spi.c 65.1 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
19
#include <linux/kmod.h>
20 21 22
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
23 24
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
25
#include <linux/mutex.h>
26
#include <linux/of_device.h>
27
#include <linux/of_irq.h>
28
#include <linux/clk/clk-conf.h>
29
#include <linux/slab.h>
30
#include <linux/mod_devicetable.h>
31
#include <linux/spi/spi.h>
32
#include <linux/of_gpio.h>
M
Mark Brown 已提交
33
#include <linux/pm_runtime.h>
34
#include <linux/pm_domain.h>
35
#include <linux/export.h>
36
#include <linux/sched/rt.h>
37 38
#include <linux/delay.h>
#include <linux/kthread.h>
39 40
#include <linux/ioport.h>
#include <linux/acpi.h>
41

42 43 44
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

45 46
static void spidev_release(struct device *dev)
{
47
	struct spi_device	*spi = to_spi_device(dev);
48 49 50 51 52

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
53
	spi_master_put(spi->master);
54
	kfree(spi);
55 56 57 58 59 60
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
61 62 63 64 65
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
66

67
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68
}
69
static DEVICE_ATTR_RO(modalias);
70

71 72 73
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
74
};
75
ATTRIBUTE_GROUPS(spi_dev);
76 77 78 79 80

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

100 101 102
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
103 104
	const struct spi_driver	*sdrv = to_spi_driver(drv);

105 106 107 108
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

109 110 111 112
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

113 114
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
115

116
	return strcmp(spi->modalias, drv->name) == 0;
117 118
}

119
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
120 121
{
	const struct spi_device		*spi = to_spi_device(dev);
122 123 124 125 126
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
127

128
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
129 130 131
	return 0;
}

M
Mark Brown 已提交
132 133
#ifdef CONFIG_PM_SLEEP
static int spi_legacy_suspend(struct device *dev, pm_message_t message)
134
{
135
	int			value = 0;
136
	struct spi_driver	*drv = to_spi_driver(dev->driver);
137 138

	/* suspend will stop irqs and dma; no more i/o */
139 140 141 142 143 144
	if (drv) {
		if (drv->suspend)
			value = drv->suspend(to_spi_device(dev), message);
		else
			dev_dbg(dev, "... can't suspend\n");
	}
145 146 147
	return value;
}

M
Mark Brown 已提交
148
static int spi_legacy_resume(struct device *dev)
149
{
150
	int			value = 0;
151
	struct spi_driver	*drv = to_spi_driver(dev->driver);
152 153

	/* resume may restart the i/o queue */
154 155 156 157 158 159
	if (drv) {
		if (drv->resume)
			value = drv->resume(to_spi_device(dev));
		else
			dev_dbg(dev, "... can't resume\n");
	}
160 161 162
	return value;
}

M
Mark Brown 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static int spi_pm_suspend(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_suspend(dev);
	else
		return spi_legacy_suspend(dev, PMSG_SUSPEND);
}

static int spi_pm_resume(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_resume(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_freeze(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_freeze(dev);
	else
		return spi_legacy_suspend(dev, PMSG_FREEZE);
}

static int spi_pm_thaw(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_thaw(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_poweroff(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_poweroff(dev);
	else
		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
}

static int spi_pm_restore(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_restore(dev);
	else
		return spi_legacy_resume(dev);
}
222
#else
M
Mark Brown 已提交
223 224 225 226 227 228
#define spi_pm_suspend	NULL
#define spi_pm_resume	NULL
#define spi_pm_freeze	NULL
#define spi_pm_thaw	NULL
#define spi_pm_poweroff	NULL
#define spi_pm_restore	NULL
229 230
#endif

M
Mark Brown 已提交
231 232 233 234 235 236 237 238 239 240
static const struct dev_pm_ops spi_pm = {
	.suspend = spi_pm_suspend,
	.resume = spi_pm_resume,
	.freeze = spi_pm_freeze,
	.thaw = spi_pm_thaw,
	.poweroff = spi_pm_poweroff,
	.restore = spi_pm_restore,
	SET_RUNTIME_PM_OPS(
		pm_generic_runtime_suspend,
		pm_generic_runtime_resume,
241
		NULL
M
Mark Brown 已提交
242 243 244
	)
};

245 246
struct bus_type spi_bus_type = {
	.name		= "spi",
247
	.dev_groups	= spi_dev_groups,
248 249
	.match		= spi_match_device,
	.uevent		= spi_uevent,
M
Mark Brown 已提交
250
	.pm		= &spi_pm,
251 252 253
};
EXPORT_SYMBOL_GPL(spi_bus_type);

254 255 256 257

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
258 259
	int ret;

260 261 262 263
	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

264 265 266 267 268 269
	ret = dev_pm_domain_attach(dev, true);
	if (ret != -EPROBE_DEFER) {
		ret = sdrv->probe(to_spi_device(dev));
		if (ret)
			dev_pm_domain_detach(dev, true);
	}
270

271
	return ret;
272 273 274 275 276
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
277 278
	int ret;

279
	ret = sdrv->remove(to_spi_device(dev));
280
	dev_pm_domain_detach(dev, true);
281

282
	return ret;
283 284 285 286 287 288 289 290 291
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
292 293 294 295 296
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
297 298 299 300 301 302 303 304 305 306 307 308 309
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

310 311 312 313 314 315 316 317 318 319
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
320
	struct spi_board_info	board_info;
321 322 323
};

static LIST_HEAD(board_list);
324 325 326 327 328 329
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
330
static DEFINE_MUTEX(board_lock);
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;

	if (!spi_master_get(master))
		return NULL;

J
Jingoo Han 已提交
356
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
357 358 359 360 361 362
	if (!spi) {
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
363
	spi->dev.parent = &master->dev;
364 365
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
366
	spi->cs_gpio = -ENOENT;
367 368 369 370 371
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

372 373 374 375 376 377 378 379 380 381 382 383 384
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

385 386 387 388 389 390 391 392 393 394 395
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

	if (spi->master == new_spi->master &&
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

396 397 398 399 400 401 402
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
403
 * Returns 0 on success; negative errno on failure
404 405 406
 */
int spi_add_device(struct spi_device *spi)
{
407
	static DEFINE_MUTEX(spi_add_lock);
408 409
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
410 411 412
	int status;

	/* Chipselects are numbered 0..max; validate. */
413
	if (spi->chip_select >= master->num_chipselect) {
414 415
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
416
			master->num_chipselect);
417 418 419 420
		return -EINVAL;
	}

	/* Set the bus ID string */
421
	spi_dev_set_name(spi);
422 423 424 425 426 427 428

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

429 430
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
431 432 433 434 435
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

436 437 438
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

439 440 441 442
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
443
	status = spi_setup(spi);
444
	if (status < 0) {
445 446
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
447
		goto done;
448 449
	}

450
	/* Device may be bound to an active driver when this returns */
451
	status = device_add(&spi->dev);
452
	if (status < 0)
453 454
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
455
	else
456
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
457

458 459 460
done:
	mutex_unlock(&spi_add_lock);
	return status;
461 462
}
EXPORT_SYMBOL_GPL(spi_add_device);
463

D
David Brownell 已提交
464 465 466 467 468 469 470
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
471 472 473 474
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
475 476
 *
 * Returns the new device, or NULL.
477
 */
478 479
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
480 481 482 483
{
	struct spi_device	*proxy;
	int			status;

484 485 486 487 488 489 490
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

491 492
	proxy = spi_alloc_device(master);
	if (!proxy)
493 494
		return NULL;

495 496
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

497 498
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
499
	proxy->mode = chip->mode;
500
	proxy->irq = chip->irq;
501
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
502 503 504 505
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

506
	status = spi_add_device(proxy);
507
	if (status < 0) {
508 509
		spi_dev_put(proxy);
		return NULL;
510 511 512 513 514 515
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
530 531 532 533 534 535
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
536 537 538 539 540 541 542 543 544 545 546 547 548
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
549
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
550
{
551 552
	struct boardinfo *bi;
	int i;
553

554 555 556
	if (!n)
		return -EINVAL;

557
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
558 559 560
	if (!bi)
		return -ENOMEM;

561 562
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
563

564 565 566 567 568 569
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
570
	}
571 572

	return 0;
573 574 575 576
}

/*-------------------------------------------------------------------------*/

577 578 579 580 581 582 583 584 585 586 587
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

	if (spi->cs_gpio >= 0)
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

588
#ifdef CONFIG_HAS_DMA
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
static int spi_map_buf(struct spi_master *master, struct device *dev,
		       struct sg_table *sgt, void *buf, size_t len,
		       enum dma_data_direction dir)
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
	const int sgs = DIV_ROUND_UP(len, desc_len);
	struct page *vm_page;
	void *sg_buf;
	size_t min;
	int i, ret;

	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

	for (i = 0; i < sgs; i++) {
		min = min_t(size_t, len, desc_len);

		if (vmalloced_buf) {
			vm_page = vmalloc_to_page(buf);
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
614 615
			sg_set_page(&sgt->sgl[i], vm_page,
				    min, offset_in_page(buf));
616 617
		} else {
			sg_buf = buf;
618
			sg_set_buf(&sgt->sgl[i], sg_buf, min);
619 620 621 622 623 624 625 626
		}


		buf += min;
		len -= min;
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
627 628
	if (!ret)
		ret = -ENOMEM;
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

static void spi_unmap_buf(struct spi_master *master, struct device *dev,
			  struct sg_table *sgt, enum dma_data_direction dir)
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

648
static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
649 650 651
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
652
	int ret;
653

654
	if (!master->can_dma)
655 656
		return 0;

657 658
	tx_dev = master->dma_tx->device->dev;
	rx_dev = master->dma_rx->device->dev;
659 660 661 662 663 664

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

		if (xfer->tx_buf != NULL) {
665 666 667 668 669
			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
670 671 672
		}

		if (xfer->rx_buf != NULL) {
673 674 675 676 677 678 679
			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
					      DMA_TO_DEVICE);
				return ret;
680 681 682 683 684 685 686 687 688 689 690 691 692 693
			}
		}
	}

	master->cur_msg_mapped = true;

	return 0;
}

static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

694
	if (!master->cur_msg_mapped || !master->can_dma)
695 696
		return 0;

697 698
	tx_dev = master->dma_tx->device->dev;
	rx_dev = master->dma_rx->device->dev;
699 700 701 702 703

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

704 705
		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
706 707 708 709
	}

	return 0;
}
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
#else /* !CONFIG_HAS_DMA */
static inline int __spi_map_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}

static inline int spi_unmap_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
			if ((master->flags & SPI_MASTER_MUST_TX) &&
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
			if ((master->flags & SPI_MASTER_MUST_RX) &&
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
			tmp = krealloc(master->dummy_tx, max_tx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_tx = tmp;
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
			tmp = krealloc(master->dummy_rx, max_rx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_rx = tmp;
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
					xfer->tx_buf = master->dummy_tx;
				if (!xfer->rx_buf)
					xfer->rx_buf = master->dummy_rx;
			}
		}
	}

	return __spi_map_msg(master, msg);
}
773

774 775 776 777 778 779 780 781 782 783 784 785 786
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
 * drivers which impelment a transfer_one() operation.  It provides
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
787
	unsigned long ms = 1;
788 789 790 791 792 793

	spi_set_cs(msg->spi, true);

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

794 795
		if (xfer->tx_buf || xfer->rx_buf) {
			reinit_completion(&master->xfer_completion);
796

797 798 799 800 801 802
			ret = master->transfer_one(master, msg->spi, xfer);
			if (ret < 0) {
				dev_err(&msg->spi->dev,
					"SPI transfer failed: %d\n", ret);
				goto out;
			}
803

804 805 806 807
			if (ret > 0) {
				ret = 0;
				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
				ms += ms + 100; /* some tolerance */
808

809 810 811
				ms = wait_for_completion_timeout(&master->xfer_completion,
								 msecs_to_jiffies(ms));
			}
812

813 814 815 816 817 818 819 820 821 822
			if (ms == 0) {
				dev_err(&msg->spi->dev,
					"SPI transfer timed out\n");
				msg->status = -ETIMEDOUT;
			}
		} else {
			if (xfer->len)
				dev_err(&msg->spi->dev,
					"Bufferless transfer has length %u\n",
					xfer->len);
823
		}
824 825 826 827 828 829 830 831 832 833 834 835 836 837

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
838 839 840
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
T
Thierry Reding 已提交
861
 * @master: the master reporting completion
862 863 864
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
865
 * transfer has finished and the next one may be scheduled.
866 867 868 869 870 871 872
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

873
/**
874 875 876
 * __spi_pump_messages - function which processes spi message queue
 * @master: master to process queue for
 * @in_kthread: true if we are in the context of the message pump thread
877 878 879 880 881
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
882 883 884
 * Note that it is called both from the kthread itself and also from
 * inside spi_sync(); the queue extraction handling at the top of the
 * function should deal with this safely.
885
 */
886
static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
887 888 889 890 891
{
	unsigned long flags;
	bool was_busy = false;
	int ret;

892
	/* Lock queue */
893
	spin_lock_irqsave(&master->queue_lock, flags);
894 895 896 897 898 899 900

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

901 902 903 904 905 906 907
	/* If another context is idling the device then defer */
	if (master->idling) {
		queue_kthread_work(&master->kworker, &master->pump_messages);
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

908
	/* Check if the queue is idle */
909
	if (list_empty(&master->queue) || !master->running) {
910 911 912
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
913
		}
914 915 916 917 918 919 920 921 922

		/* Only do teardown in the thread */
		if (!in_kthread) {
			queue_kthread_work(&master->kworker,
					   &master->pump_messages);
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
		}

923
		master->busy = false;
924
		master->idling = true;
925
		spin_unlock_irqrestore(&master->queue_lock, flags);
926

927 928 929 930
		kfree(master->dummy_rx);
		master->dummy_rx = NULL;
		kfree(master->dummy_tx);
		master->dummy_tx = NULL;
931 932 933 934
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
935 936 937 938
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
939
		trace_spi_master_idle(master);
940

941 942
		spin_lock_irqsave(&master->queue_lock, flags);
		master->idling = false;
943 944 945 946 947 948
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

	/* Extract head of queue */
	master->cur_msg =
949
		list_first_entry(&master->queue, struct spi_message, queue);
950 951 952 953 954 955 956 957

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

958 959 960 961 962 963 964 965 966
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return;
		}
	}

967 968 969
	if (!was_busy)
		trace_spi_master_busy(master);

970
	if (!was_busy && master->prepare_transfer_hardware) {
971 972 973 974
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
975 976 977

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
978 979 980 981
			return;
		}
	}

982 983
	trace_spi_message_start(master->cur_msg);

984 985 986 987 988 989 990 991 992 993 994 995
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
			return;
		}
		master->cur_msg_prepared = true;
	}

996 997 998 999 1000 1001 1002
	ret = spi_map_msg(master, master->cur_msg);
	if (ret) {
		master->cur_msg->status = ret;
		spi_finalize_current_message(master);
		return;
	}

1003 1004 1005
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
1006
			"failed to transfer one message from queue\n");
1007 1008 1009 1010
		return;
	}
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);

	__spi_pump_messages(master, true);
}

1023 1024 1025 1026 1027 1028 1029 1030 1031
static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
1032
					   &master->kworker, "%s",
1033 1034 1035
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
1036
		return PTR_ERR(master->kworker_task);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
1071 1072
	next = list_first_entry_or_null(&master->queue, struct spi_message,
					queue);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
1090
	int ret;
1091 1092 1093 1094 1095 1096 1097 1098

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	master->cur_msg = NULL;

	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

1099 1100
	spi_unmap_msg(master, mesg);

1101 1102 1103 1104 1105 1106 1107 1108 1109
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
	master->cur_msg_prepared = false;

1110 1111 1112
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
1113 1114

	trace_spi_message_done(mesg);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
1154
		usleep_range(10000, 11000);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

1196 1197 1198
static int __spi_queued_transfer(struct spi_device *spi,
				 struct spi_message *msg,
				 bool need_pump)
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
1213
	if (!master->busy && need_pump)
1214 1215 1216 1217 1218 1219
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	return __spi_queued_transfer(spi, msg, true);
}

1230 1231 1232 1233 1234
static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->transfer = spi_queued_transfer;
1235 1236
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
1237 1238 1239 1240 1241 1242 1243

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
1244
	master->queued = true;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
	spi_destroy_queue(master);
1255
err_init_queue:
1256 1257 1258 1259 1260
	return ret;
}

/*-------------------------------------------------------------------------*/

1261
#if defined(CONFIG_OF)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
	struct spi_device *spi;
	int rc;
	u32 value;

	/* Alloc an spi_device */
	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "spi_device alloc error for %s\n",
			nc->full_name);
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
		dev_err(&master->dev, "cannot find modalias for %s\n",
			nc->full_name);
		goto err_out;
	}

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->chip_select = value;

	/* Mode (clock phase/polarity/etc.) */
	if (of_find_property(nc, "spi-cpha", NULL))
		spi->mode |= SPI_CPHA;
	if (of_find_property(nc, "spi-cpol", NULL))
		spi->mode |= SPI_CPOL;
	if (of_find_property(nc, "spi-cs-high", NULL))
		spi->mode |= SPI_CS_HIGH;
	if (of_find_property(nc, "spi-3wire", NULL))
		spi->mode |= SPI_3WIRE;
	if (of_find_property(nc, "spi-lsb-first", NULL))
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	/* Device speed */
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->max_speed_hz = value;

	/* IRQ */
	spi->irq = irq_of_parse_and_map(nc, 0);

	/* Store a pointer to the node in the device structure */
	of_node_get(nc);
	spi->dev.of_node = nc;

	/* Register the new device */
	request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
	rc = spi_add_device(spi);
	if (rc) {
		dev_err(&master->dev, "spi_device register error %s\n",
			nc->full_name);
		goto err_out;
	}

	return spi;

err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;

	if (!master->dev.of_node)
		return;

1392
	for_each_available_child_of_node(master->dev.of_node, nc) {
1393 1394 1395
		spi = of_register_spi_device(master, nc);
		if (IS_ERR(spi))
			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1396 1397 1398 1399 1400 1401 1402
				nc->full_name);
	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
			spi->chip_select = sb->device_selection;
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct list_head resource_list;
	struct acpi_device *adev;
	struct spi_device *spi;
	int ret;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;
	if (acpi_bus_get_status(adev) || !adev->status.present)
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1455
	ACPI_COMPANION_SET(&spi->dev, adev);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1468
	adev->power.flags.ignore_parent = true;
1469
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1470
	if (spi_add_device(spi)) {
1471
		adev->power.flags.ignore_parent = false;
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1485
	handle = ACPI_HANDLE(master->dev.parent);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1499
static void spi_master_release(struct device *dev)
1500 1501 1502
{
	struct spi_master *master;

T
Tony Jones 已提交
1503
	master = container_of(dev, struct spi_master, dev);
1504 1505 1506 1507 1508 1509
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1510
	.dev_release	= spi_master_release,
1511 1512 1513
};


1514

1515 1516 1517
/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1518
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1519
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1520
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1521
 * Context: can sleep
1522 1523 1524
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1525
 * an spi_master structure, prior to calling spi_register_master().
1526 1527 1528 1529 1530
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1531
 * the master's methods before calling spi_register_master(); and (after errors
1532 1533
 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 * leak.
1534
 */
1535
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1536 1537 1538
{
	struct spi_master	*master;

D
David Brownell 已提交
1539 1540 1541
	if (!dev)
		return NULL;

J
Jingoo Han 已提交
1542
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1543 1544 1545
	if (!master)
		return NULL;

T
Tony Jones 已提交
1546
	device_initialize(&master->dev);
1547 1548
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1549 1550
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
1551
	spi_master_set_devdata(master, &master[1]);
1552 1553 1554 1555 1556

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1557 1558 1559
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1560
	int nb, i, *cs;
1561 1562 1563 1564 1565 1566
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
J
Jingoo Han 已提交
1567
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1568

1569 1570
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1571
		return 0;
1572 1573
	else if (nb < 0)
		return nb;
1574 1575 1576 1577 1578 1579 1580 1581 1582

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1583
	for (i = 0; i < master->num_chipselect; i++)
1584
		cs[i] = -ENOENT;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1598 1599 1600
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1601
 * Context: can sleep
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1615 1616
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1617
 */
1618
int spi_register_master(struct spi_master *master)
1619
{
1620
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1621
	struct device		*dev = master->dev.parent;
1622
	struct boardinfo	*bi;
1623 1624 1625
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1626 1627 1628
	if (!dev)
		return -ENODEV;

1629 1630 1631 1632
	status = of_spi_register_master(master);
	if (status)
		return status;

1633 1634 1635 1636 1637 1638
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1639 1640 1641
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1642
	/* convention:  dynamically assigned bus IDs count down from the max */
1643
	if (master->bus_num < 0) {
1644 1645 1646
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1647
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1648
		dynamic = 1;
1649 1650
	}

1651 1652
	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);
1653 1654 1655
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;
1656
	init_completion(&master->xfer_completion);
1657 1658
	if (!master->max_dma_len)
		master->max_dma_len = INT_MAX;
1659

1660 1661 1662
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1663
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1664
	status = device_add(&master->dev);
1665
	if (status < 0)
1666
		goto done;
1667
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1668 1669
			dynamic ? " (dynamic)" : "");

1670 1671 1672 1673 1674 1675
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1676
			device_del(&master->dev);
1677 1678 1679 1680
			goto done;
		}
	}

1681 1682 1683 1684 1685 1686
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1687
	/* Register devices from the device tree and ACPI */
1688
	of_register_spi_devices(master);
1689
	acpi_register_spi_devices(master);
1690 1691 1692 1693 1694
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
1719
	if (!ret) {
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

1730
static int __unregister(struct device *dev, void *null)
1731
{
1732
	spi_unregister_device(to_spi_device(dev));
1733 1734 1735 1736 1737 1738
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1739
 * Context: can sleep
1740 1741 1742 1743 1744 1745 1746 1747
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1748 1749
	int dummy;

1750 1751 1752 1753 1754
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1755 1756 1757 1758
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1759
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1760
	device_unregister(&master->dev);
1761 1762 1763
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

1795
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
1796 1797
{
	struct spi_master *m;
1798
	const u16 *bus_num = data;
D
Dave Young 已提交
1799 1800 1801 1802 1803

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1804 1805 1806
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1807
 * Context: can sleep
1808 1809 1810 1811 1812 1813 1814 1815
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
1816
	struct device		*dev;
1817
	struct spi_master	*master = NULL;
D
Dave Young 已提交
1818

1819
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
1820 1821 1822 1823
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
1824
	return master;
1825 1826 1827 1828 1829 1830
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
1855
	unsigned	bad_bits, ugly_bits;
1856
	int		status = 0;
1857

W
wangyuhang 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
1871 1872 1873 1874
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
1875 1876 1877 1878 1879 1880 1881 1882 1883
	ugly_bits = bad_bits &
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
1884
	if (bad_bits) {
1885
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1886 1887 1888 1889
			bad_bits);
		return -EINVAL;
	}

1890 1891 1892
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

1893 1894 1895
	if (!spi->max_speed_hz)
		spi->max_speed_hz = spi->master->max_speed_hz;

1896 1897
	spi_set_cs(spi, false);

1898 1899
	if (spi->master->setup)
		status = spi->master->setup(spi);
1900

J
Jingoo Han 已提交
1901
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

1914
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1915 1916
{
	struct spi_master *master = spi->master;
1917
	struct spi_transfer *xfer;
1918
	int w_size;
1919

1920 1921 1922
	if (list_empty(&message->transfers))
		return -EINVAL;

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

1942
	/**
1943 1944
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
1945 1946
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1947 1948
	 */
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1949
		message->frame_length += xfer->len;
1950 1951
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
1952 1953

		if (!xfer->speed_hz)
1954
			xfer->speed_hz = spi->max_speed_hz;
1955 1956 1957 1958

		if (master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
			xfer->speed_hz = master->max_speed_hz;
1959

1960 1961 1962 1963 1964 1965 1966 1967
		if (master->bits_per_word_mask) {
			/* Only 32 bits fit in the mask */
			if (xfer->bits_per_word > 32)
				return -EINVAL;
			if (!(master->bits_per_word_mask &
					BIT(xfer->bits_per_word - 1)))
				return -EINVAL;
		}
1968

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
1981
		if (xfer->len % w_size)
1982 1983
			return -EINVAL;

1984 1985 1986
		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
W
wangyuhang 已提交
1987 1988 1989 1990 1991 1992

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
1993 1994
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
1995
		 */
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
2008
		/* check transfer rx_nbits */
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
2021 2022
	}

2023
	message->status = -EINPROGRESS;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	message->spi = spi;

	trace_spi_message_submit(message);

2036 2037 2038
	return master->transfer(spi, message);
}

D
David Brownell 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
2071 2072
	int ret;
	unsigned long flags;
D
David Brownell 已提交
2073

2074 2075 2076 2077
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2078
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
2079

2080 2081 2082 2083
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
2084

2085 2086 2087
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
2088 2089 2090
}
EXPORT_SYMBOL_GPL(spi_async);

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

2126 2127 2128 2129
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

2141 2142 2143 2144 2145 2146 2147 2148

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

2149 2150 2151 2152 2153
static void spi_complete(void *arg)
{
	complete(arg);
}

2154 2155 2156 2157 2158 2159
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;
2160 2161 2162 2163 2164
	unsigned long flags;

	status = __spi_validate(spi, message);
	if (status != 0)
		return status;
2165 2166 2167

	message->complete = spi_complete;
	message->context = &done;
2168
	message->spi = spi;
2169 2170 2171 2172

	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	/* If we're not using the legacy transfer method then we will
	 * try to transfer in the calling context so special case.
	 * This code would be less tricky if we could remove the
	 * support for driver implemented message queues.
	 */
	if (master->transfer == spi_queued_transfer) {
		spin_lock_irqsave(&master->bus_lock_spinlock, flags);

		trace_spi_message_submit(message);

		status = __spi_queued_transfer(spi, message, false);

		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
	} else {
		status = spi_async_locked(spi, message);
	}
2189 2190 2191 2192 2193

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
2194 2195 2196 2197
		/* Push out the messages in the calling context if we
		 * can.
		 */
		if (master->transfer == spi_queued_transfer)
2198
			__spi_pump_messages(master, false);
2199

2200 2201 2202 2203 2204 2205 2206
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

2207 2208 2209 2210
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
2211
 * Context: can sleep
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
2223 2224 2225
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
2226
 * It returns zero on success, else a negative error code.
2227 2228 2229
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
2230
	return __spi_sync(spi, message, 0);
2231 2232 2233
}
EXPORT_SYMBOL_GPL(spi_sync);

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
2245
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

2310
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
2311
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2312 2313 2314 2315 2316 2317 2318 2319

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
2320 2321
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
2322
 * Context: can sleep
2323 2324 2325 2326
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
2327
 * This call may only be used from a context that may sleep.
2328
 *
D
David Brownell 已提交
2329
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
2330 2331
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
2332
 * spi_{async,sync}() calls with dma-safe buffers.
2333 2334
 */
int spi_write_then_read(struct spi_device *spi,
2335 2336
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
2337
{
D
David Brownell 已提交
2338
	static DEFINE_MUTEX(lock);
2339 2340 2341

	int			status;
	struct spi_message	message;
2342
	struct spi_transfer	x[2];
2343 2344
	u8			*local_buf;

2345 2346 2347 2348
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
2349
	 */
2350
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2351 2352
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
2353 2354 2355 2356 2357
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
2358

2359
	spi_message_init(&message);
J
Jingoo Han 已提交
2360
	memset(x, 0, sizeof(x));
2361 2362 2363 2364 2365 2366 2367 2368
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
2369

2370
	memcpy(local_buf, txbuf, n_tx);
2371 2372
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
2373 2374 2375

	/* do the i/o */
	status = spi_sync(spi, &message);
2376
	if (status == 0)
2377
		memcpy(rxbuf, x[1].rx_buf, n_rx);
2378

2379
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
2380
		mutex_unlock(&lock);
2381 2382 2383 2384 2385 2386 2387 2388 2389
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
#if IS_ENABLED(CONFIG_OF_DYNAMIC)
static int __spi_of_device_match(struct device *dev, void *data)
{
	return dev->of_node == data;
}

/* must call put_device() when done with returned spi_device device */
static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
{
	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
						__spi_of_device_match);
	return dev ? to_spi_device(dev) : NULL;
}

static int __spi_of_master_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

/* the spi masters are not using spi_bus, so we find it with another way */
static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, node,
				__spi_of_master_match);
	if (!dev)
		return NULL;

	/* reference got in class_find_device */
	return container_of(dev, struct spi_master, dev);
}

static int of_spi_notify(struct notifier_block *nb, unsigned long action,
			 void *arg)
{
	struct of_reconfig_data *rd = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (of_reconfig_get_state_change(action, arg)) {
	case OF_RECONFIG_CHANGE_ADD:
		master = of_find_spi_master_by_node(rd->dn->parent);
		if (master == NULL)
			return NOTIFY_OK;	/* not for us */

		spi = of_register_spi_device(master, rd->dn);
		put_device(&master->dev);

		if (IS_ERR(spi)) {
			pr_err("%s: failed to create for '%s'\n",
					__func__, rd->dn->full_name);
			return notifier_from_errno(PTR_ERR(spi));
		}
		break;

	case OF_RECONFIG_CHANGE_REMOVE:
		/* find our device by node */
		spi = of_find_spi_device_by_node(rd->dn);
		if (spi == NULL)
			return NOTIFY_OK;	/* no? not meant for us */

		/* unregister takes one ref away */
		spi_unregister_device(spi);

		/* and put the reference of the find */
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_of_notifier = {
	.notifier_call = of_spi_notify,
};
#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
extern struct notifier_block spi_of_notifier;
#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */

2470 2471
static int __init spi_init(void)
{
2472 2473
	int	status;

2474
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2475 2476 2477 2478 2479 2480 2481 2482
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
2483

2484 2485 2486
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
2487

2488
	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2489 2490
		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));

2491
	return 0;
2492 2493 2494 2495 2496 2497 2498 2499

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
2500
}
2501

2502 2503
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
2504 2505 2506 2507
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
2508
 */
2509
postcore_initcall(spi_init);
2510