 1201 1202 1203
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
1204
		++base->timer_jiffies;
1205
		list_replace_init(base->tv1.vec + index, head);
1206
		while (!list_empty(head)) {
L
Linus Torvalds 已提交
1207 1208
			void (*fn)(unsigned long);
			unsigned long data;
T
Tejun Heo 已提交
1209
			bool irqsafe;
L
Linus Torvalds 已提交
1210

1211
			timer = list_first_entry(head, struct timer_list,entry);
1212 1213
			fn = timer->function;
			data = timer->data;
T
Tejun Heo 已提交
1214
			irqsafe = tbase_get_irqsafe(timer->base);
L
Linus Torvalds 已提交
1215

1216 1217
			timer_stats_account_timer(timer);

1218
			base->running_timer = timer;
1219
			detach_expired_timer(timer, base);
1220

T
Tejun Heo 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229
			if (irqsafe) {
				spin_unlock(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock(&base->lock);
			} else {
				spin_unlock_irq(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock_irq(&base->lock);
			}
L
Linus Torvalds 已提交
1230 1231
		}
	}
1232
	base->running_timer = NULL;
1233
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
1234 1235
}

1236
#ifdef CONFIG_NO_HZ_COMMON
L
Linus Torvalds 已提交
1237 1238
/*
 * Find out when the next timer event is due to happen. This
R
Randy Dunlap 已提交
1239 1240
 * is used on S/390 to stop all activity when a CPU is idle.
 * This function needs to be called with interrupts disabled.
L
Linus Torvalds 已提交
1241
 */
1242
static unsigned long __next_timer_interrupt(struct tvec_base *base)
L
Linus Torvalds 已提交
1243
{
1244
	unsigned long timer_jiffies = base->timer_jiffies;
1245
	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1246
	int index, slot, array, found = 0;
L
Linus Torvalds 已提交
1247
	struct timer_list *nte;
1248
	struct tvec *varray[4];
L
Linus Torvalds 已提交
1249 1250

	/* Look for timer events in tv1. */
1251
	index = slot = timer_jiffies & TVR_MASK;
L
Linus Torvalds 已提交
1252
	do {
1253
		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1254 1255
			if (tbase_get_deferrable(nte->base))
				continue;
1256

1257
			found = 1;
L
Linus Torvalds 已提交
1258
			expires = nte->expires;
1259 1260 1261 1262
			/* Look at the cascade bucket(s)? */
			if (!index || slot < index)
				goto cascade;
			return expires;
L
Linus Torvalds 已提交
1263
		}
1264 1265 1266 1267 1268 1269 1270 1271
		slot = (slot + 1) & TVR_MASK;
	} while (slot != index);

cascade:
	/* Calculate the next cascade event */
	if (index)
		timer_jiffies += TVR_SIZE - index;
	timer_jiffies >>= TVR_BITS;
L
Linus Torvalds 已提交
1272 1273 1274 1275 1276 1277

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
1278 1279

	for (array = 0; array < 4; array++) {
1280
		struct tvec *varp = varray[array];
1281 1282

		index = slot = timer_jiffies & TVN_MASK;
L
Linus Torvalds 已提交
1283
		do {
1284
			list_for_each_entry(nte, varp->vec + slot, entry) {
1285 1286 1287
				if (tbase_get_deferrable(nte->base))
					continue;

1288
				found = 1;
L
Linus Torvalds 已提交
1289 1290
				if (time_before(nte->expires, expires))
					expires = nte->expires;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
			}
			/*
			 * Do we still search for the first timer or are
			 * we looking up the cascade buckets ?
			 */
			if (found) {
				/* Look at the cascade bucket(s)? */
				if (!index || slot < index)
					break;
				return expires;
			}
			slot = (slot + 1) & TVN_MASK;
		} while (slot != index);

		if (index)
			timer_jiffies += TVN_SIZE - index;
		timer_jiffies >>= TVN_BITS;
L
Linus Torvalds 已提交
1308
	}
1309 1310
	return expires;
}
1311

1312 1313 1314 1315
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
1316
static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1317
{
1318
	u64 nextevt = hrtimer_get_next_event();
1319

1320
	/*
1321 1322
	 * If high resolution timers are enabled
	 * hrtimer_get_next_event() returns KTIME_MAX.
1323
	 */
1324 1325
	if (expires <= nextevt)
		return expires;
1326 1327

	/*
1328 1329
	 * If the next timer is already expired, return the tick base
	 * time so the tick is fired immediately.
1330
	 */
1331 1332
	if (nextevt <= basem)
		return basem;
1333

1334
	/*
1335 1336 1337 1338 1339 1340
	 * Round up to the next jiffie. High resolution timers are
	 * off, so the hrtimers are expired in the tick and we need to
	 * make sure that this tick really expires the timer to avoid
	 * a ping pong of the nohz stop code.
	 *
	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1341
	 */
1342
	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
L
Linus Torvalds 已提交
1343
}
1344 1345

/**
1346 1347 1348 1349 1350 1351
 * get_next_timer_interrupt - return the time (clock mono) of the next timer
 * @basej:	base time jiffies
 * @basem:	base time clock monotonic
 *
 * Returns the tick aligned clock monotonic time of the next pending
 * timer or KTIME_MAX if no timer is pending.
1352
 */
1353
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1354
{
C
Christoph Lameter 已提交
1355
	struct tvec_base *base = __this_cpu_read(tvec_bases);
1356 1357
	u64 expires = KTIME_MAX;
	unsigned long nextevt;
1358

1359 1360 1361 1362 1363
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
1364 1365
		return expires;

1366
	spin_lock(&base->lock);
1367 1368 1369
	if (base->active_timers) {
		if (time_before_eq(base->next_timer, base->timer_jiffies))
			base->next_timer = __next_timer_interrupt(base);
1370 1371 1372 1373 1374
		nextevt = base->next_timer;
		if (time_before_eq(nextevt, basej))
			expires = basem;
		else
			expires = basem + (nextevt - basej) * TICK_NSEC;
1375
	}
1376 1377
	spin_unlock(&base->lock);

1378
	return cmp_next_hrtimer_event(basem, expires);
1379
}
L
Linus Torvalds 已提交
1380 1381 1382
#endif

/*
D
Daniel Walker 已提交
1383
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1384 1385 1386 1387 1388 1389 1390
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;

	/* Note: this timer irq context must be accounted for as well. */
1391
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1392
	run_local_timers();
1393
	rcu_check_callbacks(user_tick);
1394 1395
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
1396
		irq_work_tick();
1397
#endif
L
Linus Torvalds 已提交
1398
	scheduler_tick();
1399
	run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404 1405 1406
}

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
C
Christoph Lameter 已提交
1407
	struct tvec_base *base = __this_cpu_read(tvec_bases);
L
Linus Torvalds 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1418
	hrtimer_run_queues();
L
Linus Torvalds 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427
	raise_softirq(TIMER_SOFTIRQ);
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
1428
SYSCALL_DEFINE1(alarm, unsigned int, seconds)
L
Linus Torvalds 已提交
1429
{
1430
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1431 1432 1433 1434 1435 1436
}

#endif

static void process_timeout(unsigned long __data)
{
1437
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
1466
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1491
		if (timeout < 0) {
L
Linus Torvalds 已提交
1492
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1493 1494
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499 1500 1501
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1502
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1503
	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
1504 1505 1506
	schedule();
	del_singleshot_timer_sync(&timer);

1507 1508 1509
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1510 1511 1512 1513 1514 1515 1516
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1517 1518 1519 1520
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1521 1522
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1523 1524
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1525 1526 1527
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1528 1529 1530 1531 1532 1533 1534
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1535 1536
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1537 1538
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1539 1540 1541
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

L
Linus Torvalds 已提交
1542
#ifdef CONFIG_HOTPLUG_CPU
1543
static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
L
Linus Torvalds 已提交
1544 1545 1546 1547
{
	struct timer_list *timer;

	while (!list_empty(head)) {
1548
		timer = list_first_entry(head, struct timer_list, entry);
1549
		/* We ignore the accounting on the dying cpu */
1550
		detach_timer(timer, false);
1551
		timer_set_base(timer, new_base);
L
Linus Torvalds 已提交
1552 1553 1554 1555
		internal_add_timer(new_base, timer);
	}
}

1556
static void migrate_timers(int cpu)
L
Linus Torvalds 已提交
1557
{
1558 1559
	struct tvec_base *old_base;
	struct tvec_base *new_base;
L
Linus Torvalds 已提交
1560 1561 1562
	int i;

	BUG_ON(cpu_online(cpu));
1563 1564
	old_base = per_cpu(tvec_bases, cpu);
	new_base = get_cpu_var(tvec_bases);
1565 1566 1567 1568 1569
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	spin_lock_irq(&new_base->lock);
1570
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1571 1572

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1573 1574

	for (i = 0; i < TVR_SIZE; i++)
1575 1576 1577 1578 1579 1580 1581 1582
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1583 1584 1585
	old_base->active_timers = 0;
	old_base->all_timers = 0;

1586
	spin_unlock(&old_base->lock);
1587
	spin_unlock_irq(&new_base->lock);
L
Linus Torvalds 已提交
1588 1589 1590
	put_cpu_var(tvec_bases);
}

1591
static int timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1592 1593
				unsigned long action, void *hcpu)
{
1594
	switch (action) {
L
Linus Torvalds 已提交
1595
	case CPU_DEAD:
1596
	case CPU_DEAD_FROZEN:
1597
		migrate_timers((long)hcpu);
L
Linus Torvalds 已提交
1598 1599 1600 1601
		break;
	default:
		break;
	}
1602

L
Linus Torvalds 已提交
1603 1604 1605
	return NOTIFY_OK;
}

1606 1607 1608 1609 1610 1611 1612
static inline void timer_register_cpu_notifier(void)
{
	cpu_notifier(timer_cpu_notify, 0);
}
#else
static inline void timer_register_cpu_notifier(void) { }
#endif /* CONFIG_HOTPLUG_CPU */
L
Linus Torvalds 已提交
1613

1614 1615 1616
static void __init init_timer_cpu(struct tvec_base *base, int cpu)
{
	int j;
L
Linus Torvalds 已提交
1617

1618 1619
	BUG_ON(base != tbase_get_base(base));

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	base->cpu = cpu;
	per_cpu(tvec_bases, cpu) = base;
	spin_lock_init(&base->lock);

	for (j = 0; j < TVN_SIZE; j++) {
		INIT_LIST_HEAD(base->tv5.vec + j);
		INIT_LIST_HEAD(base->tv4.vec + j);
		INIT_LIST_HEAD(base->tv3.vec + j);
		INIT_LIST_HEAD(base->tv2.vec + j);
	}
	for (j = 0; j < TVR_SIZE; j++)
		INIT_LIST_HEAD(base->tv1.vec + j);

	base->timer_jiffies = jiffies;
	base->next_timer = base->timer_jiffies;
}

static void __init init_timer_cpus(void)
L
Linus Torvalds 已提交
1638
{
1639 1640 1641 1642 1643 1644 1645
	struct tvec_base *base;
	int local_cpu = smp_processor_id();
	int cpu;

	for_each_possible_cpu(cpu) {
		if (cpu == local_cpu)
			base = &boot_tvec_bases;
1646
#ifdef CONFIG_SMP
1647 1648
		else
			base = per_cpu_ptr(&__tvec_bases, cpu);
1649
#endif
1650 1651 1652 1653

		init_timer_cpu(base, cpu);
	}
}
1654

1655 1656
void __init init_timers(void)
{
1657 1658
	/* ensure there are enough low bits for flags in timer->base pointer */
	BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
1659

1660
	init_timer_cpus();
1661
	init_timer_stats();
1662
	timer_register_cpu_notifier();
1663
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1674 1675
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1676 1677 1678 1679 1680
}

EXPORT_SYMBOL(msleep);

/**
1681
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1682 1683 1684 1685 1686 1687
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1688 1689
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1690 1691 1692 1693
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

static int __sched do_usleep_range(unsigned long min, unsigned long max)
{
	ktime_t kmin;
	unsigned long delta;

	kmin = ktime_set(0, min * NSEC_PER_USEC);
	delta = (max - min) * NSEC_PER_USEC;
	return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
}

/**
 * usleep_range - Drop in replacement for udelay where wakeup is flexible
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
 */
void usleep_range(unsigned long min, unsigned long max)
{
	__set_current_state(TASK_UNINTERRUPTIBLE);
	do_usleep_range(min, max);
}
EXPORT_SYMBOL(usleep_range);