inode.c 99.7 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28 29
#include <linux/ext4_jbd2.h>
#include <linux/jbd2.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/mpage.h>
#include <linux/uio.h>
#include <linux/bio.h>
#include "xattr.h"
#include "acl.h"

/*
 * Test whether an inode is a fast symlink.
 */
45
static int ext4_inode_is_fast_symlink(struct inode *inode)
46
{
47
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 49 50 51 52 53
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
54
 * The ext4 forget function must perform a revoke if we are freeing data
55 56 57 58 59 60 61
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
62 63
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

81 82
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
83
		if (bh) {
84
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
85
			return ext4_journal_forget(handle, bh);
86 87 88 89 90 91 92
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
93 94
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
95
	if (err)
96
		ext4_abort(inode->i_sb, __FUNCTION__,
97 98 99 100 101 102 103 104 105 106 107
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
108
	ext4_lblk_t needed;
109 110 111 112 113 114

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
115
	 * like a regular file for ext4 to try to delete it.  Things
116 117 118 119 120 121 122
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
123 124
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
125

126
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

143
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 145 146
	if (!IS_ERR(result))
		return result;

147
	ext4_std_error(inode->i_sb, PTR_ERR(result));
148 149 150 151 152 153 154 155 156 157 158
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
159
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160
		return 0;
161
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 163 164 165 166 167 168 169 170
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
171
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 173
{
	jbd_debug(2, "restarting handle %p\n", handle);
174
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 176 177 178 179
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
180
void ext4_delete_inode (struct inode * inode)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	handle_t *handle;

	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
196
		ext4_orphan_del(NULL, inode);
197 198 199 200 201 202 203
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
204
		ext4_truncate(inode);
205
	/*
206
	 * Kill off the orphan record which ext4_truncate created.
207
	 * AKPM: I think this can be inside the above `if'.
208
	 * Note that ext4_orphan_del() has to be able to cope with the
209
	 * deletion of a non-existent orphan - this is because we don't
210
	 * know if ext4_truncate() actually created an orphan record.
211 212
	 * (Well, we could do this if we need to, but heck - it works)
	 */
213 214
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
215 216 217 218 219 220 221 222

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
223
	if (ext4_mark_inode_dirty(handle, inode))
224 225 226
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
227 228
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

static int verify_chain(Indirect *from, Indirect *to)
{
	while (from <= to && from->key == *from->p)
		from++;
	return (from > to);
}

/**
254
 *	ext4_block_to_path - parse the block number into array of offsets
255 256 257
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
258 259
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
260
 *
261
 *	To store the locations of file's data ext4 uses a data structure common
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

284
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
285 286
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
287
{
288 289 290
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
291 292 293 294 295 296
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
297
		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
298 299 300 301
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
302
		offsets[n++] = EXT4_IND_BLOCK;
303 304 305
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
306
		offsets[n++] = EXT4_DIND_BLOCK;
307 308 309 310
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
311
		offsets[n++] = EXT4_TIND_BLOCK;
312 313 314 315 316
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
317 318 319 320
		ext4_warning(inode->i_sb, "ext4_block_to_path",
				"block %u > max",
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
321 322 323 324 325 326 327
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
328
 *	ext4_get_branch - read the chain of indirect blocks leading to data
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it notices that chain had been changed while it was reading
 *		(ditto, *@err == -EAGAIN)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
 */
A
Aneesh Kumar K.V 已提交
356 357
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
358 359 360 361 362 363 364 365
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
366
	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
		/* Reader: pointers */
		if (!verify_chain(chain, p))
			goto changed;
		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

changed:
	brelse(bh);
	*err = -EAGAIN;
	goto no_block;
failure:
	*err = -EIO;
no_block:
	return p;
}

/**
394
 *	ext4_find_near - find a place for allocation with sufficient locality
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
 *	This function returns the prefered place for block allocation.
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
413
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
414
{
415
	struct ext4_inode_info *ei = EXT4_I(inode);
416 417
	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
	__le32 *p;
418 419
	ext4_fsblk_t bg_start;
	ext4_grpblk_t colour;
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
435
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
436
	colour = (current->pid % 16) *
437
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
438 439 440 441
	return bg_start + colour;
}

/**
442
 *	ext4_find_goal - find a prefered place for allocation.
443 444 445 446 447 448 449 450 451 452
 *	@inode: owner
 *	@block:  block we want
 *	@chain:  chain of indirect blocks
 *	@partial: pointer to the last triple within a chain
 *	@goal:	place to store the result.
 *
 *	Normally this function find the prefered place for block allocation,
 *	stores it in *@goal and returns zero.
 */

A
Aneesh Kumar K.V 已提交
453
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
454 455
		Indirect chain[4], Indirect *partial)
{
456
	struct ext4_block_alloc_info *block_i;
457

458
	block_i =  EXT4_I(inode)->i_block_alloc_info;
459 460 461 462 463 464 465 466 467 468

	/*
	 * try the heuristic for sequential allocation,
	 * failing that at least try to get decent locality.
	 */
	if (block_i && (block == block_i->last_alloc_logical_block + 1)
		&& (block_i->last_alloc_physical_block != 0)) {
		return block_i->last_alloc_physical_block + 1;
	}

469
	return ext4_find_near(inode, partial);
470 471 472
}

/**
473
 *	ext4_blks_to_allocate: Look up the block map and count the number
474 475 476 477 478 479 480 481 482 483
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
484
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
511
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
512 513 514 515 516 517 518 519
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
520 521 522
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
			ext4_fsblk_t goal, int indirect_blks, int blks,
			ext4_fsblk_t new_blocks[4], int *err)
523 524 525 526
{
	int target, i;
	unsigned long count = 0;
	int index = 0;
527
	ext4_fsblk_t current_block = 0;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
	target = blks + indirect_blks;

	while (1) {
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
543
		current_block = ext4_new_blocks(handle,inode,goal,&count,err);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}

		if (count > 0)
			break;
	}

	/* save the new block number for the first direct block */
	new_blocks[index] = current_block;

	/* total number of blocks allocated for direct blocks */
	ret = count;
	*err = 0;
	return ret;
failed_out:
	for (i = 0; i <index; i++)
567
		ext4_free_blocks(handle, inode, new_blocks[i], 1);
568 569 570 571
	return ret;
}

/**
572
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
573 574 575 576 577 578 579 580 581 582
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
583
 *	the same format as ext4_get_branch() would do. We are calling it after
584 585
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
586
 *	picture as after the successful ext4_get_block(), except that in one
587 588 589 590 591 592
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
593
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
594 595
 *	as described above and return 0.
 */
596 597
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
			int indirect_blks, int *blks, ext4_fsblk_t goal,
A
Aneesh Kumar K.V 已提交
598
			ext4_lblk_t *offsets, Indirect *branch)
599 600 601 602 603 604
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
605 606
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
607

608
	num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
627
		err = ext4_journal_get_create_access(handle, bh);
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
		if ( n == indirect_blks) {
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

652 653
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
654 655 656 657 658 659 660 661
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
662
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
663
		ext4_journal_forget(handle, branch[i].bh);
664 665
	}
	for (i = 0; i <indirect_blks; i++)
666
		ext4_free_blocks(handle, inode, new_blocks[i], 1);
667

668
	ext4_free_blocks(handle, inode, new_blocks[i], num);
669 670 671 672 673

	return err;
}

/**
674
 * ext4_splice_branch - splice the allocated branch onto inode.
675 676 677
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
678
 *	ext4_alloc_branch)
679 680 681 682 683 684 685 686
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
687
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
688
			ext4_lblk_t block, Indirect *where, int num, int blks)
689 690 691
{
	int i;
	int err = 0;
692 693
	struct ext4_block_alloc_info *block_i;
	ext4_fsblk_t current_block;
694

695
	block_i = EXT4_I(inode)->i_block_alloc_info;
696 697 698 699 700 701 702
	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
703
		err = ext4_journal_get_write_access(handle, where->bh);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
			*(where->p + i ) = cpu_to_le32(current_block++);
	}

	/*
	 * update the most recently allocated logical & physical block
	 * in i_block_alloc_info, to assist find the proper goal block for next
	 * allocation
	 */
	if (block_i) {
		block_i->last_alloc_logical_block = block + blks - 1;
		block_i->last_alloc_physical_block =
				le32_to_cpu(where[num].key) + blks - 1;
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
734
	inode->i_ctime = ext4_current_time(inode);
735
	ext4_mark_inode_dirty(handle, inode);
736 737 738 739 740 741 742 743 744

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
745
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
746 747
		 */
		jbd_debug(5, "splicing indirect only\n");
748 749
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
750 751 752 753 754 755 756 757 758 759 760 761 762
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
763
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
764 765
		ext4_journal_forget(handle, where[i].bh);
		ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
766
	}
767
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * The BKL may not be held on entry here.  Be sure to take it early.
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
 */
791
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
792
		ext4_lblk_t iblock, unsigned long maxblocks,
793 794 795 796
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
797
	ext4_lblk_t offsets[4];
798 799
	Indirect chain[4];
	Indirect *partial;
800
	ext4_fsblk_t goal;
801 802 803
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
804
	struct ext4_inode_info *ei = EXT4_I(inode);
805
	int count = 0;
806
	ext4_fsblk_t first_block = 0;
807 808


A
Alex Tomas 已提交
809
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
810
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
811 812
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
813 814 815 816

	if (depth == 0)
		goto out;

817
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
818 819 820 821 822 823 824 825

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
826
			ext4_fsblk_t blk;
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

			if (!verify_chain(chain, partial)) {
				/*
				 * Indirect block might be removed by
				 * truncate while we were reading it.
				 * Handling of that case: forget what we've
				 * got now. Flag the err as EAGAIN, so it
				 * will reread.
				 */
				err = -EAGAIN;
				count = 0;
				break;
			}
			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
		if (err != -EAGAIN)
			goto got_it;
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	mutex_lock(&ei->truncate_mutex);

	/*
	 * If the indirect block is missing while we are reading
859
	 * the chain(ext4_get_branch() returns -EAGAIN err), or
860 861 862 863 864 865 866 867 868 869 870 871 872 873
	 * if the chain has been changed after we grab the semaphore,
	 * (either because another process truncated this branch, or
	 * another get_block allocated this branch) re-grab the chain to see if
	 * the request block has been allocated or not.
	 *
	 * Since we already block the truncate/other get_block
	 * at this point, we will have the current copy of the chain when we
	 * splice the branch into the tree.
	 */
	if (err == -EAGAIN || !verify_chain(chain, partial)) {
		while (partial > chain) {
			brelse(partial->bh);
			partial--;
		}
874
		partial = ext4_get_branch(inode, depth, offsets, chain, &err);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
		if (!partial) {
			count++;
			mutex_unlock(&ei->truncate_mutex);
			if (err)
				goto cleanup;
			clear_buffer_new(bh_result);
			goto got_it;
		}
	}

	/*
	 * Okay, we need to do block allocation.  Lazily initialize the block
	 * allocation info here if necessary
	*/
	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
890
		ext4_init_block_alloc_info(inode);
891

892
	goal = ext4_find_goal(inode, iblock, chain, partial);
893 894 895 896 897 898 899 900

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
901
	count = ext4_blks_to_allocate(partial, indirect_blks,
902 903
					maxblocks, blocks_to_boundary);
	/*
904
	 * Block out ext4_truncate while we alter the tree
905
	 */
906
	err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
907 908 909
				offsets + (partial - chain), partial);

	/*
910
	 * The ext4_splice_branch call will free and forget any buffers
911 912 913 914 915 916
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
917
		err = ext4_splice_branch(handle, inode, iblock,
918 919 920 921
					partial, indirect_blks, count);
	/*
	 * i_disksize growing is protected by truncate_mutex.  Don't forget to
	 * protect it if you're about to implement concurrent
922
	 * ext4_get_block() -bzzz
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	*/
	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
		ei->i_disksize = inode->i_size;
	mutex_unlock(&ei->truncate_mutex);
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

949
#define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
950

951
static int ext4_get_block(struct inode *inode, sector_t iblock,
952 953
			struct buffer_head *bh_result, int create)
{
954
	handle_t *handle = ext4_journal_current_handle();
955 956 957 958 959 960 961 962 963 964 965 966 967 968
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	if (!create)
		goto get_block;		/* A read */

	if (max_blocks == 1)
		goto get_block;		/* A single block get */

	if (handle->h_transaction->t_state == T_LOCKED) {
		/*
		 * Huge direct-io writes can hold off commits for long
		 * periods of time.  Let this commit run.
		 */
969 970
		ext4_journal_stop(handle);
		handle = ext4_journal_start(inode, DIO_CREDITS);
971 972 973 974 975
		if (IS_ERR(handle))
			ret = PTR_ERR(handle);
		goto get_block;
	}

976
	if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
977 978 979
		/*
		 * Getting low on buffer credits...
		 */
980
		ret = ext4_journal_extend(handle, DIO_CREDITS);
981 982 983 984
		if (ret > 0) {
			/*
			 * Couldn't extend the transaction.  Start a new one.
			 */
985
			ret = ext4_journal_restart(handle, DIO_CREDITS);
986 987 988 989 990
		}
	}

get_block:
	if (ret == 0) {
A
Alex Tomas 已提交
991
		ret = ext4_get_blocks_wrap(handle, inode, iblock,
992 993 994 995 996 997 998 999 1000 1001 1002 1003
					max_blocks, bh_result, create, 0);
		if (ret > 0) {
			bh_result->b_size = (ret << inode->i_blkbits);
			ret = 0;
		}
	}
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1004
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1005
				ext4_lblk_t block, int create, int *errp)
1006 1007 1008 1009 1010 1011 1012 1013 1014
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1015
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1016 1017
					&dummy, create, 1);
	/*
1018
	 * ext4_get_blocks_handle() returns number of blocks
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1036
			J_ASSERT(handle != NULL);
1037 1038 1039 1040 1041

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1042
			 * writes use ext4_get_block instead, so it's not a
1043 1044 1045 1046
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1047
			fatal = ext4_journal_get_create_access(handle, bh);
1048 1049 1050 1051 1052
			if (!fatal && !buffer_uptodate(bh)) {
				memset(bh->b_data,0,inode->i_sb->s_blocksize);
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1053 1054
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1071
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1072
			       ext4_lblk_t block, int create, int *err)
1073 1074 1075
{
	struct buffer_head * bh;

1076
	bh = ext4_getblk(handle, inode, block, create, err);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

static int walk_page_buffers(	handle_t *handle,
				struct buffer_head *head,
				unsigned from,
				unsigned to,
				int *partial,
				int (*fn)(	handle_t *handle,
						struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
		block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1125
 * close off a transaction and start a new one between the ext4_get_block()
1126
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1127 1128
 * prepare_write() is the right place.
 *
1129 1130
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1131 1132 1133 1134
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1135
 * By accident, ext4 can be reentered when a transaction is open via
1136 1137 1138 1139 1140 1141
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1142
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1143 1144 1145 1146 1147 1148 1149 1150 1151
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1152
	return ext4_journal_get_write_access(handle, bh);
1153 1154
}

N
Nick Piggin 已提交
1155 1156 1157
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1158
{
N
Nick Piggin 已提交
1159
 	struct inode *inode = mapping->host;
1160
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1161 1162
	handle_t *handle;
	int retries = 0;
N
Nick Piggin 已提交
1163 1164 1165 1166 1167 1168 1169
 	struct page *page;
 	pgoff_t index;
 	unsigned from, to;

 	index = pos >> PAGE_CACHE_SHIFT;
 	from = pos & (PAGE_CACHE_SIZE - 1);
 	to = from + len;
1170 1171

retry:
N
Nick Piggin 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
 	page = __grab_cache_page(mapping, index);
 	if (!page)
 		return -ENOMEM;
 	*pagep = page;

  	handle = ext4_journal_start(inode, needed_blocks);
  	if (IS_ERR(handle)) {
 		unlock_page(page);
 		page_cache_release(page);
  		ret = PTR_ERR(handle);
  		goto out;
1183
	}
1184

N
Nick Piggin 已提交
1185 1186 1187 1188
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1189 1190 1191
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1192 1193

	if (ret) {
1194
		ext4_journal_stop(handle);
N
Nick Piggin 已提交
1195 1196 1197 1198
 		unlock_page(page);
 		page_cache_release(page);
	}

1199
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1200
		goto retry;
1201
out:
1202 1203 1204
	return ret;
}

1205
int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1206
{
1207
	int err = jbd2_journal_dirty_data(handle, bh);
1208
	if (err)
1209
		ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
N
Nick Piggin 已提交
1210
						bh, handle, err);
1211 1212 1213
	return err;
}

N
Nick Piggin 已提交
1214 1215
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1216 1217 1218 1219
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1220
	return ext4_journal_dirty_metadata(handle, bh);
1221 1222
}

N
Nick Piggin 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Generic write_end handler for ordered and writeback ext4 journal modes.
 * We can't use generic_write_end, because that unlocks the page and we need to
 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
 * after block_write_end.
 */
static int ext4_generic_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = file->f_mapping->host;

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	if (pos+copied > inode->i_size) {
		i_size_write(inode, pos+copied);
		mark_inode_dirty(inode);
	}

	return copied;
}

1246 1247 1248 1249
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1250
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1251 1252
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1253 1254 1255 1256
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1257
{
1258
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1259 1260
	struct inode *inode = file->f_mapping->host;
	unsigned from, to;
1261 1262
	int ret = 0, ret2;

N
Nick Piggin 已提交
1263 1264 1265
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1266
	ret = walk_page_buffers(handle, page_buffers(page),
1267
		from, to, NULL, ext4_journal_dirty_data);
1268 1269 1270

	if (ret == 0) {
		/*
N
Nick Piggin 已提交
1271
		 * generic_write_end() will run mark_inode_dirty() if i_size
1272 1273 1274 1275 1276
		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
		 * into that.
		 */
		loff_t new_i_size;

N
Nick Piggin 已提交
1277
		new_i_size = pos + copied;
1278 1279
		if (new_i_size > EXT4_I(inode)->i_disksize)
			EXT4_I(inode)->i_disksize = new_i_size;
N
Nick Piggin 已提交
1280 1281 1282 1283
		copied = ext4_generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
		if (copied < 0)
			ret = copied;
1284
	}
1285
	ret2 = ext4_journal_stop(handle);
1286 1287
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1288 1289 1290 1291
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1292 1293
}

N
Nick Piggin 已提交
1294 1295 1296 1297
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1298
{
1299
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1300
	struct inode *inode = file->f_mapping->host;
1301 1302 1303
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1304
	new_i_size = pos + copied;
1305 1306
	if (new_i_size > EXT4_I(inode)->i_disksize)
		EXT4_I(inode)->i_disksize = new_i_size;
1307

N
Nick Piggin 已提交
1308 1309 1310 1311
	copied = ext4_generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	if (copied < 0)
		ret = copied;
1312

1313
	ret2 = ext4_journal_stop(handle);
1314 1315
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1316 1317 1318 1319
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1320 1321
}

N
Nick Piggin 已提交
1322 1323 1324 1325
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1326
{
1327
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1328
	struct inode *inode = mapping->host;
1329 1330
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1331
	unsigned from, to;
1332

N
Nick Piggin 已提交
1333 1334 1335 1336 1337 1338 1339 1340
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1341 1342

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1343
				to, &partial, write_end_fn);
1344 1345
	if (!partial)
		SetPageUptodate(page);
N
Nick Piggin 已提交
1346 1347
	if (pos+copied > inode->i_size)
		i_size_write(inode, pos+copied);
1348 1349 1350 1351
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	if (inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ret2 = ext4_mark_inode_dirty(handle, inode);
1352 1353 1354
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1355

1356
	ret2 = ext4_journal_stop(handle);
1357 1358
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1359 1360 1361 1362
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1363 1364 1365 1366 1367 1368 1369
}

/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
1370
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
1371 1372 1373 1374 1375 1376 1377 1378
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
1379
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1380 1381 1382 1383 1384
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

1385
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
1397
		 * NB. EXT4_STATE_JDATA is not set on files other than
1398 1399 1400 1401 1402 1403
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

1404 1405
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
1406 1407 1408
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
1409 1410 1411 1412 1413

		if (err)
			return 0;
	}

1414
	return generic_block_bmap(mapping,block,ext4_get_block);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

1429
static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1430 1431
{
	if (buffer_mapped(bh))
1432
		return ext4_journal_dirty_data(handle, bh);
1433 1434 1435 1436 1437 1438
	return 0;
}

/*
 * Note that we always start a transaction even if we're not journalling
 * data.  This is to preserve ordering: any hole instantiation within
1439
 * __block_write_full_page -> ext4_get_block() should be journalled
1440 1441 1442 1443 1444 1445 1446
 * along with the data so we don't crash and then get metadata which
 * refers to old data.
 *
 * In all journalling modes block_write_full_page() will start the I/O.
 *
 * Problem:
 *
1447 1448
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
1449 1450 1451
 *
 * Similar for:
 *
1452
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1453
 *
1454
 * Same applies to ext4_get_block().  We will deadlock on various things like
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
 * lock_journal and i_truncate_mutex.
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
 * we don't need to open a transaction here.
 */
1488
static int ext4_ordered_writepage(struct page *page,
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	J_ASSERT(PageLocked(page));

	/*
	 * We give up here if we're reentered, because it might be for a
	 * different filesystem.
	 */
1503
	if (ext4_journal_current_handle())
1504 1505
		goto out_fail;

1506
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

	if (!page_has_buffers(page)) {
		create_empty_buffers(page, inode->i_sb->s_blocksize,
				(1 << BH_Dirty)|(1 << BH_Uptodate));
	}
	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bget_one);

1521
	ret = block_write_full_page(page, ext4_get_block, wbc);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

	/*
	 * The page can become unlocked at any point now, and
	 * truncate can then come in and change things.  So we
	 * can't touch *page from now on.  But *page_bufs is
	 * safe due to elevated refcount.
	 */

	/*
	 * And attach them to the current transaction.  But only if
	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
	 * and generally junk.
	 */
	if (ret == 0) {
		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1537
					NULL, jbd2_journal_dirty_data_fn);
1538 1539 1540 1541 1542
		if (!ret)
			ret = err;
	}
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bput_one);
1543
	err = ext4_journal_stop(handle);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1554
static int ext4_writeback_writepage(struct page *page,
1555 1556 1557 1558 1559 1560 1561
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1562
	if (ext4_journal_current_handle())
1563 1564
		goto out_fail;

1565
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1566 1567 1568 1569 1570
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

1571 1572
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
		ret = nobh_writepage(page, ext4_get_block, wbc);
1573
	else
1574
		ret = block_write_full_page(page, ext4_get_block, wbc);
1575

1576
	err = ext4_journal_stop(handle);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1587
static int ext4_journalled_writepage(struct page *page,
1588 1589 1590 1591 1592 1593 1594
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1595
	if (ext4_journal_current_handle())
1596 1597
		goto no_write;

1598
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto no_write;
	}

	if (!page_has_buffers(page) || PageChecked(page)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1611
					ext4_get_block);
1612
		if (ret != 0) {
1613
			ext4_journal_stop(handle);
1614 1615 1616 1617 1618 1619
			goto out_unlock;
		}
		ret = walk_page_buffers(handle, page_buffers(page), 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);

		err = walk_page_buffers(handle, page_buffers(page), 0,
N
Nick Piggin 已提交
1620
				PAGE_CACHE_SIZE, NULL, write_end_fn);
1621 1622
		if (ret == 0)
			ret = err;
1623
		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1624 1625 1626 1627 1628 1629 1630
		unlock_page(page);
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
1631
		ret = block_write_full_page(page, ext4_get_block, wbc);
1632
	}
1633
	err = ext4_journal_stop(handle);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	if (!ret)
		ret = err;
out:
	return ret;

no_write:
	redirty_page_for_writepage(wbc, page);
out_unlock:
	unlock_page(page);
	goto out;
}

1646
static int ext4_readpage(struct file *file, struct page *page)
1647
{
1648
	return mpage_readpage(page, ext4_get_block);
1649 1650 1651
}

static int
1652
ext4_readpages(struct file *file, struct address_space *mapping,
1653 1654
		struct list_head *pages, unsigned nr_pages)
{
1655
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1656 1657
}

1658
static void ext4_invalidatepage(struct page *page, unsigned long offset)
1659
{
1660
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1661 1662 1663 1664 1665 1666 1667

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

1668
	jbd2_journal_invalidatepage(journal, page, offset);
1669 1670
}

1671
static int ext4_releasepage(struct page *page, gfp_t wait)
1672
{
1673
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1674 1675 1676 1677

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
1678
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
 * crashes then stale disk data _may_ be exposed inside the file.
 */
1689
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1690 1691 1692 1693 1694
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
1695
	struct ext4_inode_info *ei = EXT4_I(inode);
1696 1697 1698 1699 1700 1701 1702 1703
	handle_t *handle = NULL;
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

1704
		handle = ext4_journal_start(inode, DIO_CREDITS);
1705 1706 1707 1708 1709
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
			goto out;
		}
		if (final_size > inode->i_size) {
1710
			ret = ext4_orphan_add(handle, inode);
1711 1712 1713 1714 1715 1716 1717 1718 1719
			if (ret)
				goto out_stop;
			orphan = 1;
			ei->i_disksize = inode->i_size;
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
1720
				 ext4_get_block, NULL);
1721 1722

	/*
1723
	 * Reacquire the handle: ext4_get_block() can restart the transaction
1724
	 */
1725
	handle = ext4_journal_current_handle();
1726 1727 1728 1729 1730 1731

out_stop:
	if (handle) {
		int err;

		if (orphan && inode->i_nlink)
1732
			ext4_orphan_del(handle, inode);
1733 1734 1735 1736 1737 1738 1739 1740 1741
		if (orphan && ret > 0) {
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
1742
				 * ext4_mark_inode_dirty() to userspace.  So
1743 1744
				 * ignore it.
				 */
1745
				ext4_mark_inode_dirty(handle, inode);
1746 1747
			}
		}
1748
		err = ext4_journal_stop(handle);
1749 1750 1751 1752 1753 1754 1755 1756
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
1757
 * Pages can be marked dirty completely asynchronously from ext4's journalling
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
1769
static int ext4_journalled_set_page_dirty(struct page *page)
1770 1771 1772 1773 1774
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

1775 1776 1777 1778
static const struct address_space_operations ext4_ordered_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_ordered_writepage,
1779
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1780 1781
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_ordered_write_end,
1782 1783 1784 1785
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1786 1787 1788
	.migratepage	= buffer_migrate_page,
};

1789 1790 1791 1792
static const struct address_space_operations ext4_writeback_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_writeback_writepage,
1793
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1794 1795
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_writeback_write_end,
1796 1797 1798 1799
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1800 1801 1802
	.migratepage	= buffer_migrate_page,
};

1803 1804 1805 1806
static const struct address_space_operations ext4_journalled_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_journalled_writepage,
1807
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1808 1809
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_journalled_write_end,
1810 1811 1812 1813
	.set_page_dirty	= ext4_journalled_set_page_dirty,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
1814 1815
};

1816
void ext4_set_aops(struct inode *inode)
1817
{
1818 1819 1820 1821
	if (ext4_should_order_data(inode))
		inode->i_mapping->a_ops = &ext4_ordered_aops;
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
1822
	else
1823
		inode->i_mapping->a_ops = &ext4_journalled_aops;
1824 1825 1826
}

/*
1827
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1828 1829 1830 1831
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
A
Alex Tomas 已提交
1832
int ext4_block_truncate_page(handle_t *handle, struct page *page,
1833 1834
		struct address_space *mapping, loff_t from)
{
1835
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1836
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
1837 1838
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1852
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1853
		zero_user_page(page, offset, length, KM_USER0);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
1878
		ext4_get_block(inode, iblock, bh, 0);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

1899
	if (ext4_should_journal_data(inode)) {
1900
		BUFFER_TRACE(bh, "get write access");
1901
		err = ext4_journal_get_write_access(handle, bh);
1902 1903 1904 1905
		if (err)
			goto unlock;
	}

1906
	zero_user_page(page, offset, length, KM_USER0);
1907 1908 1909 1910

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
1911 1912
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
1913
	} else {
1914 1915
		if (ext4_should_order_data(inode))
			err = ext4_journal_dirty_data(handle, bh);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
1939
 *	ext4_find_shared - find the indirect blocks for partial truncation.
1940 1941
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
1942
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1943 1944 1945
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
1946
 *	This is a helper function used by ext4_truncate().
1947 1948 1949 1950 1951 1952 1953
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
1954
 *	past the truncation point is possible until ext4_truncate()
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

1973
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
1974
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1975 1976 1977 1978 1979 1980 1981 1982
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
1983
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
2006
		/* Nope, don't do this in ext4.  Must leave the tree intact */
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

	while(partial > p) {
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
2029 2030
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2031 2032 2033 2034 2035
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
2036 2037
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
2038
		}
2039 2040
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
2041 2042
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
2043
			ext4_journal_get_write_access(handle, bh);
2044 2045 2046 2047 2048
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
2049
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2050
	 * on them.  We've already detached each block from the file, so
2051
	 * bforget() in jbd2_journal_forget() should be safe.
2052
	 *
2053
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2054 2055 2056 2057
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
2058
			struct buffer_head *tbh;
2059 2060

			*p = 0;
A
Aneesh Kumar K.V 已提交
2061 2062
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
2063 2064 2065
		}
	}

2066
	ext4_free_blocks(handle, inode, block_to_free, count);
2067 2068 2069
}

/**
2070
 * ext4_free_data - free a list of data blocks
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
2088
static void ext4_free_data(handle_t *handle, struct inode *inode,
2089 2090 2091
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
2092
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2093 2094 2095 2096
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
2097
	ext4_fsblk_t nr;		    /* Current block # */
2098 2099 2100 2101 2102 2103
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
2104
		err = ext4_journal_get_write_access(handle, this_bh);
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
2122
				ext4_clear_blocks(handle, inode, this_bh,
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
2133
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2134 2135 2136
				  count, block_to_free_p, p);

	if (this_bh) {
2137 2138
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
		ext4_journal_dirty_metadata(handle, this_bh);
2139 2140 2141 2142
	}
}

/**
2143
 *	ext4_free_branches - free an array of branches
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
2155
static void ext4_free_branches(handle_t *handle, struct inode *inode,
2156 2157 2158
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
2159
	ext4_fsblk_t nr;
2160 2161 2162 2163 2164 2165 2166
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
2167
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
2182
				ext4_error(inode->i_sb, "ext4_free_branches",
2183
					   "Read failure, inode=%lu, block=%llu",
2184 2185 2186 2187 2188 2189
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
2190
			ext4_free_branches(handle, inode, bh,
2191 2192 2193 2194 2195 2196 2197 2198
					   (__le32*)bh->b_data,
					   (__le32*)bh->b_data + addr_per_block,
					   depth);

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
2199
			 * jbd2_journal_revoke().
2200 2201 2202
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
2203
			 * transaction then jbd2_journal_forget() will simply
2204
			 * brelse() it.  That means that if the underlying
2205
			 * block is reallocated in ext4_get_block(),
2206 2207 2208 2209 2210 2211 2212 2213
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
2214
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
2235 2236
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
2237 2238
			}

2239
			ext4_free_blocks(handle, inode, nr, 1);
2240 2241 2242 2243 2244 2245 2246

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
2247
				if (!ext4_journal_get_write_access(handle,
2248 2249 2250
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
2251 2252
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
2253 2254 2255 2256 2257 2258 2259
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
2260
		ext4_free_data(handle, inode, parent_bh, first, last);
2261 2262 2263 2264
	}
}

/*
2265
 * ext4_truncate()
2266
 *
2267 2268
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
2285
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2286
 * that this inode's truncate did not complete and it will again call
2287 2288
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
2289
 * that's fine - as long as they are linked from the inode, the post-crash
2290
 * ext4_truncate() run will find them and release them.
2291
 */
2292
void ext4_truncate(struct inode *inode)
2293 2294
{
	handle_t *handle;
2295
	struct ext4_inode_info *ei = EXT4_I(inode);
2296
	__le32 *i_data = ei->i_data;
2297
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2298
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
2299
	ext4_lblk_t offsets[4];
2300 2301 2302 2303
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
2304
	ext4_lblk_t last_block;
2305 2306 2307 2308 2309 2310
	unsigned blocksize = inode->i_sb->s_blocksize;
	struct page *page;

	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
	    S_ISLNK(inode->i_mode)))
		return;
2311
	if (ext4_inode_is_fast_symlink(inode))
2312 2313 2314 2315 2316 2317
		return;
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return;

	/*
	 * We have to lock the EOF page here, because lock_page() nests
2318
	 * outside jbd2_journal_start().
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	 */
	if ((inode->i_size & (blocksize - 1)) == 0) {
		/* Block boundary? Nothing to do */
		page = NULL;
	} else {
		page = grab_cache_page(mapping,
				inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
	}

A
Aneesh Kumar K.V 已提交
2330 2331 2332 2333
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		ext4_ext_truncate(inode, page);
		return;
	}
A
Alex Tomas 已提交
2334

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		if (page) {
			clear_highpage(page);
			flush_dcache_page(page);
			unlock_page(page);
			page_cache_release(page);
		}
		return;		/* AKPM: return what? */
	}

	last_block = (inode->i_size + blocksize-1)
2347
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2348 2349

	if (page)
2350
		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2351

2352
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
2365
	if (ext4_orphan_add(handle, inode))
2366 2367 2368 2369 2370 2371 2372
		goto out_stop;

	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
2373
	 * ext4 *really* writes onto the disk inode.
2374 2375 2376 2377
	 */
	ei->i_disksize = inode->i_size;

	/*
2378
	 * From here we block out all ext4_get_block() callers who want to
2379 2380 2381 2382 2383
	 * modify the block allocation tree.
	 */
	mutex_lock(&ei->truncate_mutex);

	if (n == 1) {		/* direct blocks */
2384 2385
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
2386 2387 2388
		goto do_indirects;
	}

2389
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2390 2391 2392 2393
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
2394
			ext4_free_branches(handle, inode, NULL,
2395 2396 2397 2398 2399 2400 2401 2402 2403
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
2404
			ext4_free_branches(handle, inode, partial->bh,
2405 2406 2407 2408 2409 2410
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
2411
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
2422
		nr = i_data[EXT4_IND_BLOCK];
2423
		if (nr) {
2424 2425
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
2426
		}
2427 2428
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
2429
		if (nr) {
2430 2431
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
2432
		}
2433 2434
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
2435
		if (nr) {
2436 2437
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
2438
		}
2439
	case EXT4_TIND_BLOCK:
2440 2441 2442
		;
	}

2443
	ext4_discard_reservation(inode);
2444 2445

	mutex_unlock(&ei->truncate_mutex);
K
Kalpak Shah 已提交
2446
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2447
	ext4_mark_inode_dirty(handle, inode);
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
2460
	 * ext4_delete_inode(), and we allow that function to clean up the
2461 2462 2463
	 * orphan info for us.
	 */
	if (inode->i_nlink)
2464
		ext4_orphan_del(handle, inode);
2465

2466
	ext4_journal_stop(handle);
2467 2468
}

2469 2470
static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
		unsigned long ino, struct ext4_iloc *iloc)
2471
{
2472 2473
	unsigned long desc, group_desc;
	ext4_group_t block_group;
2474
	unsigned long offset;
2475
	ext4_fsblk_t block;
2476
	struct buffer_head *bh;
2477
	struct ext4_group_desc * gdp;
2478

2479
	if (!ext4_valid_inum(sb, ino)) {
2480 2481 2482 2483 2484 2485 2486 2487
		/*
		 * This error is already checked for in namei.c unless we are
		 * looking at an NFS filehandle, in which case no error
		 * report is needed
		 */
		return 0;
	}

2488 2489 2490
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
	if (block_group >= EXT4_SB(sb)->s_groups_count) {
		ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2491 2492 2493
		return 0;
	}
	smp_rmb();
2494 2495 2496
	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
	desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
	bh = EXT4_SB(sb)->s_group_desc[group_desc];
2497
	if (!bh) {
2498
		ext4_error (sb, "ext4_get_inode_block",
2499 2500 2501 2502
			    "Descriptor not loaded");
		return 0;
	}

2503 2504
	gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
		desc * EXT4_DESC_SIZE(sb));
2505 2506 2507
	/*
	 * Figure out the offset within the block group inode table
	 */
2508 2509
	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
		EXT4_INODE_SIZE(sb);
2510 2511
	block = ext4_inode_table(sb, gdp) +
		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2512 2513

	iloc->block_group = block_group;
2514
	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2515 2516 2517 2518
	return block;
}

/*
2519
 * ext4_get_inode_loc returns with an extra refcount against the inode's
2520 2521 2522 2523
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
2524 2525
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
2526
{
2527
	ext4_fsblk_t block;
2528 2529
	struct buffer_head *bh;

2530
	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2531 2532 2533 2534 2535
	if (!block)
		return -EIO;

	bh = sb_getblk(inode->i_sb, block);
	if (!bh) {
2536
		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2537
				"unable to read inode block - "
2538
				"inode=%lu, block=%llu",
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
				 inode->i_ino, block);
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
2557
			struct ext4_group_desc *desc;
2558 2559
			int inodes_per_buffer;
			int inode_offset, i;
2560
			ext4_group_t block_group;
2561 2562 2563
			int start;

			block_group = (inode->i_ino - 1) /
2564
					EXT4_INODES_PER_GROUP(inode->i_sb);
2565
			inodes_per_buffer = bh->b_size /
2566
				EXT4_INODE_SIZE(inode->i_sb);
2567
			inode_offset = ((inode->i_ino - 1) %
2568
					EXT4_INODES_PER_GROUP(inode->i_sb));
2569 2570 2571
			start = inode_offset & ~(inodes_per_buffer - 1);

			/* Is the inode bitmap in cache? */
2572
			desc = ext4_get_group_desc(inode->i_sb,
2573 2574 2575 2576 2577
						block_group, NULL);
			if (!desc)
				goto make_io;

			bitmap_bh = sb_getblk(inode->i_sb,
2578
				ext4_inode_bitmap(inode->i_sb, desc));
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
			for (i = start; i < start + inodes_per_buffer; i++) {
				if (i == inode_offset)
					continue;
2594
				if (ext4_test_bit(i, bitmap_bh->b_data))
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
					break;
			}
			brelse(bitmap_bh);
			if (i == start + inodes_per_buffer) {
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
2618
			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2619
					"unable to read inode block - "
2620
					"inode=%lu, block=%llu",
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
					inode->i_ino, block);
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

2631
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2632 2633
{
	/* We have all inode data except xattrs in memory here. */
2634 2635
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2636 2637
}

2638
void ext4_set_inode_flags(struct inode *inode)
2639
{
2640
	unsigned int flags = EXT4_I(inode)->i_flags;
2641 2642

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2643
	if (flags & EXT4_SYNC_FL)
2644
		inode->i_flags |= S_SYNC;
2645
	if (flags & EXT4_APPEND_FL)
2646
		inode->i_flags |= S_APPEND;
2647
	if (flags & EXT4_IMMUTABLE_FL)
2648
		inode->i_flags |= S_IMMUTABLE;
2649
	if (flags & EXT4_NOATIME_FL)
2650
		inode->i_flags |= S_NOATIME;
2651
	if (flags & EXT4_DIRSYNC_FL)
2652 2653 2654
		inode->i_flags |= S_DIRSYNC;
}

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
2673 2674 2675 2676
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
2677 2678
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
2679 2680 2681 2682 2683 2684

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
2685 2686 2687 2688 2689 2690
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
2691 2692 2693 2694
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
2695

2696
void ext4_read_inode(struct inode * inode)
2697
{
2698 2699 2700
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
	struct ext4_inode_info *ei = EXT4_I(inode);
2701 2702 2703
	struct buffer_head *bh;
	int block;

2704 2705 2706
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2707 2708 2709
#endif
	ei->i_block_alloc_info = NULL;

2710
	if (__ext4_get_inode_loc(inode, &iloc, 0))
2711 2712
		goto bad_inode;
	bh = iloc.bh;
2713
	raw_inode = ext4_raw_inode(&iloc);
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
2733
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
			/* this inode is deleted */
			brelse (bh);
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2744
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2745
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2746
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2747
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
2748 2749
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2750
	}
2751
	inode->i_size = ext4_isize(raw_inode);
2752 2753 2754 2755 2756 2757 2758
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
2759
	for (block = 0; block < EXT4_N_BLOCKS; block++)
2760 2761 2762
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

2763 2764
	if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
	    EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2765 2766
		/*
		 * When mke2fs creates big inodes it does not zero out
2767
		 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2768 2769 2770
		 * so ignore those first few inodes.
		 */
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2771
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2772 2773
		    EXT4_INODE_SIZE(inode->i_sb)) {
			brelse (bh);
2774
			goto bad_inode;
2775
		}
2776 2777
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
2778 2779
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
2780 2781
		} else {
			__le32 *magic = (void *)raw_inode +
2782
					EXT4_GOOD_OLD_INODE_SIZE +
2783
					ei->i_extra_isize;
2784 2785
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
2786 2787 2788 2789
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
2790 2791 2792 2793 2794
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

2795
	if (S_ISREG(inode->i_mode)) {
2796 2797 2798
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
2799
	} else if (S_ISDIR(inode->i_mode)) {
2800 2801
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
2802
	} else if (S_ISLNK(inode->i_mode)) {
2803 2804
		if (ext4_inode_is_fast_symlink(inode))
			inode->i_op = &ext4_fast_symlink_inode_operations;
2805
		else {
2806 2807
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
2808 2809
		}
	} else {
2810
		inode->i_op = &ext4_special_inode_operations;
2811 2812 2813 2814 2815 2816 2817 2818
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
	brelse (iloc.bh);
2819
	ext4_set_inode_flags(inode);
2820 2821 2822 2823 2824 2825 2826
	return;

bad_inode:
	make_bad_inode(inode);
	return;
}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;
	int err = 0;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
2841
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2842
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
2843
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	} else if (i_blocks <= 0xffffffffffffULL) {
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		/* i_block is stored in the split  48 bit fields */
A
Aneesh Kumar K.V 已提交
2854
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2855
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
2856
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2857
	} else {
A
Aneesh Kumar K.V 已提交
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		/*
		 * i_blocks should be represented in a 48 bit variable
		 * as multiple of  file system block size
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2871 2872 2873 2874 2875
	}
err_out:
	return err;
}

2876 2877 2878 2879 2880 2881 2882
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
2883
static int ext4_do_update_inode(handle_t *handle,
2884
				struct inode *inode,
2885
				struct ext4_iloc *iloc)
2886
{
2887 2888
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
2889 2890 2891 2892 2893
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
2894 2895
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2896

2897
	ext4_get_inode_flags(ei);
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!ei->i_dtime) {
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
2924 2925 2926 2927 2928 2929

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

2930 2931
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
2932 2933
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2934 2935
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
2936 2937
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
2938
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
2955
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2956 2957 2958 2959
			sb->s_dirt = 1;
			handle->h_sync = 1;
			err = ext4_journal_dirty_metadata(handle,
					EXT4_SB(sb)->s_sbh);
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
2974
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
2975 2976 2977 2978 2979
		raw_inode->i_block[block] = ei->i_data[block];

	if (ei->i_extra_isize)
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);

2980 2981
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
2982 2983
	if (!err)
		err = rc;
2984
	ei->i_state &= ~EXT4_STATE_NEW;
2985 2986 2987

out_brelse:
	brelse (bh);
2988
	ext4_std_error(inode->i_sb, err);
2989 2990 2991 2992
	return err;
}

/*
2993
 * ext4_write_inode()
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
3010
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
3027
int ext4_write_inode(struct inode *inode, int wait)
3028 3029 3030 3031
{
	if (current->flags & PF_MEMALLOC)
		return 0;

3032
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
3033
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3034 3035 3036 3037 3038 3039 3040
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

3041
	return ext4_force_commit(inode->i_sb);
3042 3043 3044
}

/*
3045
 * ext4_setattr()
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
 * Called with inode->sem down.
 */
3061
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
3077 3078
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3079 3080 3081 3082 3083 3084
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
3085
			ext4_journal_stop(handle);
3086 3087 3088 3089 3090 3091 3092 3093
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
3094 3095
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
3096 3097
	}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

3109 3110 3111 3112
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

3113
		handle = ext4_journal_start(inode, 3);
3114 3115 3116 3117 3118
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

3119 3120 3121
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
3122 3123
		if (!error)
			error = rc;
3124
		ext4_journal_stop(handle);
3125 3126 3127 3128
	}

	rc = inode_setattr(inode, attr);

3129
	/* If inode_setattr's call to ext4_truncate failed to get a
3130 3131 3132
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
3133
		ext4_orphan_del(NULL, inode);
3134 3135

	if (!rc && (ia_valid & ATTR_MODE))
3136
		rc = ext4_acl_chmod(inode);
3137 3138

err_out:
3139
	ext4_std_error(inode->i_sb, error);
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	if (!error)
		error = rc;
	return error;
}


/*
 * How many blocks doth make a writepage()?
 *
 * With N blocks per page, it may be:
 * N data blocks
 * 2 indirect block
 * 2 dindirect
 * 1 tindirect
 * N+5 bitmap blocks (from the above)
 * N+5 group descriptor summary blocks
 * 1 inode block
 * 1 superblock.
3158
 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3159
 *
3160
 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
 *
 * With ordered or writeback data it's the same, less the N data blocks.
 *
 * If the inode's direct blocks can hold an integral number of pages then a
 * page cannot straddle two indirect blocks, and we can only touch one indirect
 * and dindirect block, and the "5" above becomes "3".
 *
 * This still overestimates under most circumstances.  If we were to pass the
 * start and end offsets in here as well we could do block_to_path() on each
 * block and work out the exact number of indirects which are touched.  Pah.
 */

A
Alex Tomas 已提交
3173
int ext4_writepage_trans_blocks(struct inode *inode)
3174
{
3175 3176
	int bpp = ext4_journal_blocks_per_page(inode);
	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3177 3178
	int ret;

A
Alex Tomas 已提交
3179 3180 3181
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_writepage_trans_blocks(inode, bpp);

3182
	if (ext4_should_journal_data(inode))
3183 3184 3185 3186 3187 3188 3189
		ret = 3 * (bpp + indirects) + 2;
	else
		ret = 2 * (bpp + indirects) + 2;

#ifdef CONFIG_QUOTA
	/* We know that structure was already allocated during DQUOT_INIT so
	 * we will be updating only the data blocks + inodes */
3190
	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3191 3192 3193 3194 3195 3196
#endif

	return ret;
}

/*
3197
 * The caller must have previously called ext4_reserve_inode_write().
3198 3199
 * Give this, we know that the caller already has write access to iloc->bh.
 */
3200 3201
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
3202 3203 3204 3205 3206 3207
{
	int err = 0;

	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

3208
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3209
	err = ext4_do_update_inode(handle, inode, iloc);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
3220 3221
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
3222 3223 3224
{
	int err = 0;
	if (handle) {
3225
		err = ext4_get_inode_loc(inode, iloc);
3226 3227
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
3228
			err = ext4_journal_get_write_access(handle, iloc->bh);
3229 3230 3231 3232 3233 3234
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
3235
	ext4_std_error(inode->i_sb, err);
3236 3237 3238
	return err;
}

3239 3240 3241 3242
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
3243 3244 3245 3246
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
3295
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3296
{
3297
	struct ext4_iloc iloc;
3298 3299 3300
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
3301 3302

	might_sleep();
3303
	err = ext4_reserve_inode_write(handle, inode, &iloc);
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
3320 3321
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
3322 3323 3324 3325
					ext4_warning(inode->i_sb, __FUNCTION__,
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
3326 3327
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
3328 3329 3330 3331
				}
			}
		}
	}
3332
	if (!err)
3333
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3334 3335 3336 3337
	return err;
}

/*
3338
 * ext4_dirty_inode() is called from __mark_inode_dirty()
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
3351
void ext4_dirty_inode(struct inode *inode)
3352
{
3353
	handle_t *current_handle = ext4_journal_current_handle();
3354 3355
	handle_t *handle;

3356
	handle = ext4_journal_start(inode, 2);
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
		       __FUNCTION__);
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
3367
		ext4_mark_inode_dirty(handle, inode);
3368
	}
3369
	ext4_journal_stop(handle);
3370 3371 3372 3373 3374 3375 3376 3377
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
3378
 * ext4_reserve_inode_write, this leaves behind no bh reference and
3379 3380 3381
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
3382
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3383
{
3384
	struct ext4_iloc iloc;
3385 3386 3387

	int err = 0;
	if (handle) {
3388
		err = ext4_get_inode_loc(inode, &iloc);
3389 3390
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
3391
			err = jbd2_journal_get_write_access(handle, iloc.bh);
3392
			if (!err)
3393
				err = ext4_journal_dirty_metadata(handle,
3394 3395 3396 3397
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
3398
	ext4_std_error(inode->i_sb, err);
3399 3400 3401 3402
	return err;
}
#endif

3403
int ext4_change_inode_journal_flag(struct inode *inode, int val)
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

3419
	journal = EXT4_JOURNAL(inode);
3420
	if (is_journal_aborted(journal))
3421 3422
		return -EROFS;

3423 3424
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
3435
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3436
	else
3437 3438
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
3439

3440
	jbd2_journal_unlock_updates(journal);
3441 3442 3443

	/* Finally we can mark the inode as dirty. */

3444
	handle = ext4_journal_start(inode, 1);
3445 3446 3447
	if (IS_ERR(handle))
		return PTR_ERR(handle);

3448
	err = ext4_mark_inode_dirty(handle, inode);
3449
	handle->h_sync = 1;
3450 3451
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
3452 3453 3454

	return err;
}