huge_memory.c 82.1 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11
#include <linux/mm.h>
#include <linux/sched.h>
12
#include <linux/sched/coredump.h>
13
#include <linux/sched/numa_balancing.h>
14 15 16 17 18
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
19
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
20
#include <linux/mm_inline.h>
21
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
22
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
23
#include <linux/khugepaged.h>
24
#include <linux/freezer.h>
25
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
26
#include <linux/mman.h>
27
#include <linux/memremap.h>
R
Ralf Baechle 已提交
28
#include <linux/pagemap.h>
29
#include <linux/debugfs.h>
30
#include <linux/migrate.h>
31
#include <linux/hashtable.h>
32
#include <linux/userfaultfd_k.h>
33
#include <linux/page_idle.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/oom.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65
static struct page *get_huge_zero_page(void)
66 67 68 69
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70
		return READ_ONCE(huge_zero_page);
71 72

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73
			HPAGE_PMD_ORDER);
74 75
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76
		return NULL;
77 78
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
79
	preempt_disable();
80
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81
		preempt_enable();
82
		__free_pages(zero_page, compound_order(zero_page));
83 84 85 86 87 88
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
89
	return READ_ONCE(huge_zero_page);
90 91
}

92
static void put_huge_zero_page(void)
93
{
94 95 96 97 98
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 100
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

121 122
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
123
{
124 125 126
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
127

128 129 130
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
131
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 133
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
134
		__free_pages(zero_page, compound_order(zero_page));
135
		return HPAGE_PMD_NR;
136 137 138
	}

	return 0;
139 140
}

141
static struct shrinker huge_zero_page_shrinker = {
142 143
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
144 145 146
	.seeks = DEFAULT_SEEKS,
};

147 148 149 150
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
151 152 153 154 155 156
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
157
}
158

159 160 161 162
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
163
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
179 180

	if (ret > 0) {
181
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
182 183 184 185
		if (err)
			ret = err;
	}
	return ret;
186 187 188 189
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

190
ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 192 193
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
194 195
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
196
}
197

198
ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 200 201 202
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
203 204 205 206 207 208 209 210 211 212
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
213
		set_bit(flag, &transparent_hugepage_flags);
214
	else
215 216 217 218 219 220 221 222
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
223
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 227 228 229 230 231
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232
}
233

234 235 236 237
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
238 239 240 241 242 243 244 245 246 247 248 249
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 251 252 253 254 255
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
272 273 274 275
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

276 277 278
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
279
	return single_hugepage_flag_show(kobj, attr, buf,
280 281 282 283 284
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
285
	return single_hugepage_flag_store(kobj, attr, buf, count,
286 287 288 289
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 291 292 293 294 295 296 297 298

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

299 300 301 302
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
303
	return single_hugepage_flag_show(kobj, attr, buf,
304 305 306 307 308 309
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
310
	return single_hugepage_flag_store(kobj, attr, buf, count,
311 312 313 314 315 316 317 318 319
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
320
	&use_zero_page_attr.attr,
321
	&hpage_pmd_size_attr.attr,
322
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 324
	&shmem_enabled_attr.attr,
#endif
325 326 327 328 329 330
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

331
static const struct attribute_group hugepage_attr_group = {
332
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
333 334
};

S
Shaohua Li 已提交
335
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 337 338
{
	int err;

S
Shaohua Li 已提交
339 340
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
341
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
342
		return -ENOMEM;
A
Andrea Arcangeli 已提交
343 344
	}

S
Shaohua Li 已提交
345
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
346
	if (err) {
347
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
348
		goto delete_obj;
A
Andrea Arcangeli 已提交
349 350
	}

S
Shaohua Li 已提交
351
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
352
	if (err) {
353
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
354
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
355
	}
S
Shaohua Li 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

393 394 395 396 397 398 399 400 401 402
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
403 404
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
405
		goto err_sysfs;
A
Andrea Arcangeli 已提交
406

407
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
408
	if (err)
409
		goto err_slab;
A
Andrea Arcangeli 已提交
410

411 412 413
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
414 415 416
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
417

418 419 420 421 422
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
423
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424
		transparent_hugepage_flags = 0;
425 426
		return 0;
	}
427

428
	err = start_stop_khugepaged();
429 430
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
431

S
Shaohua Li 已提交
432
	return 0;
433
err_khugepaged:
434 435
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
436 437
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
438
	khugepaged_destroy();
439
err_slab:
S
Shaohua Li 已提交
440
	hugepage_exit_sysfs(hugepage_kobj);
441
err_sysfs:
A
Andrea Arcangeli 已提交
442
	return err;
443
}
444
subsys_initcall(hugepage_init);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
472
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 474 475 476
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

477
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478
{
479
	if (likely(vma->vm_flags & VM_WRITE))
480 481 482 483
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

484 485
static inline struct list_head *page_deferred_list(struct page *page)
{
M
Matthew Wilcox 已提交
486 487
	/* ->lru in the tail pages is occupied by compound_head. */
	return &page[2].deferred_list;
488 489 490 491 492 493 494 495 496 497 498 499 500
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

544 545
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
546
{
J
Jan Kara 已提交
547
	struct vm_area_struct *vma = vmf->vma;
548
	struct mem_cgroup *memcg;
549
	pgtable_t pgtable;
J
Jan Kara 已提交
550
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551
	vm_fault_t ret = 0;
552

553
	VM_BUG_ON_PAGE(!PageCompound(page), page);
554

555
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
556 557 558 559
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
560

K
Kirill A. Shutemov 已提交
561
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
562
	if (unlikely(!pgtable)) {
563 564
		ret = VM_FAULT_OOM;
		goto release;
565
	}
566

567
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
568 569 570 571 572
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
573 574
	__SetPageUptodate(page);

J
Jan Kara 已提交
575 576
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
577
		goto unlock_release;
578 579
	} else {
		pmd_t entry;
580

581 582 583 584
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

585 586
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
587
			vm_fault_t ret2;
588

J
Jan Kara 已提交
589
			spin_unlock(vmf->ptl);
590
			mem_cgroup_cancel_charge(page, memcg, true);
591
			put_page(page);
K
Kirill A. Shutemov 已提交
592
			pte_free(vma->vm_mm, pgtable);
593 594 595
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
596 597
		}

598
		entry = mk_huge_pmd(page, vma->vm_page_prot);
599
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600
		page_add_new_anon_rmap(page, vma, haddr, true);
601
		mem_cgroup_commit_charge(page, memcg, false, true);
602
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
603 604
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
605
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
607
		spin_unlock(vmf->ptl);
608
		count_vm_event(THP_FAULT_ALLOC);
609 610
	}

611
	return 0;
612 613 614 615 616 617 618 619 620
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

621 622
}

623
/*
624 625 626 627 628 629 630
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
631 632 633
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
634
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
635

636
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
637
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
638 639 640 641 642 643 644 645
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     __GFP_KSWAPD_RECLAIM);
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     0);
646
	return GFP_TRANSHUGE_LIGHT;
647 648
}

649
/* Caller must hold page table lock. */
650
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
651
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
652
		struct page *zero_page)
653 654
{
	pmd_t entry;
A
Andrew Morton 已提交
655 656
	if (!pmd_none(*pmd))
		return false;
657
	entry = mk_pmd(zero_page, vma->vm_page_prot);
658
	entry = pmd_mkhuge(entry);
659 660
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
661
	set_pmd_at(mm, haddr, pmd, entry);
662
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
663
	return true;
664 665
}

666
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
667
{
J
Jan Kara 已提交
668
	struct vm_area_struct *vma = vmf->vma;
669
	gfp_t gfp;
670
	struct page *page;
J
Jan Kara 已提交
671
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
672

673
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
674
		return VM_FAULT_FALLBACK;
675 676
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
677
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
678
		return VM_FAULT_OOM;
J
Jan Kara 已提交
679
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
680
			!mm_forbids_zeropage(vma->vm_mm) &&
681 682 683 684
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
685
		vm_fault_t ret;
K
Kirill A. Shutemov 已提交
686
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
687
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
688
			return VM_FAULT_OOM;
689
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
690
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
691
			pte_free(vma->vm_mm, pgtable);
692
			count_vm_event(THP_FAULT_FALLBACK);
693
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
694
		}
J
Jan Kara 已提交
695
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
696 697
		ret = 0;
		set = false;
J
Jan Kara 已提交
698
		if (pmd_none(*vmf->pmd)) {
699 700 701 702
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
703 704
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
705 706
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
707
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
708 709
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
710 711 712
				set = true;
			}
		} else
J
Jan Kara 已提交
713
			spin_unlock(vmf->ptl);
714
		if (!set)
K
Kirill A. Shutemov 已提交
715
			pte_free(vma->vm_mm, pgtable);
716
		return ret;
717
	}
718
	gfp = alloc_hugepage_direct_gfpmask(vma);
719
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
720 721
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
722
		return VM_FAULT_FALLBACK;
723
	}
724
	prep_transhuge_page(page);
J
Jan Kara 已提交
725
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
726 727
}

728
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
729 730
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
731 732 733 734 735 736
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

752 753 754
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
755
	if (write) {
756 757
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
758
	}
759 760 761

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
762
		mm_inc_nr_ptes(mm);
763
		pgtable = NULL;
764 765
	}

766 767
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
768 769

out_unlock:
M
Matthew Wilcox 已提交
770
	spin_unlock(ptl);
771 772
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
773 774
}

775
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
776
{
777 778
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
M
Matthew Wilcox 已提交
779
	pgprot_t pgprot = vma->vm_page_prot;
780
	pgtable_t pgtable = NULL;
781

M
Matthew Wilcox 已提交
782 783 784 785 786
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
787 788
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
789 790 791 792 793 794
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
795

796 797 798 799 800 801
	if (arch_needs_pgtable_deposit()) {
		pgtable = pte_alloc_one(vma->vm_mm, addr);
		if (!pgtable)
			return VM_FAULT_OOM;
	}

802 803
	track_pfn_insert(vma, &pgprot, pfn);

804
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
805
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
806
}
807
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
808

809
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
810
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
811
{
812
	if (likely(vma->vm_flags & VM_WRITE))
813 814 815 816 817 818 819 820 821 822 823 824
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
825 826 827 828 829 830 831 832 833 834 835 836 837 838
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

839 840 841 842
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
843 844
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
845 846 847
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
848 849

out_unlock:
850 851 852
	spin_unlock(ptl);
}

853
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
854
{
855 856
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;
857
	pgprot_t pgprot = vma->vm_page_prot;
858

859 860 861 862 863
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
864 865
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
866 867 868 869 870 871 872 873 874
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

875
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
876 877 878 879 880
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

881
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
882
		pmd_t *pmd, int flags)
883 884 885
{
	pmd_t _pmd;

886 887 888
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
889
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
890
				pmd, _pmd, flags & FOLL_WRITE))
891 892 893 894 895 896 897 898 899 900 901 902 903
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

904 905 906 907 908 909
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

910
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
911 912 913 914 915 916 917 918
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
919
		touch_pmd(vma, addr, pmd, flags);
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

939 940 941 942
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
943
	spinlock_t *dst_ptl, *src_ptl;
944 945
	struct page *src_page;
	pmd_t pmd;
946
	pgtable_t pgtable = NULL;
947
	int ret = -ENOMEM;
948

949 950 951 952 953 954 955
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
956

957 958 959
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
960 961 962

	ret = -EAGAIN;
	pmd = *src_pmd;
963 964 965 966 967 968 969 970 971

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
972 973
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
974 975
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
976
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
977
		mm_inc_nr_ptes(dst_mm);
978
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
979 980 981 982 983 984
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

985
	if (unlikely(!pmd_trans_huge(pmd))) {
986 987 988
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
989
	/*
990
	 * When page table lock is held, the huge zero pmd should not be
991 992 993 994
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
995
		struct page *zero_page;
996 997 998 999 1000
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1001
		zero_page = mm_get_huge_zero_page(dst_mm);
1002
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1003
				zero_page);
1004 1005 1006
		ret = 0;
		goto out_unlock;
	}
1007

1008 1009 1010 1011 1012
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1013
	mm_inc_nr_ptes(dst_mm);
1014
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1015 1016 1017 1018 1019 1020 1021

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1022 1023
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1024 1025 1026 1027
out:
	return ret;
}

1028 1029
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1030
		pud_t *pud, int flags)
1031 1032 1033
{
	pud_t _pud;

1034 1035 1036
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1037
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1038
				pud, _pud, flags & FOLL_WRITE))
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, int flags)
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1052
	if (flags & FOLL_WRITE && !pud_write(*pud))
1053 1054 1055 1056 1057 1058 1059 1060
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1061
		touch_pud(vma, addr, pud, flags);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1140
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1141 1142 1143
{
	pmd_t entry;
	unsigned long haddr;
1144
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1145

J
Jan Kara 已提交
1146 1147
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1148 1149 1150
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1151 1152
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1153
	haddr = vmf->address & HPAGE_PMD_MASK;
1154
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1155
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1156 1157

unlock:
J
Jan Kara 已提交
1158
	spin_unlock(vmf->ptl);
1159 1160
}

1161 1162
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1163
{
J
Jan Kara 已提交
1164 1165
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1166
	struct mem_cgroup *memcg;
1167 1168
	pgtable_t pgtable;
	pmd_t _pmd;
1169 1170
	int i;
	vm_fault_t ret = 0;
1171
	struct page **pages;
1172 1173
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1174

1175 1176
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1177 1178 1179 1180 1181 1182
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1183
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1184
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1185
		if (unlikely(!pages[i] ||
1186
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
K
Kirill A. Shutemov 已提交
1187
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1188
			if (pages[i])
1189
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1190
			while (--i >= 0) {
1191 1192
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1193 1194
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1195 1196
				put_page(pages[i]);
			}
1197 1198 1199 1200
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1201
		set_page_private(pages[i], (unsigned long)memcg);
1202 1203 1204 1205
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1206
				   haddr + PAGE_SIZE * i, vma);
1207 1208 1209 1210
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1211 1212
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1213
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1214

J
Jan Kara 已提交
1215 1216
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1217
		goto out_free_pages;
1218
	VM_BUG_ON_PAGE(!PageHead(page), page);
1219

1220 1221 1222 1223 1224 1225
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1226
	 * See Documentation/vm/mmu_notifier.rst
1227
	 */
J
Jan Kara 已提交
1228
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1229

J
Jan Kara 已提交
1230
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1231
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1232 1233

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1234
		pte_t entry;
1235 1236
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1237 1238
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1239
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1240
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1241
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1242 1243 1244 1245
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1246 1247 1248 1249
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1250
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1251
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1252
	spin_unlock(vmf->ptl);
1253

1254 1255 1256 1257 1258 1259
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
						mmun_end);
1260

1261 1262 1263 1264 1265 1266 1267
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1268
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1269
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1270
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1271 1272
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1273
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1274
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1275
	}
1276 1277 1278 1279
	kfree(pages);
	goto out;
}

1280
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1281
{
J
Jan Kara 已提交
1282
	struct vm_area_struct *vma = vmf->vma;
1283
	struct page *page = NULL, *new_page;
1284
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1285
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1286 1287
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1288
	gfp_t huge_gfp;			/* for allocation and charge */
1289
	vm_fault_t ret = 0;
1290

J
Jan Kara 已提交
1291
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1292
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1293 1294
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1295 1296
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1297 1298 1299
		goto out_unlock;

	page = pmd_page(orig_pmd);
1300
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1301 1302
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1303
	 * part.
1304
	 */
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1318 1319
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1320
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1321 1322
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1323
		ret |= VM_FAULT_WRITE;
1324
		unlock_page(page);
1325 1326
		goto out_unlock;
	}
1327
	unlock_page(page);
1328
	get_page(page);
J
Jan Kara 已提交
1329
	spin_unlock(vmf->ptl);
1330
alloc:
1331
	if (transparent_hugepage_enabled(vma) &&
1332
	    !transparent_hugepage_debug_cow()) {
1333
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1334
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1335
	} else
1336 1337
		new_page = NULL;

1338 1339 1340
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1341
		if (!page) {
J
Jan Kara 已提交
1342
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1343
			ret |= VM_FAULT_FALLBACK;
1344
		} else {
J
Jan Kara 已提交
1345
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1346
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1347
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1348 1349
				ret |= VM_FAULT_FALLBACK;
			}
1350
			put_page(page);
1351
		}
1352
		count_vm_event(THP_FAULT_FALLBACK);
1353 1354 1355
		goto out;
	}

1356
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1357
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1358
		put_page(new_page);
J
Jan Kara 已提交
1359
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1360
		if (page)
1361
			put_page(page);
1362
		ret |= VM_FAULT_FALLBACK;
1363
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1364 1365 1366
		goto out;
	}

1367 1368
	count_vm_event(THP_FAULT_ALLOC);

1369
	if (!page)
1370
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1371
	else
1372 1373
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1374 1375
	__SetPageUptodate(new_page);

1376 1377
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1378
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1379

J
Jan Kara 已提交
1380
	spin_lock(vmf->ptl);
1381
	if (page)
1382
		put_page(page);
J
Jan Kara 已提交
1383 1384
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1385
		mem_cgroup_cancel_charge(new_page, memcg, true);
1386
		put_page(new_page);
1387
		goto out_mn;
A
Andrea Arcangeli 已提交
1388
	} else {
1389
		pmd_t entry;
1390
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1391
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1392
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1393
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1394
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1395
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1396 1397
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1398
		if (!page) {
K
Kirill A. Shutemov 已提交
1399
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1400
		} else {
1401
			VM_BUG_ON_PAGE(!PageHead(page), page);
1402
			page_remove_rmap(page, true);
1403 1404
			put_page(page);
		}
1405 1406
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1407
	spin_unlock(vmf->ptl);
1408
out_mn:
1409 1410 1411 1412 1413 1414
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
					       mmun_end);
1415 1416
out:
	return ret;
1417
out_unlock:
J
Jan Kara 已提交
1418
	spin_unlock(vmf->ptl);
1419
	return ret;
1420 1421
}

1422 1423 1424 1425 1426 1427
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1428
	return pmd_write(pmd) ||
1429 1430 1431
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1432
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1433 1434 1435 1436
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1437
	struct mm_struct *mm = vma->vm_mm;
1438 1439
	struct page *page = NULL;

1440
	assert_spin_locked(pmd_lockptr(mm, pmd));
1441

1442
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1443 1444
		goto out;

1445 1446 1447 1448
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1449
	/* Full NUMA hinting faults to serialise migration in fault paths */
1450
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1451 1452
		goto out;

1453
	page = pmd_page(*pmd);
1454
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1455
	if (flags & FOLL_TOUCH)
1456
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1457
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1458 1459 1460 1461
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1462 1463
		 * For anon THP:
		 *
1464 1465 1466 1467 1468 1469 1470
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1471 1472 1473 1474 1475 1476
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1477
		 */
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1489
	}
1490
skip_mlock:
1491
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1492
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1493
	if (flags & FOLL_GET)
1494
		get_page(page);
1495 1496 1497 1498 1499

out:
	return page;
}

1500
/* NUMA hinting page fault entry point for trans huge pmds */
1501
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1502
{
J
Jan Kara 已提交
1503
	struct vm_area_struct *vma = vmf->vma;
1504
	struct anon_vma *anon_vma = NULL;
1505
	struct page *page;
J
Jan Kara 已提交
1506
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1507
	int page_nid = -1, this_nid = numa_node_id();
1508
	int target_nid, last_cpupid = -1;
1509 1510
	bool page_locked;
	bool migrated = false;
1511
	bool was_writable;
1512
	int flags = 0;
1513

J
Jan Kara 已提交
1514 1515
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1516 1517
		goto out_unlock;

1518 1519 1520 1521 1522
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1523 1524
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1525 1526
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1527
		spin_unlock(vmf->ptl);
1528
		wait_on_page_locked(page);
1529
		put_page(page);
1530 1531 1532
		goto out;
	}

1533
	page = pmd_page(pmd);
1534
	BUG_ON(is_huge_zero_page(page));
1535
	page_nid = page_to_nid(page);
1536
	last_cpupid = page_cpupid_last(page);
1537
	count_vm_numa_event(NUMA_HINT_FAULTS);
1538
	if (page_nid == this_nid) {
1539
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1540 1541
		flags |= TNF_FAULT_LOCAL;
	}
1542

1543
	/* See similar comment in do_numa_page for explanation */
1544
	if (!pmd_savedwrite(pmd))
1545 1546
		flags |= TNF_NO_GROUP;

1547 1548 1549 1550
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1551 1552 1553 1554
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1555
		if (page_locked)
1556
			goto clear_pmdnuma;
1557
	}
1558

1559
	/* Migration could have started since the pmd_trans_migrating check */
1560
	if (!page_locked) {
1561 1562 1563
		page_nid = -1;
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1564
		spin_unlock(vmf->ptl);
1565
		wait_on_page_locked(page);
1566
		put_page(page);
1567 1568 1569
		goto out;
	}

1570 1571 1572 1573
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1574
	get_page(page);
J
Jan Kara 已提交
1575
	spin_unlock(vmf->ptl);
1576
	anon_vma = page_lock_anon_vma_read(page);
1577

P
Peter Zijlstra 已提交
1578
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1579 1580
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1581 1582
		unlock_page(page);
		put_page(page);
1583
		page_nid = -1;
1584
		goto out_unlock;
1585
	}
1586

1587 1588 1589 1590 1591 1592 1593
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1594 1595 1596 1597 1598 1599
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1600 1601 1602 1603
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1604 1605
	 */
	if (mm_tlb_flush_pending(vma->vm_mm))
1606
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1607

1608 1609
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1610
	 * and access rights restored.
1611
	 */
J
Jan Kara 已提交
1612
	spin_unlock(vmf->ptl);
1613

K
Kirill A. Shutemov 已提交
1614
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1615
				vmf->pmd, pmd, vmf->address, page, target_nid);
1616 1617
	if (migrated) {
		flags |= TNF_MIGRATED;
1618
		page_nid = target_nid;
1619 1620
	} else
		flags |= TNF_MIGRATE_FAIL;
1621

1622
	goto out;
1623
clear_pmdnuma:
1624
	BUG_ON(!PageLocked(page));
1625
	was_writable = pmd_savedwrite(pmd);
1626
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1627
	pmd = pmd_mkyoung(pmd);
1628 1629
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1630 1631
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1632
	unlock_page(page);
1633
out_unlock:
J
Jan Kara 已提交
1634
	spin_unlock(vmf->ptl);
1635 1636 1637 1638 1639

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1640
	if (page_nid != -1)
J
Jan Kara 已提交
1641
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1642
				flags);
1643

1644 1645 1646
	return 0;
}

1647 1648 1649 1650 1651
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1652 1653 1654 1655 1656 1657
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1658
	bool ret = false;
1659

1660 1661
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1662 1663
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1664
		goto out_unlocked;
1665 1666

	orig_pmd = *pmd;
1667
	if (is_huge_zero_pmd(orig_pmd))
1668 1669
		goto out;

1670 1671 1672 1673 1674 1675
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1694
		split_huge_page(page);
1695
		unlock_page(page);
1696
		put_page(page);
1697 1698 1699 1700 1701 1702 1703 1704
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1705
		pmdp_invalidate(vma, addr, pmd);
1706 1707 1708 1709 1710 1711
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1712 1713

	mark_page_lazyfree(page);
1714
	ret = true;
1715 1716 1717 1718 1719 1720
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1721 1722 1723 1724 1725 1726
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1727
	mm_dec_nr_ptes(mm);
1728 1729
}

1730
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1731
		 pmd_t *pmd, unsigned long addr)
1732
{
1733
	pmd_t orig_pmd;
1734
	spinlock_t *ptl;
1735

1736 1737
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1738 1739
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1751 1752
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1753 1754
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1755
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1756
	} else if (is_huge_zero_pmd(orig_pmd)) {
1757
		zap_deposited_table(tlb->mm, pmd);
1758
		spin_unlock(ptl);
1759
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1760
	} else {
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1779
		if (PageAnon(page)) {
1780
			zap_deposited_table(tlb->mm, pmd);
1781 1782
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1783 1784
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1785
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1786
		}
1787

1788
		spin_unlock(ptl);
1789 1790
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1791
	}
1792
	return 1;
1793 1794
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1821
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1822
		  unsigned long new_addr, unsigned long old_end,
1823
		  pmd_t *old_pmd, pmd_t *new_pmd)
1824
{
1825
	spinlock_t *old_ptl, *new_ptl;
1826 1827
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1828
	bool force_flush = false;
1829 1830 1831

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1832
	    old_end - old_addr < HPAGE_PMD_SIZE)
1833
		return false;
1834 1835 1836 1837 1838 1839 1840

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1841
		return false;
1842 1843
	}

1844 1845 1846 1847
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1848 1849
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1850 1851 1852
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1853
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1854
		if (pmd_present(pmd))
1855
			force_flush = true;
1856
		VM_BUG_ON(!pmd_none(*new_pmd));
1857

1858
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1859
			pgtable_t pgtable;
1860 1861 1862
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1863 1864
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1865 1866
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1867 1868
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1869
		spin_unlock(old_ptl);
1870
		return true;
1871
	}
1872
	return false;
1873 1874
}

1875 1876 1877 1878 1879 1880
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1881
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1882
		unsigned long addr, pgprot_t newprot, int prot_numa)
1883 1884
{
	struct mm_struct *mm = vma->vm_mm;
1885
	spinlock_t *ptl;
1886 1887 1888
	pmd_t entry;
	bool preserve_write;
	int ret;
1889

1890
	ptl = __pmd_trans_huge_lock(pmd, vma);
1891 1892
	if (!ptl)
		return 0;
1893

1894 1895
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1896

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1910 1911
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1912 1913 1914 1915 1916 1917
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1918 1919 1920 1921 1922 1923 1924
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1925

1926 1927 1928
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1950
	entry = pmdp_invalidate(vma, addr, pmd);
1951

1952 1953 1954 1955 1956 1957 1958 1959
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1960 1961 1962 1963
	return ret;
}

/*
1964
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1965
 *
1966 1967
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1968
 */
1969
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1970
{
1971 1972
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1973 1974
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1975 1976 1977
		return ptl;
	spin_unlock(ptl);
	return NULL;
1978 1979
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	pud_t orig_pud;
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
			tlb->fullmm);
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2034
	count_vm_event(THP_SPLIT_PUD);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PUD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
	ptl = pud_lock(mm, pud);
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
	__split_huge_pud_locked(vma, pud, haddr);

out:
	spin_unlock(ptl);
2054 2055 2056 2057 2058 2059
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PUD_SIZE);
2060 2061 2062
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2063 2064 2065 2066 2067 2068 2069 2070
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2071 2072 2073 2074 2075 2076
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2077
	 * See Documentation/vm/mmu_notifier.rst
2078 2079
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2098
		unsigned long haddr, bool freeze)
2099 2100 2101 2102
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2103
	pmd_t old_pmd, _pmd;
2104
	bool young, write, soft_dirty, pmd_migration = false;
2105
	unsigned long addr;
2106 2107 2108 2109 2110
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2111 2112
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2113 2114 2115

	count_vm_event(THP_SPLIT_PMD);

2116 2117
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2118 2119 2120 2121 2122 2123
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2124 2125 2126
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
2127 2128
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2129 2130 2131 2132
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2133
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2134 2135
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2136 2137 2138 2139 2140 2141 2142 2143 2144
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2145 2146 2147
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2171
	if (unlikely(pmd_migration)) {
2172 2173
		swp_entry_t entry;

2174
		entry = pmd_to_swp_entry(old_pmd);
2175
		page = pfn_to_page(swp_offset(entry));
2176 2177 2178 2179
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2180
		page = pmd_page(old_pmd);
2181 2182 2183 2184 2185 2186
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2187
	VM_BUG_ON_PAGE(!page_count(page), page);
2188
	page_ref_add(page, HPAGE_PMD_NR - 1);
2189

2190 2191 2192 2193
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2194 2195 2196
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2197
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2198 2199 2200 2201 2202 2203
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2204
		if (freeze || pmd_migration) {
2205 2206 2207
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2208 2209
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2210
		} else {
2211
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2212
			entry = maybe_mkwrite(entry, vma);
2213 2214 2215 2216
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2217 2218
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2219
		}
2220
		pte = pte_offset_map(&_pmd, addr);
2221
		BUG_ON(!pte_none(*pte));
2222
		set_pte_at(mm, addr, pte, entry);
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2238
		__dec_node_page_state(page, NR_ANON_THPS);
2239 2240 2241 2242 2243 2244 2245 2246 2247
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2248 2249

	if (freeze) {
2250
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2251 2252 2253 2254
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2255 2256 2257
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2258
		unsigned long address, bool freeze, struct page *page)
2259 2260 2261 2262 2263 2264 2265
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
2266 2267 2268 2269 2270 2271 2272 2273 2274

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2275
	if (pmd_trans_huge(*pmd)) {
2276
		page = pmd_page(*pmd);
2277
		if (PageMlocked(page))
2278
			clear_page_mlock(page);
2279
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2280
		goto out;
2281
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2282
out:
2283
	spin_unlock(ptl);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PMD_SIZE);
2299 2300
}

2301 2302
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2303
{
2304
	pgd_t *pgd;
2305
	p4d_t *p4d;
2306
	pud_t *pud;
2307 2308
	pmd_t *pmd;

2309
	pgd = pgd_offset(vma->vm_mm, address);
2310 2311 2312
	if (!pgd_present(*pgd))
		return;

2313 2314 2315 2316 2317
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2318 2319 2320 2321
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2322

2323
	__split_huge_pmd(vma, pmd, address, freeze, page);
2324 2325
}

2326
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2339
		split_huge_pmd_address(vma, start, false, NULL);
2340 2341 2342 2343 2344 2345 2346 2347 2348

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2349
		split_huge_pmd_address(vma, end, false, NULL);
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2363
			split_huge_pmd_address(next, nstart, false, NULL);
2364 2365
	}
}
2366

2367
static void unmap_page(struct page *page)
2368
{
2369
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2370
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2371
	bool unmap_success;
2372 2373 2374

	VM_BUG_ON_PAGE(!PageHead(page), page);

2375
	if (PageAnon(page))
2376
		ttu_flags |= TTU_SPLIT_FREEZE;
2377

M
Minchan Kim 已提交
2378 2379
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2380 2381
}

2382
static void remap_page(struct page *page)
2383
{
2384
	int i;
2385 2386 2387 2388 2389 2390
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2391 2392
}

2393
static void __split_huge_page_tail(struct page *head, int tail,
2394 2395 2396 2397
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2398
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2399 2400

	/*
2401 2402 2403 2404
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2405 2406 2407 2408 2409
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2410
			 (1L << PG_swapcache) |
2411 2412 2413
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2414
			 (1L << PG_workingset) |
2415
			 (1L << PG_locked) |
2416 2417
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2418

2419 2420 2421 2422 2423 2424
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2425
	/* Page flags must be visible before we make the page non-compound. */
2426 2427
	smp_wmb();

2428 2429 2430 2431 2432 2433
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2434 2435
	clear_compound_head(page_tail);

2436 2437 2438 2439
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2440 2441 2442 2443 2444 2445
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2446 2447 2448 2449 2450 2451

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2452 2453 2454
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2455
static void __split_huge_page(struct page *page, struct list_head *list,
2456
		pgoff_t end, unsigned long flags)
2457 2458 2459 2460
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
2461
	int i;
2462

M
Mel Gorman 已提交
2463
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2464 2465 2466 2467

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2468
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2469
		__split_huge_page_tail(head, i, lruvec, list);
2470 2471
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2472
			ClearPageDirty(head + i);
2473
			__delete_from_page_cache(head + i, NULL);
2474 2475
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2476 2477 2478
			put_page(head + i);
		}
	}
2479 2480

	ClearPageCompound(head);
2481 2482
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
2483 2484 2485 2486 2487
		/* Additional pin to radix tree of swap cache */
		if (PageSwapCache(head))
			page_ref_add(head, 2);
		else
			page_ref_inc(head);
2488 2489 2490
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2491
		xa_unlock(&head->mapping->i_pages);
2492 2493
	}

2494
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2495

2496
	remap_page(head);
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2515 2516
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2517
	int i, compound, ret;
2518 2519 2520 2521 2522 2523

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2524
	compound = compound_mapcount(page);
2525
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2526 2527
		return compound;
	ret = compound;
2528 2529
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2530 2531 2532
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2533 2534 2535 2536 2537
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

	/* Additional pins from radix tree */
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2633
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2634 2635 2636
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2637
	bool mlocked;
2638
	unsigned long flags;
2639
	pgoff_t end;
2640 2641 2642 2643 2644

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2645 2646 2647
	if (PageWriteback(page))
		return -EBUSY;

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2662
		end = -1;
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2676 2677 2678 2679 2680 2681 2682 2683 2684

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2685 2686 2687
	}

	/*
2688
	 * Racy check if we can split the page, before unmap_page() will
2689 2690
	 * split PMDs
	 */
2691
	if (!can_split_huge_page(head, &extra_pins)) {
2692 2693 2694 2695
		ret = -EBUSY;
		goto out_unlock;
	}

2696
	mlocked = PageMlocked(page);
2697
	unmap_page(head);
2698 2699
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2700 2701 2702 2703
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2704
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2705
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2706 2707 2708 2709

	if (mapping) {
		void **pslot;

M
Matthew Wilcox 已提交
2710 2711
		xa_lock(&mapping->i_pages);
		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2712 2713 2714 2715 2716 2717
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
M
Matthew Wilcox 已提交
2718
					&mapping->i_pages.xa_lock) != head)
2719 2720 2721
			goto fail;
	}

2722
	/* Prevent deferred_split_scan() touching ->_refcount */
2723
	spin_lock(&pgdata->split_queue_lock);
2724 2725
	count = page_count(head);
	mapcount = total_mapcount(head);
2726
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2727
		if (!list_empty(page_deferred_list(head))) {
2728
			pgdata->split_queue_len--;
2729 2730
			list_del(page_deferred_list(head));
		}
2731
		if (mapping)
2732
			__dec_node_page_state(page, NR_SHMEM_THPS);
2733
		spin_unlock(&pgdata->split_queue_lock);
2734
		__split_huge_page(page, list, end, flags);
2735 2736 2737 2738 2739 2740
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2741
	} else {
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
M
Matthew Wilcox 已提交
2752
			xa_unlock(&mapping->i_pages);
2753
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2754
		remap_page(head);
2755 2756 2757 2758
		ret = -EBUSY;
	}

out_unlock:
2759 2760 2761 2762 2763 2764
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2765 2766 2767 2768
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2769 2770 2771

void free_transhuge_page(struct page *page)
{
2772
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2773 2774
	unsigned long flags;

2775
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2776
	if (!list_empty(page_deferred_list(page))) {
2777
		pgdata->split_queue_len--;
2778 2779
		list_del(page_deferred_list(page));
	}
2780
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2781 2782 2783 2784 2785
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2786
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2787 2788 2789 2790
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2791
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2792
	if (list_empty(page_deferred_list(page))) {
2793
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2794 2795
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2796
	}
2797
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2798 2799 2800 2801 2802
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2803
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2804
	return READ_ONCE(pgdata->split_queue_len);
2805 2806 2807 2808 2809
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2810
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2811 2812 2813 2814 2815
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2816
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2817
	/* Take pin on all head pages to avoid freeing them under us */
2818
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2819 2820
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2821 2822 2823 2824
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2825
			list_del_init(page_deferred_list(page));
2826
			pgdata->split_queue_len--;
2827
		}
2828 2829
		if (!--sc->nr_to_scan)
			break;
2830
	}
2831
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2832 2833 2834

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2835 2836
		if (!trylock_page(page))
			goto next;
2837 2838 2839 2840
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2841
next:
2842 2843 2844
		put_page(page);
	}

2845 2846 2847
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2848

2849 2850 2851 2852 2853 2854 2855
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2856 2857 2858 2859 2860 2861
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2862
	.flags = SHRINKER_NUMA_AWARE,
2863
};
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2889
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2902
	pr_info("%lu of %lu THP split\n", split, total);
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2913
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2914 2915 2916 2917 2918 2919 2920
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2931
	pmd_t pmdswp;
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2942 2943 2944 2945
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2965 2966
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2967
	if (is_write_migration_entry(entry))
2968
		pmde = maybe_pmd_mkwrite(pmde, vma);
2969 2970

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2971 2972 2973 2974
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
2975
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2976
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2977 2978 2979 2980
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif