i915_gem.c 103.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 40
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 42 43 44 45
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
46
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 48 49
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
50 51
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
52 53
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
54
				struct drm_i915_gem_pwrite *args,
55 56
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57

58 59 60 61
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

78 79
static int
i915_gem_wait_for_error(struct drm_device *dev)
80 81 82 83 84 85 86 87 88 89 90 91 92
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

93 94 95 96 97 98 99 100 101 102 103
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
104 105
}

106
int i915_mutex_lock_interruptible(struct drm_device *dev)
107 108 109
{
	int ret;

110
	ret = i915_gem_wait_for_error(dev);
111 112 113 114 115 116 117
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

118
	WARN_ON(i915_verify_lists(dev));
119 120
	return 0;
}
121

122
static inline bool
123
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124
{
125
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
126 127
}

128 129 130 131
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
132 133 134
{
	drm_i915_private_t *dev_priv = dev->dev_private;

135
	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136

137 138 139
	dev_priv->mm.gtt_start = start;
	dev_priv->mm.gtt_mappable_end = mappable_end;
	dev_priv->mm.gtt_end = end;
140
	dev_priv->mm.gtt_total = end - start;
141
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142 143 144

	/* Take over this portion of the GTT */
	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
J
Jesse Barnes 已提交
145
}
146

J
Jesse Barnes 已提交
147 148
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
149
		    struct drm_file *file)
J
Jesse Barnes 已提交
150 151
{
	struct drm_i915_gem_init *args = data;
152 153 154 155

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
156 157

	mutex_lock(&dev->struct_mutex);
158
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
159 160
	mutex_unlock(&dev->struct_mutex);

161
	return 0;
162 163
}

164 165
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166
			    struct drm_file *file)
167
{
168
	struct drm_i915_private *dev_priv = dev->dev_private;
169
	struct drm_i915_gem_get_aperture *args = data;
170 171
	struct drm_i915_gem_object *obj;
	size_t pinned;
172 173 174 175

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

176
	pinned = 0;
177
	mutex_lock(&dev->struct_mutex);
178 179
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
180
	mutex_unlock(&dev->struct_mutex);
181

182 183 184
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size -pinned;

185 186 187
	return 0;
}

188 189 190 191 192
/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
193
		      struct drm_file *file)
194 195
{
	struct drm_i915_gem_create *args = data;
196
	struct drm_i915_gem_object *obj;
197 198
	int ret;
	u32 handle;
199 200 201 202

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
203
	obj = i915_gem_alloc_object(dev, args->size);
204 205 206
	if (obj == NULL)
		return -ENOMEM;

207
	ret = drm_gem_handle_create(file, &obj->base, &handle);
208
	if (ret) {
209 210
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
211
		kfree(obj);
212
		return ret;
213
	}
214

215
	/* drop reference from allocate - handle holds it now */
216
	drm_gem_object_unreference(&obj->base);
217 218
	trace_i915_gem_object_create(obj);

219
	args->handle = handle;
220 221 222
	return 0;
}

223
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
224
{
225
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
226 227

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
228
		obj->tiling_mode != I915_TILING_NONE;
229 230
}

231
static inline void
232 233 234 235 236 237 238 239
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

240 241
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
242 243 244

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

245 246
	kunmap(src_page);
	kunmap(dst_page);
247 248
}

249
static inline void
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

269 270
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

294 295
	kunmap(cpu_page);
	kunmap(gpu_page);
296 297
}

298 299 300 301 302 303
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
304 305
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
306
			  struct drm_i915_gem_pread *args,
307
			  struct drm_file *file)
308
{
309
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
310
	ssize_t remain;
311
	loff_t offset;
312 313 314 315 316 317 318 319 320
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
321 322 323 324
		struct page *page;
		char *vaddr;
		int ret;

325 326 327 328 329 330 331 332 333 334
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

335 336 337 338 339 340 341 342 343 344 345 346 347 348
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
349
			return -EFAULT;
350 351 352 353 354 355

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

356
	return 0;
357 358 359 360 361 362 363 364 365
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
366 367
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
368
			  struct drm_i915_gem_pread *args,
369
			  struct drm_file *file)
370
{
371
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
372 373 374 375 376
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
377 378
	int shmem_page_offset;
	int data_page_index, data_page_offset;
379 380 381
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
382
	int do_bit17_swizzling;
383 384 385 386 387 388 389 390 391 392 393

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

394
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
395 396 397
	if (user_pages == NULL)
		return -ENOMEM;

398
	mutex_unlock(&dev->struct_mutex);
399 400
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
401
				      num_pages, 1, 0, user_pages, NULL);
402
	up_read(&mm->mmap_sem);
403
	mutex_lock(&dev->struct_mutex);
404 405
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
406
		goto out;
407 408
	}

409 410 411
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
412
	if (ret)
413
		goto out;
414

415
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
416 417 418 419

	offset = args->offset;

	while (remain > 0) {
420 421
		struct page *page;

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

439 440 441 442 443
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

444
		if (do_bit17_swizzling) {
445
			slow_shmem_bit17_copy(page,
446
					      shmem_page_offset,
447 448 449 450 451 452 453
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
454
					page,
455 456
					shmem_page_offset,
					page_length);
457
		}
458

459 460 461
		mark_page_accessed(page);
		page_cache_release(page);

462 463 464 465 466
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

467
out:
468 469
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
470
		mark_page_accessed(user_pages[i]);
471 472
		page_cache_release(user_pages[i]);
	}
473
	drm_free_large(user_pages);
474 475 476 477

	return ret;
}

478 479 480 481 482 483 484
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
485
		     struct drm_file *file)
486 487
{
	struct drm_i915_gem_pread *args = data;
488
	struct drm_i915_gem_object *obj;
489
	int ret = 0;
490

491 492 493 494 495 496 497 498 499 500 501 502 503
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

504
	ret = i915_mutex_lock_interruptible(dev);
505
	if (ret)
506
		return ret;
507

508
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
509 510 511
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
512
	}
513

514
	/* Bounds check source.  */
515 516
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
517
		ret = -EINVAL;
518
		goto out;
C
Chris Wilson 已提交
519 520
	}

521 522 523 524
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
525
		goto out;
526 527 528

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
529
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
530
	if (ret == -EFAULT)
531
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
532

533
out:
534
	drm_gem_object_unreference(&obj->base);
535
unlock:
536
	mutex_unlock(&dev->struct_mutex);
537
	return ret;
538 539
}

540 541
/* This is the fast write path which cannot handle
 * page faults in the source data
542
 */
543 544 545 546 547 548

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
549 550
{
	char *vaddr_atomic;
551
	unsigned long unwritten;
552

P
Peter Zijlstra 已提交
553
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
554 555
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
556
	io_mapping_unmap_atomic(vaddr_atomic);
557
	return unwritten;
558 559 560 561 562 563
}

/* Here's the write path which can sleep for
 * page faults
 */

564
static inline void
565 566 567 568
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
569
{
570 571
	char __iomem *dst_vaddr;
	char *src_vaddr;
572

573 574 575 576 577 578 579 580 581
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
582 583
}

584 585 586 587
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
588
static int
589 590
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
591
			 struct drm_i915_gem_pwrite *args,
592
			 struct drm_file *file)
593
{
594
	drm_i915_private_t *dev_priv = dev->dev_private;
595
	ssize_t remain;
596
	loff_t offset, page_base;
597
	char __user *user_data;
598
	int page_offset, page_length;
599 600 601 602

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

603
	offset = obj->gtt_offset + args->offset;
604 605 606 607

	while (remain > 0) {
		/* Operation in this page
		 *
608 609 610
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
611
		 */
612 613 614 615 616 617 618
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
619 620
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
621
		 */
622 623 624 625
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
626

627 628 629
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
630 631
	}

632
	return 0;
633 634
}

635 636 637 638 639 640 641
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
642
static int
643 644
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
645
			 struct drm_i915_gem_pwrite *args,
646
			 struct drm_file *file)
647
{
648 649 650 651 652 653 654 655
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
656
	int ret;
657 658 659 660 661 662 663 664 665 666 667 668
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

669
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
670 671 672
	if (user_pages == NULL)
		return -ENOMEM;

673
	mutex_unlock(&dev->struct_mutex);
674 675 676 677
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
678
	mutex_lock(&dev->struct_mutex);
679 680 681 682
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
683

684 685 686 687 688
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
689
	if (ret)
690
		goto out_unpin_pages;
691

692
	offset = obj->gtt_offset + args->offset;
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

714 715 716 717 718
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
719 720 721 722 723 724 725 726 727

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
728
	drm_free_large(user_pages);
729 730 731 732

	return ret;
}

733 734 735 736
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
737
static int
738 739
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
740
			   struct drm_i915_gem_pwrite *args,
741
			   struct drm_file *file)
742
{
743
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
744
	ssize_t remain;
745
	loff_t offset;
746 747 748 749 750
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
751

752
	offset = args->offset;
753
	obj->dirty = 1;
754 755

	while (remain > 0) {
756 757 758 759
		struct page *page;
		char *vaddr;
		int ret;

760 761 762 763 764 765 766 767 768 769
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
790
			return -EFAULT;
791 792 793 794 795 796

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

797
	return 0;
798 799 800 801 802 803 804 805 806 807
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
808 809
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
810
			   struct drm_i915_gem_pwrite *args,
811
			   struct drm_file *file)
812
{
813
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
814 815 816 817 818
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
819
	int shmem_page_offset;
820 821 822 823
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
824
	int do_bit17_swizzling;
825 826 827 828 829 830 831 832 833 834 835

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

836
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
837 838 839
	if (user_pages == NULL)
		return -ENOMEM;

840
	mutex_unlock(&dev->struct_mutex);
841 842 843 844
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
845
	mutex_lock(&dev->struct_mutex);
846 847
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
848
		goto out;
849 850
	}

851
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
852
	if (ret)
853
		goto out;
854

855
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
856

857
	offset = args->offset;
858
	obj->dirty = 1;
859

860
	while (remain > 0) {
861 862
		struct page *page;

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

880 881 882 883 884 885 886
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

887
		if (do_bit17_swizzling) {
888
			slow_shmem_bit17_copy(page,
889 890 891
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
892 893 894
					      page_length,
					      0);
		} else {
895
			slow_shmem_copy(page,
896 897 898 899
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
900
		}
901

902 903 904 905
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

906 907 908
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
909 910
	}

911
out:
912 913
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
914
	drm_free_large(user_pages);
915

916
	return ret;
917 918 919 920 921 922 923 924 925
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
926
		      struct drm_file *file)
927 928
{
	struct drm_i915_gem_pwrite *args = data;
929
	struct drm_i915_gem_object *obj;
930 931 932 933 934 935 936 937 938 939 940 941 942 943
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
944

945
	ret = i915_mutex_lock_interruptible(dev);
946
	if (ret)
947
		return ret;
948

949
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
950 951 952
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
953
	}
954

955
	/* Bounds check destination. */
956 957
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
958
		ret = -EINVAL;
959
		goto out;
C
Chris Wilson 已提交
960 961
	}

962 963 964 965 966 967
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
968
	if (obj->phys_obj)
969
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
970
	else if (obj->gtt_space &&
971
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
972
		ret = i915_gem_object_pin(obj, 0, true);
973 974 975
		if (ret)
			goto out;

976 977 978 979 980
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
981 982 983 984 985 986 987 988 989
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
990
	} else {
991 992
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
993
			goto out;
994

995 996 997 998 999 1000
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1001

1002
out:
1003
	drm_gem_object_unreference(&obj->base);
1004
unlock:
1005
	mutex_unlock(&dev->struct_mutex);
1006 1007 1008 1009
	return ret;
}

/**
1010 1011
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1012 1013 1014
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1015
			  struct drm_file *file)
1016 1017
{
	struct drm_i915_gem_set_domain *args = data;
1018
	struct drm_i915_gem_object *obj;
1019 1020
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1021 1022 1023 1024 1025
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1026
	/* Only handle setting domains to types used by the CPU. */
1027
	if (write_domain & I915_GEM_GPU_DOMAINS)
1028 1029
		return -EINVAL;

1030
	if (read_domains & I915_GEM_GPU_DOMAINS)
1031 1032 1033 1034 1035 1036 1037 1038
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1039
	ret = i915_mutex_lock_interruptible(dev);
1040
	if (ret)
1041
		return ret;
1042

1043
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1044 1045 1046
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1047
	}
1048

1049 1050
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1051 1052 1053 1054 1055 1056 1057

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1058
	} else {
1059
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1060 1061
	}

1062
	drm_gem_object_unreference(&obj->base);
1063
unlock:
1064 1065 1066 1067 1068 1069 1070 1071 1072
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1073
			 struct drm_file *file)
1074 1075
{
	struct drm_i915_gem_sw_finish *args = data;
1076
	struct drm_i915_gem_object *obj;
1077 1078 1079 1080 1081
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1082
	ret = i915_mutex_lock_interruptible(dev);
1083
	if (ret)
1084
		return ret;
1085

1086
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1087
	if (obj == NULL) {
1088 1089
		ret = -ENOENT;
		goto unlock;
1090 1091 1092
	}

	/* Pinned buffers may be scanout, so flush the cache */
1093
	if (obj->pin_count)
1094 1095
		i915_gem_object_flush_cpu_write_domain(obj);

1096
	drm_gem_object_unreference(&obj->base);
1097
unlock:
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1111
		    struct drm_file *file)
1112
{
1113
	struct drm_i915_private *dev_priv = dev->dev_private;
1114 1115 1116 1117 1118 1119 1120
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1121
	obj = drm_gem_object_lookup(dev, file, args->handle);
1122
	if (obj == NULL)
1123
		return -ENOENT;
1124

1125 1126 1127 1128 1129
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1130 1131 1132 1133 1134
	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1135
	drm_gem_object_unreference_unlocked(obj);
1136 1137 1138 1139 1140 1141 1142 1143
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1162 1163
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1164
	drm_i915_private_t *dev_priv = dev->dev_private;
1165 1166 1167
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1168
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1169 1170 1171 1172 1173 1174 1175

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
1176

1177 1178 1179 1180
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1181
	}
1182
	if (!obj->gtt_space) {
1183
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1184 1185
		if (ret)
			goto unlock;
1186 1187
	}

1188 1189 1190 1191
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1192 1193 1194 1195 1196 1197
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
		ret = i915_gem_object_get_fence(obj, NULL, true);
	if (ret)
		goto unlock;
1198

1199 1200
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1201

1202 1203
	obj->fault_mappable = true;

1204
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1205 1206 1207 1208
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1209
unlock:
1210 1211 1212
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1213 1214
	case -EAGAIN:
		set_need_resched();
1215 1216 1217
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1218 1219 1220
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1221
		return VM_FAULT_SIGBUS;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
1237
i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1238
{
1239
	struct drm_device *dev = obj->base.dev;
1240 1241
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1242
	struct drm_local_map *map;
1243 1244 1245
	int ret = 0;

	/* Set the object up for mmap'ing */
1246
	list = &obj->base.map_list;
1247
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1248 1249 1250 1251 1252
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
1253
	map->size = obj->base.size;
1254 1255 1256 1257
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1258 1259
						    obj->base.size / PAGE_SIZE,
						    0, 0);
1260
	if (!list->file_offset_node) {
1261 1262
		DRM_ERROR("failed to allocate offset for bo %d\n",
			  obj->base.name);
1263
		ret = -ENOSPC;
1264 1265 1266 1267
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1268 1269
						  obj->base.size / PAGE_SIZE,
						  0);
1270 1271 1272 1273 1274 1275
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1276 1277
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1278 1279 1280 1281 1282 1283 1284 1285 1286
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1287
	kfree(list->map);
C
Chris Wilson 已提交
1288
	list->map = NULL;
1289 1290 1291 1292

	return ret;
}

1293 1294 1295 1296
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1297
 * Preserve the reservation of the mmapping with the DRM core code, but
1298 1299 1300 1301 1302 1303 1304 1305 1306
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1307
void
1308
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1309
{
1310 1311
	if (!obj->fault_mappable)
		return;
1312

1313 1314 1315
	unmap_mapping_range(obj->base.dev->dev_mapping,
			    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
			    obj->base.size, 1);
1316

1317
	obj->fault_mappable = false;
1318 1319
}

1320
static void
1321
i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1322
{
1323
	struct drm_device *dev = obj->base.dev;
1324
	struct drm_gem_mm *mm = dev->mm_private;
1325
	struct drm_map_list *list = &obj->base.map_list;
1326 1327

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1328 1329 1330
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1331 1332
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	uint32_t size;

	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj->tiling_mode == I915_TILING_NONE)
		return obj->base.size;

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
		size = 1024*1024;
	else
		size = 512*1024;

	while (size < obj->base.size)
		size <<= 1;

	return size;
}

1355 1356 1357 1358 1359
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1360
 * potential fence register mapping.
1361 1362
 */
static uint32_t
1363
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1364
{
1365
	struct drm_device *dev = obj->base.dev;
1366 1367 1368 1369 1370

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1371
	if (INTEL_INFO(dev)->gen >= 4 ||
1372
	    obj->tiling_mode == I915_TILING_NONE)
1373 1374
		return 4096;

1375 1376 1377 1378
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1379
	return i915_gem_get_gtt_size(obj);
1380 1381
}

1382 1383 1384 1385 1386 1387 1388 1389 1390
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
static uint32_t
1391
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1392
{
1393
	struct drm_device *dev = obj->base.dev;
1394 1395 1396 1397 1398 1399
	int tile_height;

	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1400
	    obj->tiling_mode == I915_TILING_NONE)
1401 1402 1403 1404 1405 1406 1407 1408
		return 4096;

	/*
	 * Older chips need unfenced tiled buffers to be aligned to the left
	 * edge of an even tile row (where tile rows are counted as if the bo is
	 * placed in a fenced gtt region).
	 */
	if (IS_GEN2(dev) ||
1409
	    (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1410 1411 1412 1413
		tile_height = 32;
	else
		tile_height = 8;

1414
	return tile_height * obj->stride * 2;
1415 1416
}

1417 1418 1419 1420
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
1421
 * @file: GEM object info
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1434
			struct drm_file *file)
1435
{
1436
	struct drm_i915_private *dev_priv = dev->dev_private;
1437
	struct drm_i915_gem_mmap_gtt *args = data;
1438
	struct drm_i915_gem_object *obj;
1439 1440 1441 1442 1443
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1444
	ret = i915_mutex_lock_interruptible(dev);
1445
	if (ret)
1446
		return ret;
1447

1448
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1449 1450 1451 1452
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1453

1454
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1455 1456 1457 1458
		ret = -E2BIG;
		goto unlock;
	}

1459
	if (obj->madv != I915_MADV_WILLNEED) {
1460
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1461 1462
		ret = -EINVAL;
		goto out;
1463 1464
	}

1465
	if (!obj->base.map_list.map) {
1466
		ret = i915_gem_create_mmap_offset(obj);
1467 1468
		if (ret)
			goto out;
1469 1470
	}

1471
	args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1472

1473
out:
1474
	drm_gem_object_unreference(&obj->base);
1475
unlock:
1476
	mutex_unlock(&dev->struct_mutex);
1477
	return ret;
1478 1479
}

1480
static int
1481
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1492 1493 1494 1495
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1496 1497
		return -ENOMEM;

1498
	inode = obj->base.filp->f_path.dentry->d_inode;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

1509
		obj->pages[i] = page;
1510 1511
	}

1512
	if (obj->tiling_mode != I915_TILING_NONE)
1513 1514 1515 1516 1517 1518
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1519
		page_cache_release(obj->pages[i]);
1520

1521 1522
	drm_free_large(obj->pages);
	obj->pages = NULL;
1523 1524 1525
	return PTR_ERR(page);
}

1526
static void
1527
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1528
{
1529
	int page_count = obj->base.size / PAGE_SIZE;
1530 1531
	int i;

1532
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1533

1534
	if (obj->tiling_mode != I915_TILING_NONE)
1535 1536
		i915_gem_object_save_bit_17_swizzle(obj);

1537 1538
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1539 1540

	for (i = 0; i < page_count; i++) {
1541 1542
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1543

1544 1545
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1546

1547
		page_cache_release(obj->pages[i]);
1548
	}
1549
	obj->dirty = 0;
1550

1551 1552
	drm_free_large(obj->pages);
	obj->pages = NULL;
1553 1554
}

1555
void
1556
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1557 1558
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1559
{
1560
	struct drm_device *dev = obj->base.dev;
1561
	struct drm_i915_private *dev_priv = dev->dev_private;
1562

1563
	BUG_ON(ring == NULL);
1564
	obj->ring = ring;
1565 1566

	/* Add a reference if we're newly entering the active list. */
1567 1568 1569
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1570
	}
1571

1572
	/* Move from whatever list we were on to the tail of execution. */
1573 1574
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1575

1576
	obj->last_rendering_seqno = seqno;
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1595 1596
}

1597
static void
1598
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1599
{
1600
	struct drm_device *dev = obj->base.dev;
1601 1602
	drm_i915_private_t *dev_priv = dev->dev_private;

1603 1604
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1628
	obj->pending_gpu_write = false;
1629 1630 1631
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1632
}
1633

1634 1635
/* Immediately discard the backing storage */
static void
1636
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1637
{
C
Chris Wilson 已提交
1638
	struct inode *inode;
1639

1640 1641 1642 1643 1644 1645
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
1646
	inode = obj->base.filp->f_path.dentry->d_inode;
1647 1648 1649
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1650

1651
	obj->madv = __I915_MADV_PURGED;
1652 1653 1654
}

static inline int
1655
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1656
{
1657
	return obj->madv == I915_MADV_DONTNEED;
1658 1659
}

1660 1661
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1662
			       uint32_t flush_domains,
1663
			       struct intel_ring_buffer *ring)
1664
{
1665
	struct drm_i915_gem_object *obj, *next;
1666

1667
	list_for_each_entry_safe(obj, next,
1668
				 &ring->gpu_write_list,
1669
				 gpu_write_list) {
1670 1671
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1672

1673 1674
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1675 1676
			i915_gem_object_move_to_active(obj, ring,
						       i915_gem_next_request_seqno(dev, ring));
1677 1678

			trace_i915_gem_object_change_domain(obj,
1679
							    obj->base.read_domains,
1680 1681 1682 1683
							    old_write_domain);
		}
	}
}
1684

1685
int
1686
i915_add_request(struct drm_device *dev,
1687
		 struct drm_file *file,
C
Chris Wilson 已提交
1688
		 struct drm_i915_gem_request *request,
1689
		 struct intel_ring_buffer *ring)
1690 1691
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1692
	struct drm_i915_file_private *file_priv = NULL;
1693 1694
	uint32_t seqno;
	int was_empty;
1695 1696 1697
	int ret;

	BUG_ON(request == NULL);
1698

1699 1700
	if (file != NULL)
		file_priv = file->driver_priv;
1701

1702 1703 1704
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1705

1706
	ring->outstanding_lazy_request = false;
1707 1708

	request->seqno = seqno;
1709
	request->ring = ring;
1710
	request->emitted_jiffies = jiffies;
1711 1712 1713
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1714
	if (file_priv) {
1715
		spin_lock(&file_priv->mm.lock);
1716
		request->file_priv = file_priv;
1717
		list_add_tail(&request->client_list,
1718
			      &file_priv->mm.request_list);
1719
		spin_unlock(&file_priv->mm.lock);
1720
	}
1721

B
Ben Gamari 已提交
1722
	if (!dev_priv->mm.suspended) {
1723 1724
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1725
		if (was_empty)
1726 1727
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1728
	}
1729
	return 0;
1730 1731
}

1732 1733
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1734
{
1735
	struct drm_i915_file_private *file_priv = request->file_priv;
1736

1737 1738
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1739

1740 1741 1742 1743
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1744 1745
}

1746 1747
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1748
{
1749 1750
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1751

1752 1753 1754
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1755

1756
		list_del(&request->list);
1757
		i915_gem_request_remove_from_client(request);
1758 1759
		kfree(request);
	}
1760

1761
	while (!list_empty(&ring->active_list)) {
1762
		struct drm_i915_gem_object *obj;
1763

1764 1765 1766
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1767

1768 1769 1770
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1771 1772 1773
	}
}

1774 1775 1776 1777 1778 1779 1780
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1781 1782 1783 1784 1785 1786 1787 1788
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1789 1790 1791 1792 1793
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1794 1795 1796
	}
}

1797
void i915_gem_reset(struct drm_device *dev)
1798
{
1799
	struct drm_i915_private *dev_priv = dev->dev_private;
1800
	struct drm_i915_gem_object *obj;
1801
	int i;
1802

1803 1804
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1805 1806 1807 1808 1809 1810

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1811 1812 1813
		obj= list_first_entry(&dev_priv->mm.flushing_list,
				      struct drm_i915_gem_object,
				      mm_list);
1814

1815 1816 1817
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1818 1819 1820 1821 1822
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1823
	list_for_each_entry(obj,
1824
			    &dev_priv->mm.inactive_list,
1825
			    mm_list)
1826
	{
1827
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1828
	}
1829 1830

	/* The fence registers are invalidated so clear them out */
1831
	i915_gem_reset_fences(dev);
1832 1833 1834 1835 1836
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1837 1838 1839
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1840 1841 1842
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;
1843
	int i;
1844

1845 1846
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1847 1848
		return;

1849
	WARN_ON(i915_verify_lists(dev));
1850

1851
	seqno = ring->get_seqno(ring);
1852

1853
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1854 1855 1856
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1857
	while (!list_empty(&ring->request_list)) {
1858 1859
		struct drm_i915_gem_request *request;

1860
		request = list_first_entry(&ring->request_list,
1861 1862 1863
					   struct drm_i915_gem_request,
					   list);

1864
		if (!i915_seqno_passed(seqno, request->seqno))
1865 1866 1867 1868 1869
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1870
		i915_gem_request_remove_from_client(request);
1871 1872
		kfree(request);
	}
1873

1874 1875 1876 1877
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1878
		struct drm_i915_gem_object *obj;
1879

1880 1881 1882
		obj= list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);
1883

1884
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1885
			break;
1886

1887
		if (obj->base.write_domain != 0)
1888 1889 1890
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1891
	}
1892 1893 1894

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1895
		ring->irq_put(ring);
1896 1897
		dev_priv->trace_irq_seqno = 0;
	}
1898 1899

	WARN_ON(i915_verify_lists(dev));
1900 1901
}

1902 1903 1904 1905
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1906
	int i;
1907

1908
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1909
	    struct drm_i915_gem_object *obj, *next;
1910 1911 1912 1913 1914 1915

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1916
	    list_for_each_entry_safe(obj, next,
1917
				     &dev_priv->mm.deferred_free_list,
1918
				     mm_list)
1919
		    i915_gem_free_object_tail(obj);
1920 1921
	}

1922 1923
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
1924 1925
}

1926
static void
1927 1928 1929 1930
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1931 1932
	bool idle;
	int i;
1933 1934 1935 1936 1937

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1938 1939 1940 1941 1942 1943
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1944
	i915_gem_retire_requests(dev);
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

			ret = i915_gem_flush_ring(dev, ring, 0,
						  I915_GEM_GPU_DOMAINS);
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
			    i915_add_request(dev, NULL, request, ring))
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1969
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1970

1971 1972 1973
	mutex_unlock(&dev->struct_mutex);
}

1974
int
1975
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1976
		     bool interruptible, struct intel_ring_buffer *ring)
1977 1978
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1979
	u32 ier;
1980 1981 1982 1983
	int ret = 0;

	BUG_ON(seqno == 0);

1984
	if (atomic_read(&dev_priv->mm.wedged))
1985 1986
		return -EAGAIN;

1987
	if (seqno == ring->outstanding_lazy_request) {
1988 1989 1990 1991
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1992
			return -ENOMEM;
1993 1994 1995 1996 1997 1998 1999 2000

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2001
	}
2002

2003
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2004
		if (HAS_PCH_SPLIT(dev))
2005 2006 2007
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2008 2009 2010 2011 2012 2013 2014
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2015 2016
		trace_i915_gem_request_wait_begin(dev, seqno);

2017
		ring->waiting_seqno = seqno;
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
		if (ring->irq_get(ring)) {
			if (interruptible)
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
2029 2030 2031 2032
		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
						      seqno) ||
				    atomic_read(&dev_priv->mm.wedged), 3000))
			ret = -EBUSY;
2033
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2034 2035

		trace_i915_gem_request_wait_end(dev, seqno);
2036
	}
2037
	if (atomic_read(&dev_priv->mm.wedged))
2038
		ret = -EAGAIN;
2039 2040

	if (ret && ret != -ERESTARTSYS)
2041
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2042
			  __func__, ret, seqno, ring->get_seqno(ring),
2043
			  dev_priv->next_seqno);
2044 2045 2046 2047 2048 2049 2050

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2051
		i915_gem_retire_requests_ring(dev, ring);
2052 2053 2054 2055

	return ret;
}

2056 2057 2058 2059 2060
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2061
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2062
		  struct intel_ring_buffer *ring)
2063
{
2064
	return i915_do_wait_request(dev, seqno, 1, ring);
2065 2066
}

2067 2068 2069 2070
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2071
int
2072
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2073
			       bool interruptible)
2074
{
2075
	struct drm_device *dev = obj->base.dev;
2076 2077
	int ret;

2078 2079
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2080
	 */
2081
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2082 2083 2084 2085

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2086
	if (obj->active) {
2087
		ret = i915_do_wait_request(dev,
2088
					   obj->last_rendering_seqno,
2089
					   interruptible,
2090
					   obj->ring);
2091
		if (ret)
2092 2093 2094 2095 2096 2097 2098 2099 2100
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2101
int
2102
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2103 2104 2105
{
	int ret = 0;

2106
	if (obj->gtt_space == NULL)
2107 2108
		return 0;

2109
	if (obj->pin_count != 0) {
2110 2111 2112 2113
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2114 2115 2116
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2117 2118 2119 2120 2121 2122
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2123
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2124
	if (ret == -ERESTARTSYS)
2125
		return ret;
2126 2127 2128 2129
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2130 2131
	if (ret) {
		i915_gem_clflush_object(obj);
2132
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2133
	}
2134

2135
	/* release the fence reg _after_ flushing */
2136 2137 2138
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2139

2140
	i915_gem_gtt_unbind_object(obj);
2141
	i915_gem_object_put_pages_gtt(obj);
2142

2143
	list_del_init(&obj->gtt_list);
2144
	list_del_init(&obj->mm_list);
2145
	/* Avoid an unnecessary call to unbind on rebind. */
2146
	obj->map_and_fenceable = true;
2147

2148 2149 2150
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2151

2152
	if (i915_gem_object_is_purgeable(obj))
2153 2154
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2155 2156
	trace_i915_gem_object_unbind(obj);

2157
	return ret;
2158 2159
}

2160
int
2161 2162 2163 2164 2165
i915_gem_flush_ring(struct drm_device *dev,
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2166 2167 2168 2169 2170 2171 2172 2173
	int ret;

	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

	i915_gem_process_flushing_list(dev, flush_domains, ring);
	return 0;
2174 2175
}

2176 2177 2178
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2179 2180
	int ret;

2181
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2182 2183
		return 0;

2184 2185
	if (!list_empty(&ring->gpu_write_list)) {
		ret = i915_gem_flush_ring(dev, ring,
2186
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2187 2188 2189 2190
		if (ret)
			return ret;
	}

2191 2192 2193 2194 2195
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2196
int
2197 2198 2199 2200
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2201
	int ret, i;
2202

2203
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2204
		       list_empty(&dev_priv->mm.active_list));
2205 2206 2207 2208
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2209 2210 2211 2212 2213
	for (i = 0; i < I915_NUM_RINGS; i++) {
		ret = i915_ring_idle(dev, &dev_priv->ring[i]);
		if (ret)
			return ret;
	}
2214

2215
	return 0;
2216 2217
}

2218 2219
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2220
{
2221
	struct drm_device *dev = obj->base.dev;
2222
	drm_i915_private_t *dev_priv = dev->dev_private;
2223 2224
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2225 2226
	uint64_t val;

2227
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2228
			 0xfffff000) << 32;
2229 2230
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2231 2232
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2233
	if (obj->tiling_mode == I915_TILING_Y)
2234 2235 2236
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2253 2254
}

2255 2256
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2257
{
2258
	struct drm_device *dev = obj->base.dev;
2259
	drm_i915_private_t *dev_priv = dev->dev_private;
2260 2261
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2262 2263
	uint64_t val;

2264
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2265
		    0xfffff000) << 32;
2266 2267 2268
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2269 2270 2271
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2288 2289
}

2290 2291
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2292
{
2293
	struct drm_device *dev = obj->base.dev;
2294
	drm_i915_private_t *dev_priv = dev->dev_private;
2295
	u32 size = obj->gtt_space->size;
2296
	u32 fence_reg, val, pitch_val;
2297
	int tile_width;
2298

2299 2300 2301 2302 2303 2304
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2305

2306
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2307
		tile_width = 128;
2308
	else
2309 2310 2311
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2312
	pitch_val = obj->stride / tile_width;
2313
	pitch_val = ffs(pitch_val) - 1;
2314

2315 2316
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2317
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2318
	val |= I915_FENCE_SIZE_BITS(size);
2319 2320 2321
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2322
	fence_reg = obj->fence_reg;
2323 2324
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2325
	else
2326
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2342 2343
}

2344 2345
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2346
{
2347
	struct drm_device *dev = obj->base.dev;
2348
	drm_i915_private_t *dev_priv = dev->dev_private;
2349 2350
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2351 2352 2353
	uint32_t val;
	uint32_t pitch_val;

2354 2355 2356 2357 2358 2359
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2360

2361
	pitch_val = obj->stride / 128;
2362 2363
	pitch_val = ffs(pitch_val) - 1;

2364 2365
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2366
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2367
	val |= I830_FENCE_SIZE_BITS(size);
2368 2369 2370
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2385 2386
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
			    struct intel_ring_buffer *pipelined,
			    bool interruptible)
{
	int ret;

	if (obj->fenced_gpu_access) {
2400 2401 2402 2403 2404 2405 2406
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
			ret = i915_gem_flush_ring(obj->base.dev,
						  obj->last_fenced_ring,
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
			ret = i915_do_wait_request(obj->base.dev,
						   obj->last_fenced_seqno,
						   interruptible,
						   obj->last_fenced_ring);
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2426 2427 2428 2429 2430 2431
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	ret = i915_gem_object_flush_fence(obj, NULL, true);
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2461 2462
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2463 2464
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2465 2466

	/* First try to find a free reg */
2467
	avail = NULL;
2468 2469 2470
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2471
			return reg;
2472

2473
		if (!reg->obj->pin_count)
2474
			avail = reg;
2475 2476
	}

2477 2478
	if (avail == NULL)
		return NULL;
2479 2480

	/* None available, try to steal one or wait for a user to finish */
2481 2482 2483
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
		if (reg->obj->pin_count)
2484 2485
			continue;

2486 2487 2488 2489 2490 2491 2492 2493 2494
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2495 2496
	}

2497 2498
	if (avail == NULL)
		avail = first;
2499

2500
	return avail;
2501 2502
}

2503
/**
2504
 * i915_gem_object_get_fence - set up a fence reg for an object
2505
 * @obj: object to map through a fence reg
2506 2507
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2518
int
2519 2520 2521
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
			  struct intel_ring_buffer *pipelined,
			  bool interruptible)
2522
{
2523
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2524
	struct drm_i915_private *dev_priv = dev->dev_private;
2525
	struct drm_i915_fence_reg *reg;
2526
	int ret;
2527

2528 2529 2530
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2531
	/* Just update our place in the LRU if our fence is getting reused. */
2532 2533
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2534
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

		if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
			pipelined = NULL;

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
					ret = i915_do_wait_request(obj->base.dev,
								   reg->setup_seqno,
								   interruptible,
								   obj->last_fenced_ring);
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
			ret = i915_gem_object_flush_fence(obj,
							  pipelined,
							  interruptible);
			if (ret)
				return ret;
		} else if (obj->tiling_changed) {
			if (obj->fenced_gpu_access) {
2562 2563 2564 2565 2566 2567
				if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
					ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
								  0, obj->base.write_domain);
					if (ret)
						return ret;
				}
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

				obj->fenced_gpu_access = false;
			}
		}

		if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
			pipelined = NULL;
		BUG_ON(!pipelined && reg->setup_seqno);

		if (obj->tiling_changed) {
			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(dev, pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}
			goto update;
		}

2587 2588 2589
		return 0;
	}

2590 2591 2592
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
		return -ENOSPC;
2593

2594 2595
	ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
	if (ret)
2596
		return ret;
2597

2598 2599 2600 2601 2602 2603 2604 2605 2606
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

		ret = i915_gem_object_flush_fence(old,
2607
						  pipelined,
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
						  interruptible);
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
			pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2625

2626
	reg->obj = obj;
2627 2628 2629
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2630

2631 2632 2633 2634 2635 2636
	reg->setup_seqno =
		pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2637 2638
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2639
		ret = sandybridge_write_fence_reg(obj, pipelined);
2640 2641 2642
		break;
	case 5:
	case 4:
2643
		ret = i965_write_fence_reg(obj, pipelined);
2644 2645
		break;
	case 3:
2646
		ret = i915_write_fence_reg(obj, pipelined);
2647 2648
		break;
	case 2:
2649
		ret = i830_write_fence_reg(obj, pipelined);
2650 2651
		break;
	}
2652

2653
	return ret;
2654 2655 2656 2657 2658 2659 2660
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2661
 * data structures in dev_priv and obj.
2662 2663
 */
static void
2664 2665
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2666
{
J
Jesse Barnes 已提交
2667
	drm_i915_private_t *dev_priv = dev->dev_private;
2668
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2669

2670 2671
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2672
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2673 2674 2675
		break;
	case 5:
	case 4:
2676
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2677 2678
		break;
	case 3:
2679 2680
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2681
		else
2682
	case 2:
2683
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2684 2685

		I915_WRITE(fence_reg, 0);
2686
		break;
2687
	}
2688

2689
	list_del_init(&reg->lru_list);
2690 2691
	reg->obj = NULL;
	reg->setup_seqno = 0;
2692 2693
}

2694 2695 2696 2697
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2698
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2699
			    unsigned alignment,
2700
			    bool map_and_fenceable)
2701
{
2702
	struct drm_device *dev = obj->base.dev;
2703 2704
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2705
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2706
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2707
	bool mappable, fenceable;
2708
	int ret;
2709

2710
	if (obj->madv != I915_MADV_WILLNEED) {
2711 2712 2713 2714
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2715 2716 2717
	fence_size = i915_gem_get_gtt_size(obj);
	fence_alignment = i915_gem_get_gtt_alignment(obj);
	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2718

2719
	if (alignment == 0)
2720 2721
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2722
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2723 2724 2725 2726
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2727
	size = map_and_fenceable ? fence_size : obj->base.size;
2728

2729 2730 2731
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2732
	if (obj->base.size >
2733
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2734 2735 2736 2737
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2738
 search_free:
2739
	if (map_and_fenceable)
2740 2741
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2742
						    size, alignment, 0,
2743 2744 2745 2746
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2747
						size, alignment, 0);
2748 2749

	if (free_space != NULL) {
2750
		if (map_and_fenceable)
2751
			obj->gtt_space =
2752
				drm_mm_get_block_range_generic(free_space,
2753
							       size, alignment, 0,
2754 2755 2756
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2757
			obj->gtt_space =
2758
				drm_mm_get_block(free_space, size, alignment);
2759
	}
2760
	if (obj->gtt_space == NULL) {
2761 2762 2763
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2764 2765
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2766
		if (ret)
2767
			return ret;
2768

2769 2770 2771
		goto search_free;
	}

2772
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2773
	if (ret) {
2774 2775
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2776 2777

		if (ret == -ENOMEM) {
2778 2779
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2780 2781
			if (ret) {
				/* now try to shrink everyone else */
2782 2783 2784
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2785 2786
				}

2787
				return -ENOMEM;
2788 2789 2790 2791 2792
			}

			goto search_free;
		}

2793 2794 2795
		return ret;
	}

2796 2797
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2798
		i915_gem_object_put_pages_gtt(obj);
2799 2800
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2801

2802
		if (i915_gem_evict_everything(dev, false))
2803 2804 2805
			return ret;

		goto search_free;
2806 2807
	}

2808
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2809
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2810

2811 2812 2813 2814
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2815 2816
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2817

2818
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2819

2820
	fenceable =
2821 2822
		obj->gtt_space->size == fence_size &&
		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2823

2824
	mappable =
2825
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2826

2827
	obj->map_and_fenceable = mappable && fenceable;
2828

2829
	trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
2830 2831 2832 2833
	return 0;
}

void
2834
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2835 2836 2837 2838 2839
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2840
	if (obj->pages == NULL)
2841 2842
		return;

C
Chris Wilson 已提交
2843
	trace_i915_gem_object_clflush(obj);
2844

2845
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2846 2847
}

2848
/** Flushes any GPU write domain for the object if it's dirty. */
2849
static int
2850
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2851
{
2852
	struct drm_device *dev = obj->base.dev;
2853

2854
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2855
		return 0;
2856 2857

	/* Queue the GPU write cache flushing we need. */
2858
	return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2859 2860 2861 2862
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2863
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2864
{
C
Chris Wilson 已提交
2865 2866
	uint32_t old_write_domain;

2867
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2868 2869
		return;

2870
	/* No actual flushing is required for the GTT write domain.  Writes
2871 2872
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2873 2874 2875 2876
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2877
	 */
2878 2879
	wmb();

2880 2881
	i915_gem_release_mmap(obj);

2882 2883
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2884 2885

	trace_i915_gem_object_change_domain(obj,
2886
					    obj->base.read_domains,
C
Chris Wilson 已提交
2887
					    old_write_domain);
2888 2889 2890 2891
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2892
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2893
{
C
Chris Wilson 已提交
2894
	uint32_t old_write_domain;
2895

2896
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2897 2898 2899
		return;

	i915_gem_clflush_object(obj);
2900
	intel_gtt_chipset_flush();
2901 2902
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2903 2904

	trace_i915_gem_object_change_domain(obj,
2905
					    obj->base.read_domains,
C
Chris Wilson 已提交
2906
					    old_write_domain);
2907 2908
}

2909 2910 2911 2912 2913 2914
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2915
int
2916
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2917
{
C
Chris Wilson 已提交
2918
	uint32_t old_write_domain, old_read_domains;
2919
	int ret;
2920

2921
	/* Not valid to be called on unbound objects. */
2922
	if (obj->gtt_space == NULL)
2923 2924
		return -EINVAL;

2925 2926 2927 2928
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2929 2930 2931 2932 2933
	if (obj->pending_gpu_write || write) {
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}
2934

2935
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2936

2937 2938
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2939

2940 2941 2942
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2943 2944
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2945
	if (write) {
2946 2947 2948
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2949 2950
	}

C
Chris Wilson 已提交
2951 2952 2953 2954
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2955 2956 2957
	return 0;
}

2958 2959 2960 2961 2962
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2963
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
2964
				     struct intel_ring_buffer *pipelined)
2965
{
2966
	uint32_t old_read_domains;
2967 2968 2969
	int ret;

	/* Not valid to be called on unbound objects. */
2970
	if (obj->gtt_space == NULL)
2971 2972
		return -EINVAL;

2973 2974 2975 2976
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2977

2978
	/* Currently, we are always called from an non-interruptible context. */
2979
	if (pipelined != obj->ring) {
2980 2981
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
2982 2983 2984
			return ret;
	}

2985 2986
	i915_gem_object_flush_cpu_write_domain(obj);

2987 2988
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2989 2990 2991

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2992
					    obj->base.write_domain);
2993 2994 2995 2996

	return 0;
}

2997 2998 2999 3000
int
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
			  bool interruptible)
{
3001 3002
	int ret;

3003 3004 3005
	if (!obj->active)
		return 0;

3006 3007 3008 3009 3010 3011
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
		ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
					  0, obj->base.write_domain);
		if (ret)
			return ret;
	}
3012

3013
	return i915_gem_object_wait_rendering(obj, interruptible);
3014 3015
}

3016 3017 3018 3019 3020 3021 3022
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3023
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3024
{
C
Chris Wilson 已提交
3025
	uint32_t old_write_domain, old_read_domains;
3026 3027
	int ret;

3028 3029 3030 3031
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3032 3033
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
3034
		return ret;
3035

3036
	i915_gem_object_flush_gtt_write_domain(obj);
3037

3038 3039
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3040
	 */
3041
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3042

3043 3044
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3045

3046
	/* Flush the CPU cache if it's still invalid. */
3047
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3048 3049
		i915_gem_clflush_object(obj);

3050
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3051 3052 3053 3054 3055
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3056
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3057 3058 3059 3060 3061

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3062 3063
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3064
	}
3065

C
Chris Wilson 已提交
3066 3067 3068 3069
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3070 3071 3072
	return 0;
}

3073
/**
3074
 * Moves the object from a partially CPU read to a full one.
3075
 *
3076 3077
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3078
 */
3079
static void
3080
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3081
{
3082
	if (!obj->page_cpu_valid)
3083 3084 3085 3086
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3087
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3088 3089
		int i;

3090 3091
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3092
				continue;
3093
			drm_clflush_pages(obj->pages + i, 1);
3094 3095 3096 3097 3098 3099
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3100 3101
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3117
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3118 3119
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3120
	uint32_t old_read_domains;
3121
	int i, ret;
3122

3123
	if (offset == 0 && size == obj->base.size)
3124
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3125

3126 3127 3128 3129
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3130 3131
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
3132
		return ret;
3133

3134 3135 3136
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3137 3138
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3139
		return 0;
3140

3141 3142 3143
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3144 3145 3146 3147
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3148
			return -ENOMEM;
3149 3150
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3151 3152 3153 3154

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3155 3156
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3157
		if (obj->page_cpu_valid[i])
3158 3159
			continue;

3160
		drm_clflush_pages(obj->pages + i, 1);
3161

3162
		obj->page_cpu_valid[i] = 1;
3163 3164
	}

3165 3166 3167
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3168
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3169

3170 3171
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3172

C
Chris Wilson 已提交
3173 3174
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3175
					    obj->base.write_domain);
C
Chris Wilson 已提交
3176

3177 3178 3179 3180 3181 3182
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3183 3184 3185 3186
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3187 3188 3189
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3190
static int
3191
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3192
{
3193 3194
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3195
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3196 3197 3198 3199
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3200

3201 3202 3203
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3204
	spin_lock(&file_priv->mm.lock);
3205
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3206 3207
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3208

3209 3210
		ring = request->ring;
		seqno = request->seqno;
3211
	}
3212
	spin_unlock(&file_priv->mm.lock);
3213

3214 3215
	if (seqno == 0)
		return 0;
3216

3217
	ret = 0;
3218
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3219 3220 3221 3222 3223
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3224 3225 3226 3227 3228
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3229

3230 3231 3232
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
		}
3233 3234
	}

3235 3236
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3237 3238 3239 3240

	return ret;
}

3241
int
3242 3243
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3244
		    bool map_and_fenceable)
3245
{
3246
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3247
	struct drm_i915_private *dev_priv = dev->dev_private;
3248 3249
	int ret;

3250
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3251
	WARN_ON(i915_verify_lists(dev));
3252

3253 3254 3255 3256
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3257
			     "bo is already pinned with incorrect alignment:"
3258 3259
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3260
			     obj->gtt_offset, alignment,
3261
			     map_and_fenceable,
3262
			     obj->map_and_fenceable);
3263 3264 3265 3266 3267 3268
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3269
	if (obj->gtt_space == NULL) {
3270
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3271
						  map_and_fenceable);
3272
		if (ret)
3273
			return ret;
3274
	}
J
Jesse Barnes 已提交
3275

3276 3277 3278
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3279
				       &dev_priv->mm.pinned_list);
3280
	}
3281
	obj->pin_mappable |= map_and_fenceable;
3282

3283
	WARN_ON(i915_verify_lists(dev));
3284 3285 3286 3287
	return 0;
}

void
3288
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3289
{
3290
	struct drm_device *dev = obj->base.dev;
3291 3292
	drm_i915_private_t *dev_priv = dev->dev_private;

3293
	WARN_ON(i915_verify_lists(dev));
3294 3295
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3296

3297 3298 3299
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3300
				       &dev_priv->mm.inactive_list);
3301
		obj->pin_mappable = false;
3302
	}
3303
	WARN_ON(i915_verify_lists(dev));
3304 3305 3306 3307
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3308
		   struct drm_file *file)
3309 3310
{
	struct drm_i915_gem_pin *args = data;
3311
	struct drm_i915_gem_object *obj;
3312 3313
	int ret;

3314 3315 3316
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3317

3318
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3319
	if (obj == NULL) {
3320 3321
		ret = -ENOENT;
		goto unlock;
3322 3323
	}

3324
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3325
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3326 3327
		ret = -EINVAL;
		goto out;
3328 3329
	}

3330
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3331 3332
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3333 3334
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3335 3336
	}

3337 3338 3339
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3340
		ret = i915_gem_object_pin(obj, args->alignment, true);
3341 3342
		if (ret)
			goto out;
3343 3344 3345 3346 3347
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3348
	i915_gem_object_flush_cpu_write_domain(obj);
3349
	args->offset = obj->gtt_offset;
3350
out:
3351
	drm_gem_object_unreference(&obj->base);
3352
unlock:
3353
	mutex_unlock(&dev->struct_mutex);
3354
	return ret;
3355 3356 3357 3358
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3359
		     struct drm_file *file)
3360 3361
{
	struct drm_i915_gem_pin *args = data;
3362
	struct drm_i915_gem_object *obj;
3363
	int ret;
3364

3365 3366 3367
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3368

3369
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3370
	if (obj == NULL) {
3371 3372
		ret = -ENOENT;
		goto unlock;
3373
	}
3374

3375
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3376 3377
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3378 3379
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3380
	}
3381 3382 3383
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3384 3385
		i915_gem_object_unpin(obj);
	}
3386

3387
out:
3388
	drm_gem_object_unreference(&obj->base);
3389
unlock:
3390
	mutex_unlock(&dev->struct_mutex);
3391
	return ret;
3392 3393 3394 3395
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3396
		    struct drm_file *file)
3397 3398
{
	struct drm_i915_gem_busy *args = data;
3399
	struct drm_i915_gem_object *obj;
3400 3401
	int ret;

3402
	ret = i915_mutex_lock_interruptible(dev);
3403
	if (ret)
3404
		return ret;
3405

3406
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3407
	if (obj == NULL) {
3408 3409
		ret = -ENOENT;
		goto unlock;
3410
	}
3411

3412 3413 3414 3415
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3416
	 */
3417
	args->busy = obj->active;
3418 3419 3420 3421 3422 3423
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3424
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3425 3426
			ret = i915_gem_flush_ring(dev, obj->ring,
						  0, obj->base.write_domain);
3427 3428 3429 3430
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3431 3432 3433
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3434 3435 3436 3437 3438 3439
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (request)
				ret = i915_add_request(dev,
						       NULL, request,
						       obj->ring);
			else
3440 3441
				ret = -ENOMEM;
		}
3442 3443 3444 3445 3446 3447

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
3448
		i915_gem_retire_requests_ring(dev, obj->ring);
3449

3450
		args->busy = obj->active;
3451
	}
3452

3453
	drm_gem_object_unreference(&obj->base);
3454
unlock:
3455
	mutex_unlock(&dev->struct_mutex);
3456
	return ret;
3457 3458 3459 3460 3461 3462 3463 3464 3465
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

3466 3467 3468 3469 3470
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3471
	struct drm_i915_gem_object *obj;
3472
	int ret;
3473 3474 3475 3476 3477 3478 3479 3480 3481

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3482 3483 3484 3485
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3486
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3487
	if (obj == NULL) {
3488 3489
		ret = -ENOENT;
		goto unlock;
3490 3491
	}

3492
	if (obj->pin_count) {
3493 3494
		ret = -EINVAL;
		goto out;
3495 3496
	}

3497 3498
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3499

3500
	/* if the object is no longer bound, discard its backing storage */
3501 3502
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3503 3504
		i915_gem_object_truncate(obj);

3505
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3506

3507
out:
3508
	drm_gem_object_unreference(&obj->base);
3509
unlock:
3510
	mutex_unlock(&dev->struct_mutex);
3511
	return ret;
3512 3513
}

3514 3515
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3516
{
3517
	struct drm_i915_private *dev_priv = dev->dev_private;
3518
	struct drm_i915_gem_object *obj;
3519

3520 3521 3522
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3523

3524 3525 3526 3527
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3528

3529 3530
	i915_gem_info_add_obj(dev_priv, size);

3531 3532
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3533

3534
	obj->agp_type = AGP_USER_MEMORY;
3535
	obj->base.driver_private = NULL;
3536
	obj->fence_reg = I915_FENCE_REG_NONE;
3537
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3538
	INIT_LIST_HEAD(&obj->gtt_list);
3539
	INIT_LIST_HEAD(&obj->ring_list);
3540
	INIT_LIST_HEAD(&obj->exec_list);
3541 3542
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3543 3544
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3545

3546
	return obj;
3547 3548 3549 3550 3551
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3552

3553 3554 3555
	return 0;
}

3556
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3557
{
3558
	struct drm_device *dev = obj->base.dev;
3559 3560
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3561

3562 3563
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3564
		list_move(&obj->mm_list,
3565 3566 3567
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3568

3569
	if (obj->base.map_list.map)
3570
		i915_gem_free_mmap_offset(obj);
3571

3572 3573
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3574

3575 3576 3577
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3578 3579
}

3580
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3581
{
3582 3583
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3584 3585 3586

	trace_i915_gem_object_destroy(obj);

3587
	while (obj->pin_count > 0)
3588 3589
		i915_gem_object_unpin(obj);

3590
	if (obj->phys_obj)
3591 3592 3593 3594 3595
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3596 3597 3598 3599 3600
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3601

3602
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3603

3604
	if (dev_priv->mm.suspended) {
3605 3606
		mutex_unlock(&dev->struct_mutex);
		return 0;
3607 3608
	}

3609
	ret = i915_gpu_idle(dev);
3610 3611
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3612
		return ret;
3613
	}
3614

3615 3616
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3617
		ret = i915_gem_evict_inactive(dev, false);
3618 3619 3620 3621 3622 3623
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3624 3625
	i915_gem_reset_fences(dev);

3626 3627 3628 3629 3630
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3631
	del_timer_sync(&dev_priv->hangcheck_timer);
3632 3633

	i915_kernel_lost_context(dev);
3634
	i915_gem_cleanup_ringbuffer(dev);
3635

3636 3637
	mutex_unlock(&dev->struct_mutex);

3638 3639 3640
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3641 3642 3643
	return 0;
}

3644 3645 3646 3647 3648
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3649

3650
	ret = intel_init_render_ring_buffer(dev);
3651
	if (ret)
3652
		return ret;
3653 3654

	if (HAS_BSD(dev)) {
3655
		ret = intel_init_bsd_ring_buffer(dev);
3656 3657
		if (ret)
			goto cleanup_render_ring;
3658
	}
3659

3660 3661 3662 3663 3664 3665
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3666 3667
	dev_priv->next_seqno = 1;

3668 3669
	return 0;

3670
cleanup_bsd_ring:
3671
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3672
cleanup_render_ring:
3673
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3674 3675 3676 3677 3678 3679 3680
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3681
	int i;
3682

3683 3684
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3685 3686
}

3687 3688 3689 3690 3691
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3692
	int ret, i;
3693

J
Jesse Barnes 已提交
3694 3695 3696
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3697
	if (atomic_read(&dev_priv->mm.wedged)) {
3698
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3699
		atomic_set(&dev_priv->mm.wedged, 0);
3700 3701 3702
	}

	mutex_lock(&dev->struct_mutex);
3703 3704 3705
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3706 3707
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3708
		return ret;
3709
	}
3710

3711
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3712 3713
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3714 3715 3716 3717
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3718
	mutex_unlock(&dev->struct_mutex);
3719

3720 3721 3722
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3723

3724
	return 0;
3725 3726 3727 3728 3729 3730 3731 3732

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3733 3734 3735 3736 3737 3738
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3739 3740 3741
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3742
	drm_irq_uninstall(dev);
3743
	return i915_gem_idle(dev);
3744 3745 3746 3747 3748 3749 3750
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3751 3752 3753
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3754 3755 3756
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3757 3758
}

3759 3760 3761 3762 3763 3764 3765 3766
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3767 3768 3769
void
i915_gem_load(struct drm_device *dev)
{
3770
	int i;
3771 3772
	drm_i915_private_t *dev_priv = dev->dev_private;

3773
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3774 3775
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3776
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3777
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3778
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3779
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3780 3781
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3782 3783
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3784 3785
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3786
	init_completion(&dev_priv->error_completion);
3787

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3798 3799
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3800
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3801 3802
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3803

3804
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3805 3806 3807 3808
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3809
	/* Initialize fence registers to zero */
3810 3811 3812 3813 3814 3815 3816
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
3817 3818
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3819 3820
		break;
	case 3:
3821 3822 3823
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3824 3825 3826 3827
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
3828
	}
3829
	i915_gem_detect_bit_6_swizzle(dev);
3830
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3831 3832 3833 3834

	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3835
}
3836 3837 3838 3839 3840

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3841 3842
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3843 3844 3845 3846 3847 3848 3849 3850
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3851
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3852 3853 3854 3855 3856
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3857
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3870
	kfree(phys_obj);
3871 3872 3873
	return ret;
}

3874
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3899
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3900 3901 3902 3903
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3904
				 struct drm_i915_gem_object *obj)
3905
{
3906
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3907
	char *vaddr;
3908 3909 3910
	int i;
	int page_count;

3911
	if (!obj->phys_obj)
3912
		return;
3913
	vaddr = obj->phys_obj->handle->vaddr;
3914

3915
	page_count = obj->base.size / PAGE_SIZE;
3916
	for (i = 0; i < page_count; i++) {
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3930
	}
3931
	intel_gtt_chipset_flush();
3932

3933 3934
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3935 3936 3937 3938
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3939
			    struct drm_i915_gem_object *obj,
3940 3941
			    int id,
			    int align)
3942
{
3943
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3944 3945 3946 3947 3948 3949 3950 3951
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3952 3953
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3954 3955 3956 3957 3958 3959 3960
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3961
						obj->base.size, align);
3962
		if (ret) {
3963 3964
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3965
			return ret;
3966 3967 3968 3969
		}
	}

	/* bind to the object */
3970 3971
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3972

3973
	page_count = obj->base.size / PAGE_SIZE;
3974 3975

	for (i = 0; i < page_count; i++) {
3976 3977 3978 3979 3980 3981 3982
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
3983

3984
		src = kmap_atomic(page);
3985
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3986
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
3987
		kunmap_atomic(src);
3988

3989 3990 3991
		mark_page_accessed(page);
		page_cache_release(page);
	}
3992

3993 3994 3995 3996
	return 0;
}

static int
3997 3998
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
3999 4000 4001
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4002
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4003
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4004

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4018

4019
	intel_gtt_chipset_flush();
4020 4021
	return 0;
}
4022

4023
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4024
{
4025
	struct drm_i915_file_private *file_priv = file->driver_priv;
4026 4027 4028 4029 4030

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4031
	spin_lock(&file_priv->mm.lock);
4032 4033 4034 4035 4036 4037 4038 4039 4040
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4041
	spin_unlock(&file_priv->mm.lock);
4042
}
4043

4044 4045 4046 4047 4048 4049 4050
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4051
		      list_empty(&dev_priv->mm.active_list);
4052 4053 4054 4055

	return !lists_empty;
}

4056
static int
4057 4058 4059
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
4060
{
4061 4062 4063 4064 4065 4066 4067 4068 4069
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4070
		return 0;
4071 4072 4073

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4074 4075 4076 4077 4078 4079 4080
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4081 4082
	}

4083
rescan:
4084
	/* first scan for clean buffers */
4085
	i915_gem_retire_requests(dev);
4086

4087 4088 4089 4090
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4091 4092
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4093
				break;
4094 4095 4096 4097
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4098 4099 4100 4101
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4102 4103
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4104
			nr_to_scan--;
4105
		else
4106 4107 4108 4109
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4110 4111 4112 4113 4114 4115
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4116
		if (i915_gpu_idle(dev) == 0)
4117 4118
			goto rescan;
	}
4119 4120
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4121
}