core.c 13.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  Copyright (C) 1994 Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *  General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */
8
#include <asm/fpu/internal.h>
9
#include <asm/fpu/regset.h>
10
#include <asm/fpu/signal.h>
11
#include <asm/fpu/types.h>
12
#include <asm/traps.h>
13

14
#include <linux/hardirq.h>
L
Linus Torvalds 已提交
15

16 17 18
#define CREATE_TRACE_POINTS
#include <asm/trace/fpu.h>

19 20 21 22
/*
 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 * depending on the FPU hardware format:
 */
23
union fpregs_state init_fpstate __read_mostly;
24

I
Ingo Molnar 已提交
25 26 27 28 29 30 31 32 33 34 35
/*
 * Track whether the kernel is using the FPU state
 * currently.
 *
 * This flag is used:
 *
 *   - by IRQ context code to potentially use the FPU
 *     if it's unused.
 *
 *   - to debug kernel_fpu_begin()/end() correctness
 */
36 37
static DEFINE_PER_CPU(bool, in_kernel_fpu);

38
/*
39
 * Track which context is using the FPU on the CPU:
40
 */
41
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
42

43
static void kernel_fpu_disable(void)
44
{
45
	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
46 47 48
	this_cpu_write(in_kernel_fpu, true);
}

49
static void kernel_fpu_enable(void)
50
{
51
	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
52 53 54
	this_cpu_write(in_kernel_fpu, false);
}

I
Ingo Molnar 已提交
55 56 57 58 59
static bool kernel_fpu_disabled(void)
{
	return this_cpu_read(in_kernel_fpu);
}

60
static bool interrupted_kernel_fpu_idle(void)
61
{
A
Andy Lutomirski 已提交
62
	return !kernel_fpu_disabled();
63 64 65 66 67 68 69 70 71 72
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
73
static bool interrupted_user_mode(void)
74 75
{
	struct pt_regs *regs = get_irq_regs();
76
	return regs && user_mode(regs);
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);

94
void __kernel_fpu_begin(void)
95
{
96
	struct fpu *fpu = &current->thread.fpu;
97

98
	WARN_ON_FPU(!irq_fpu_usable());
99

100
	kernel_fpu_disable();
101

102
	if (fpu->fpregs_active) {
103 104 105 106
		/*
		 * Ignore return value -- we don't care if reg state
		 * is clobbered.
		 */
107
		copy_fpregs_to_fpstate(fpu);
108
	} else {
109
		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
110 111
	}
}
112
EXPORT_SYMBOL(__kernel_fpu_begin);
113

114
void __kernel_fpu_end(void)
115
{
116
	struct fpu *fpu = &current->thread.fpu;
117

118
	if (fpu->fpregs_active)
119
		copy_kernel_to_fpregs(&fpu->state);
120

121
	kernel_fpu_enable();
122
}
123
EXPORT_SYMBOL(__kernel_fpu_end);
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138
void kernel_fpu_begin(void)
{
	preempt_disable();
	__kernel_fpu_begin();
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin);

void kernel_fpu_end(void)
{
	__kernel_fpu_end();
	preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * CR0::TS save/restore functions:
 */
int irq_ts_save(void)
{
	/*
	 * If in process context and not atomic, we can take a spurious DNA fault.
	 * Otherwise, doing clts() in process context requires disabling preemption
	 * or some heavy lifting like kernel_fpu_begin()
	 */
	if (!in_atomic())
		return 0;

	if (read_cr0() & X86_CR0_TS) {
		clts();
		return 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(irq_ts_save);

void irq_ts_restore(int TS_state)
{
	if (TS_state)
		stts();
}
EXPORT_SYMBOL_GPL(irq_ts_restore);

168
/*
I
Ingo Molnar 已提交
169
 * Save the FPU state (mark it for reload if necessary):
170 171
 *
 * This only ever gets called for the current task.
172
 */
173
void fpu__save(struct fpu *fpu)
174
{
175
	WARN_ON_FPU(fpu != &current->thread.fpu);
176

177
	preempt_disable();
178
	trace_x86_fpu_before_save(fpu);
179
	if (fpu->fpregs_active) {
180
		if (!copy_fpregs_to_fpstate(fpu)) {
A
Andy Lutomirski 已提交
181
			copy_kernel_to_fpregs(&fpu->state);
182
		}
183
	}
184
	trace_x86_fpu_after_save(fpu);
185 186
	preempt_enable();
}
187
EXPORT_SYMBOL_GPL(fpu__save);
188

189 190 191
/*
 * Legacy x87 fpstate state init:
 */
192
static inline void fpstate_init_fstate(struct fregs_state *fp)
193 194 195 196 197 198 199
{
	fp->cwd = 0xffff037fu;
	fp->swd = 0xffff0000u;
	fp->twd = 0xffffffffu;
	fp->fos = 0xffff0000u;
}

200
void fpstate_init(union fpregs_state *state)
L
Linus Torvalds 已提交
201
{
202
	if (!static_cpu_has(X86_FEATURE_FPU)) {
203
		fpstate_init_soft(&state->soft);
204
		return;
205 206
	}

207
	memset(state, 0, fpu_kernel_xstate_size);
208

209 210 211 212 213 214 215
	/*
	 * XRSTORS requires that this bit is set in xcomp_bv, or
	 * it will #GP. Make sure it is replaced after the memset().
	 */
	if (static_cpu_has(X86_FEATURE_XSAVES))
		state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT;

216
	if (static_cpu_has(X86_FEATURE_FXSR))
217
		fpstate_init_fxstate(&state->fxsave);
218
	else
219
		fpstate_init_fstate(&state->fsave);
220
}
221
EXPORT_SYMBOL_GPL(fpstate_init);
222

223
int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
224
{
225 226 227
	dst_fpu->fpregs_active = 0;
	dst_fpu->last_cpu = -1;

228
	if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
229 230
		return 0;

231
	WARN_ON_FPU(src_fpu != &current->thread.fpu);
232

233 234 235 236
	/*
	 * Don't let 'init optimized' areas of the XSAVE area
	 * leak into the child task:
	 */
A
Andy Lutomirski 已提交
237
	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
238 239 240 241

	/*
	 * Save current FPU registers directly into the child
	 * FPU context, without any memory-to-memory copying.
242 243 244
	 * In lazy mode, if the FPU context isn't loaded into
	 * fpregs, CR0.TS will be set and do_device_not_available
	 * will load the FPU context.
245 246 247 248 249 250 251 252 253 254 255
	 *
	 * We have to do all this with preemption disabled,
	 * mostly because of the FNSAVE case, because in that
	 * case we must not allow preemption in the window
	 * between the FNSAVE and us marking the context lazy.
	 *
	 * It shouldn't be an issue as even FNSAVE is plenty
	 * fast in terms of critical section length.
	 */
	preempt_disable();
	if (!copy_fpregs_to_fpstate(dst_fpu)) {
256 257
		memcpy(&src_fpu->state, &dst_fpu->state,
		       fpu_kernel_xstate_size);
258

A
Andy Lutomirski 已提交
259
		copy_kernel_to_fpregs(&src_fpu->state);
260
	}
261
	preempt_enable();
262

263 264 265
	trace_x86_fpu_copy_src(src_fpu);
	trace_x86_fpu_copy_dst(dst_fpu);

I
Ingo Molnar 已提交
266 267 268
	return 0;
}

269
/*
270 271
 * Activate the current task's in-memory FPU context,
 * if it has not been used before:
272
 */
273
void fpu__activate_curr(struct fpu *fpu)
274
{
275
	WARN_ON_FPU(fpu != &current->thread.fpu);
276

277
	if (!fpu->fpstate_active) {
278
		fpstate_init(&fpu->state);
279
		trace_x86_fpu_init_state(fpu);
280

281
		trace_x86_fpu_activate_state(fpu);
282 283 284
		/* Safe to do for the current task: */
		fpu->fpstate_active = 1;
	}
285
}
286
EXPORT_SYMBOL_GPL(fpu__activate_curr);
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * This function must be called before we read a task's fpstate.
 *
 * If the task has not used the FPU before then initialize its
 * fpstate.
 *
 * If the task has used the FPU before then save it.
 */
void fpu__activate_fpstate_read(struct fpu *fpu)
{
	/*
	 * If fpregs are active (in the current CPU), then
	 * copy them to the fpstate:
	 */
	if (fpu->fpregs_active) {
		fpu__save(fpu);
	} else {
305
		if (!fpu->fpstate_active) {
306
			fpstate_init(&fpu->state);
307
			trace_x86_fpu_init_state(fpu);
308

309
			trace_x86_fpu_activate_state(fpu);
310 311 312 313 314 315
			/* Safe to do for current and for stopped child tasks: */
			fpu->fpstate_active = 1;
		}
	}
}

316
/*
317
 * This function must be called before we write a task's fpstate.
318
 *
319 320
 * If the task has used the FPU before then unlazy it.
 * If the task has not used the FPU before then initialize its fpstate.
321
 *
322 323 324 325 326 327
 * After this function call, after registers in the fpstate are
 * modified and the child task has woken up, the child task will
 * restore the modified FPU state from the modified context. If we
 * didn't clear its lazy status here then the lazy in-registers
 * state pending on its former CPU could be restored, corrupting
 * the modifications.
328
 */
329
void fpu__activate_fpstate_write(struct fpu *fpu)
330
{
331
	/*
332 333
	 * Only stopped child tasks can be used to modify the FPU
	 * state in the fpstate buffer:
334
	 */
335 336 337 338
	WARN_ON_FPU(fpu == &current->thread.fpu);

	if (fpu->fpstate_active) {
		/* Invalidate any lazy state: */
339
		__fpu_invalidate_fpregs_state(fpu);
340
	} else {
341
		fpstate_init(&fpu->state);
342
		trace_x86_fpu_init_state(fpu);
343

344
		trace_x86_fpu_activate_state(fpu);
345 346
		/* Safe to do for stopped child tasks: */
		fpu->fpstate_active = 1;
347
	}
L
Linus Torvalds 已提交
348 349
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/*
 * This function must be called before we write the current
 * task's fpstate.
 *
 * This call gets the current FPU register state and moves
 * it in to the 'fpstate'.  Preemption is disabled so that
 * no writes to the 'fpstate' can occur from context
 * swiches.
 *
 * Must be followed by a fpu__current_fpstate_write_end().
 */
void fpu__current_fpstate_write_begin(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * Ensure that the context-switching code does not write
	 * over the fpstate while we are doing our update.
	 */
	preempt_disable();

	/*
	 * Move the fpregs in to the fpu's 'fpstate'.
	 */
	fpu__activate_fpstate_read(fpu);

	/*
	 * The caller is about to write to 'fpu'.  Ensure that no
	 * CPU thinks that its fpregs match the fpstate.  This
	 * ensures we will not be lazy and skip a XRSTOR in the
	 * future.
	 */
382
	__fpu_invalidate_fpregs_state(fpu);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
}

/*
 * This function must be paired with fpu__current_fpstate_write_begin()
 *
 * This will ensure that the modified fpstate gets placed back in
 * the fpregs if necessary.
 *
 * Note: This function may be called whether or not an _actual_
 * write to the fpstate occurred.
 */
void fpu__current_fpstate_write_end(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * 'fpu' now has an updated copy of the state, but the
	 * registers may still be out of date.  Update them with
	 * an XRSTOR if they are active.
	 */
	if (fpregs_active())
		copy_kernel_to_fpregs(&fpu->state);

	/*
	 * Our update is done and the fpregs/fpstate are in sync
	 * if necessary.  Context switches can happen again.
	 */
	preempt_enable();
}

413
/*
414 415 416 417
 * 'fpu__restore()' is called to copy FPU registers from
 * the FPU fpstate to the live hw registers and to activate
 * access to the hardware registers, so that FPU instructions
 * can be used afterwards.
418
 *
419 420 421
 * Must be called with kernel preemption disabled (for example
 * with local interrupts disabled, as it is in the case of
 * do_device_not_available()).
422
 */
423
void fpu__restore(struct fpu *fpu)
424
{
425
	fpu__activate_curr(fpu);
426

427
	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
428
	kernel_fpu_disable();
429
	trace_x86_fpu_before_restore(fpu);
430
	fpregs_activate(fpu);
431
	copy_kernel_to_fpregs(&fpu->state);
432
	trace_x86_fpu_after_restore(fpu);
433 434
	kernel_fpu_enable();
}
435
EXPORT_SYMBOL_GPL(fpu__restore);
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
/*
 * Drops current FPU state: deactivates the fpregs and
 * the fpstate. NOTE: it still leaves previous contents
 * in the fpregs in the eager-FPU case.
 *
 * This function can be used in cases where we know that
 * a state-restore is coming: either an explicit one,
 * or a reschedule.
 */
void fpu__drop(struct fpu *fpu)
{
	preempt_disable();

	if (fpu->fpregs_active) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		fpregs_deactivate(fpu);
	}

	fpu->fpstate_active = 0;

460 461
	trace_x86_fpu_dropped(fpu);

462 463 464
	preempt_enable();
}

465 466 467 468 469 470 471
/*
 * Clear FPU registers by setting them up from
 * the init fpstate:
 */
static inline void copy_init_fpstate_to_fpregs(void)
{
	if (use_xsave())
472
		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
473
	else if (static_cpu_has(X86_FEATURE_FXSR))
474
		copy_kernel_to_fxregs(&init_fpstate.fxsave);
475 476
	else
		copy_kernel_to_fregs(&init_fpstate.fsave);
477 478
}

479
/*
480 481 482 483
 * Clear the FPU state back to init state.
 *
 * Called by sys_execve(), by the signal handler code and by various
 * error paths.
484
 */
485
void fpu__clear(struct fpu *fpu)
486
{
487
	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
488

A
Andy Lutomirski 已提交
489
	if (!static_cpu_has(X86_FEATURE_FPU)) {
490
		/* FPU state will be reallocated lazily at the first use. */
491
		fpu__drop(fpu);
492
	} else {
493
		if (!fpu->fpstate_active) {
494
			fpu__activate_curr(fpu);
495 496
			user_fpu_begin();
		}
497
		copy_init_fpstate_to_fpregs();
498 499 500
	}
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/*
 * x87 math exception handling:
 */

int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
	int err;

	if (trap_nr == X86_TRAP_MF) {
		unsigned short cwd, swd;
		/*
		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
		 * status.  0x3f is the exception bits in these regs, 0x200 is the
		 * C1 reg you need in case of a stack fault, 0x040 is the stack
		 * fault bit.  We should only be taking one exception at a time,
		 * so if this combination doesn't produce any single exception,
		 * then we have a bad program that isn't synchronizing its FPU usage
		 * and it will suffer the consequences since we won't be able to
519
		 * fully reproduce the context of the exception.
520
		 */
521 522 523 524 525 526 527
		if (boot_cpu_has(X86_FEATURE_FXSR)) {
			cwd = fpu->state.fxsave.cwd;
			swd = fpu->state.fxsave.swd;
		} else {
			cwd = (unsigned short)fpu->state.fsave.cwd;
			swd = (unsigned short)fpu->state.fsave.swd;
		}
528 529 530 531 532 533 534 535 536

		err = swd & ~cwd;
	} else {
		/*
		 * The SIMD FPU exceptions are handled a little differently, as there
		 * is only a single status/control register.  Thus, to determine which
		 * unmasked exception was caught we must mask the exception mask bits
		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
		 */
537 538 539 540 541
		unsigned short mxcsr = MXCSR_DEFAULT;

		if (boot_cpu_has(X86_FEATURE_XMM))
			mxcsr = fpu->state.fxsave.mxcsr;

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
		err = ~(mxcsr >> 7) & mxcsr;
	}

	if (err & 0x001) {	/* Invalid op */
		/*
		 * swd & 0x240 == 0x040: Stack Underflow
		 * swd & 0x240 == 0x240: Stack Overflow
		 * User must clear the SF bit (0x40) if set
		 */
		return FPE_FLTINV;
	} else if (err & 0x004) { /* Divide by Zero */
		return FPE_FLTDIV;
	} else if (err & 0x008) { /* Overflow */
		return FPE_FLTOVF;
	} else if (err & 0x012) { /* Denormal, Underflow */
		return FPE_FLTUND;
	} else if (err & 0x020) { /* Precision */
		return FPE_FLTRES;
	}

	/*
	 * If we're using IRQ 13, or supposedly even some trap
	 * X86_TRAP_MF implementations, it's possible
	 * we get a spurious trap, which is not an error.
	 */
	return 0;
}