spi.c 60.5 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
23
#include <linux/kmod.h>
24 25 26
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
27 28
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
29
#include <linux/mutex.h>
30
#include <linux/of_device.h>
31
#include <linux/of_irq.h>
32
#include <linux/slab.h>
33
#include <linux/mod_devicetable.h>
34
#include <linux/spi/spi.h>
35
#include <linux/of_gpio.h>
M
Mark Brown 已提交
36
#include <linux/pm_runtime.h>
37
#include <linux/export.h>
38
#include <linux/sched/rt.h>
39 40
#include <linux/delay.h>
#include <linux/kthread.h>
41 42
#include <linux/ioport.h>
#include <linux/acpi.h>
43

44 45 46
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

47 48
static void spidev_release(struct device *dev)
{
49
	struct spi_device	*spi = to_spi_device(dev);
50 51 52 53 54

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
55
	spi_master_put(spi->master);
56
	kfree(spi);
57 58 59 60 61 62
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
63 64 65 66 67
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
68

69
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70
}
71
static DEVICE_ATTR_RO(modalias);
72

73 74 75
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
76
};
77
ATTRIBUTE_GROUPS(spi_dev);
78 79 80 81 82

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

102 103 104
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
105 106
	const struct spi_driver	*sdrv = to_spi_driver(drv);

107 108 109 110
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

111 112 113 114
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

115 116
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
117

118
	return strcmp(spi->modalias, drv->name) == 0;
119 120
}

121
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
122 123
{
	const struct spi_device		*spi = to_spi_device(dev);
124 125 126 127 128
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
129

130
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
131 132 133
	return 0;
}

M
Mark Brown 已提交
134 135
#ifdef CONFIG_PM_SLEEP
static int spi_legacy_suspend(struct device *dev, pm_message_t message)
136
{
137
	int			value = 0;
138
	struct spi_driver	*drv = to_spi_driver(dev->driver);
139 140

	/* suspend will stop irqs and dma; no more i/o */
141 142 143 144 145 146
	if (drv) {
		if (drv->suspend)
			value = drv->suspend(to_spi_device(dev), message);
		else
			dev_dbg(dev, "... can't suspend\n");
	}
147 148 149
	return value;
}

M
Mark Brown 已提交
150
static int spi_legacy_resume(struct device *dev)
151
{
152
	int			value = 0;
153
	struct spi_driver	*drv = to_spi_driver(dev->driver);
154 155

	/* resume may restart the i/o queue */
156 157 158 159 160 161
	if (drv) {
		if (drv->resume)
			value = drv->resume(to_spi_device(dev));
		else
			dev_dbg(dev, "... can't resume\n");
	}
162 163 164
	return value;
}

M
Mark Brown 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static int spi_pm_suspend(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_suspend(dev);
	else
		return spi_legacy_suspend(dev, PMSG_SUSPEND);
}

static int spi_pm_resume(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_resume(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_freeze(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_freeze(dev);
	else
		return spi_legacy_suspend(dev, PMSG_FREEZE);
}

static int spi_pm_thaw(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_thaw(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_poweroff(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_poweroff(dev);
	else
		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
}

static int spi_pm_restore(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_restore(dev);
	else
		return spi_legacy_resume(dev);
}
224
#else
M
Mark Brown 已提交
225 226 227 228 229 230
#define spi_pm_suspend	NULL
#define spi_pm_resume	NULL
#define spi_pm_freeze	NULL
#define spi_pm_thaw	NULL
#define spi_pm_poweroff	NULL
#define spi_pm_restore	NULL
231 232
#endif

M
Mark Brown 已提交
233 234 235 236 237 238 239 240 241 242
static const struct dev_pm_ops spi_pm = {
	.suspend = spi_pm_suspend,
	.resume = spi_pm_resume,
	.freeze = spi_pm_freeze,
	.thaw = spi_pm_thaw,
	.poweroff = spi_pm_poweroff,
	.restore = spi_pm_restore,
	SET_RUNTIME_PM_OPS(
		pm_generic_runtime_suspend,
		pm_generic_runtime_resume,
243
		NULL
M
Mark Brown 已提交
244 245 246
	)
};

247 248
struct bus_type spi_bus_type = {
	.name		= "spi",
249
	.dev_groups	= spi_dev_groups,
250 251
	.match		= spi_match_device,
	.uevent		= spi_uevent,
M
Mark Brown 已提交
252
	.pm		= &spi_pm,
253 254 255
};
EXPORT_SYMBOL_GPL(spi_bus_type);

256 257 258 259

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
260 261
	int ret;

262 263
	acpi_dev_pm_attach(dev, true);
	ret = sdrv->probe(to_spi_device(dev));
264
	if (ret)
265
		acpi_dev_pm_detach(dev, true);
266

267
	return ret;
268 269 270 271 272
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
273 274
	int ret;

275 276
	ret = sdrv->remove(to_spi_device(dev));
	acpi_dev_pm_detach(dev, true);
277

278
	return ret;
279 280 281 282 283 284 285 286 287
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
288 289 290 291 292
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
293 294 295 296 297 298 299 300 301 302 303 304 305
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

306 307 308 309 310 311 312 313 314 315
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
316
	struct spi_board_info	board_info;
317 318 319
};

static LIST_HEAD(board_list);
320 321 322 323 324 325
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
326
static DEFINE_MUTEX(board_lock);
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;
	struct device		*dev = master->dev.parent;

	if (!spi_master_get(master))
		return NULL;

J
Jingoo Han 已提交
353
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
354 355 356 357 358 359 360
	if (!spi) {
		dev_err(dev, "cannot alloc spi_device\n");
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
361
	spi->dev.parent = &master->dev;
362 363
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
364
	spi->cs_gpio = -ENOENT;
365 366 367 368 369
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

370 371 372 373 374 375 376 377 378 379 380 381 382
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

383 384 385 386 387 388 389 390 391 392 393
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

	if (spi->master == new_spi->master &&
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

394 395 396 397 398 399 400
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
401
 * Returns 0 on success; negative errno on failure
402 403 404
 */
int spi_add_device(struct spi_device *spi)
{
405
	static DEFINE_MUTEX(spi_add_lock);
406 407
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
408 409 410
	int status;

	/* Chipselects are numbered 0..max; validate. */
411
	if (spi->chip_select >= master->num_chipselect) {
412 413
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
414
			master->num_chipselect);
415 416 417 418
		return -EINVAL;
	}

	/* Set the bus ID string */
419
	spi_dev_set_name(spi);
420 421 422 423 424 425 426

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

427 428
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
429 430 431 432 433
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

434 435 436
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

437 438 439 440
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
441
	status = spi_setup(spi);
442
	if (status < 0) {
443 444
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
445
		goto done;
446 447
	}

448
	/* Device may be bound to an active driver when this returns */
449
	status = device_add(&spi->dev);
450
	if (status < 0)
451 452
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
453
	else
454
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
455

456 457 458
done:
	mutex_unlock(&spi_add_lock);
	return status;
459 460
}
EXPORT_SYMBOL_GPL(spi_add_device);
461

D
David Brownell 已提交
462 463 464 465 466 467 468
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
469 470 471 472
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
473 474
 *
 * Returns the new device, or NULL.
475
 */
476 477
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
478 479 480 481
{
	struct spi_device	*proxy;
	int			status;

482 483 484 485 486 487 488
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

489 490
	proxy = spi_alloc_device(master);
	if (!proxy)
491 492
		return NULL;

493 494
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

495 496
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
497
	proxy->mode = chip->mode;
498
	proxy->irq = chip->irq;
499
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
500 501 502 503
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

504
	status = spi_add_device(proxy);
505
	if (status < 0) {
506 507
		spi_dev_put(proxy);
		return NULL;
508 509 510 511 512 513
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
528 529 530 531 532 533
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
534 535 536 537 538 539 540 541 542 543 544 545 546
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
547
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
548
{
549 550
	struct boardinfo *bi;
	int i;
551

552
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
553 554 555
	if (!bi)
		return -ENOMEM;

556 557
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
558

559 560 561 562 563 564
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
565
	}
566 567

	return 0;
568 569 570 571
}

/*-------------------------------------------------------------------------*/

572 573 574 575 576 577 578 579 580 581 582
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

	if (spi->cs_gpio >= 0)
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

583
#ifdef CONFIG_HAS_DMA
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
static int spi_map_buf(struct spi_master *master, struct device *dev,
		       struct sg_table *sgt, void *buf, size_t len,
		       enum dma_data_direction dir)
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
	const int sgs = DIV_ROUND_UP(len, desc_len);
	struct page *vm_page;
	void *sg_buf;
	size_t min;
	int i, ret;

	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

	for (i = 0; i < sgs; i++) {
		min = min_t(size_t, len, desc_len);

		if (vmalloced_buf) {
			vm_page = vmalloc_to_page(buf);
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
			sg_buf = page_address(vm_page) +
				((size_t)buf & ~PAGE_MASK);
		} else {
			sg_buf = buf;
		}

		sg_set_buf(&sgt->sgl[i], sg_buf, min);

		buf += min;
		len -= min;
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

static void spi_unmap_buf(struct spi_master *master, struct device *dev,
			  struct sg_table *sgt, enum dma_data_direction dir)
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

641
static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
642 643 644
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
645
	int ret;
646

647
	if (!master->can_dma)
648 649 650 651 652 653 654 655 656 657
		return 0;

	tx_dev = &master->dma_tx->dev->device;
	rx_dev = &master->dma_rx->dev->device;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

		if (xfer->tx_buf != NULL) {
658 659 660 661 662
			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
663 664 665
		}

		if (xfer->rx_buf != NULL) {
666 667 668 669 670 671 672
			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
					      DMA_TO_DEVICE);
				return ret;
673 674 675 676 677 678 679 680 681 682 683 684 685 686
			}
		}
	}

	master->cur_msg_mapped = true;

	return 0;
}

static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

687
	if (!master->cur_msg_mapped || !master->can_dma)
688 689 690 691 692 693 694 695 696
		return 0;

	tx_dev = &master->dma_tx->dev->device;
	rx_dev = &master->dma_rx->dev->device;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

697 698
		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
699 700 701 702
	}

	return 0;
}
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
#else /* !CONFIG_HAS_DMA */
static inline int __spi_map_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}

static inline int spi_unmap_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
			if ((master->flags & SPI_MASTER_MUST_TX) &&
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
			if ((master->flags & SPI_MASTER_MUST_RX) &&
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
			tmp = krealloc(master->dummy_tx, max_tx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_tx = tmp;
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
			tmp = krealloc(master->dummy_rx, max_rx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_rx = tmp;
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
					xfer->tx_buf = master->dummy_tx;
				if (!xfer->rx_buf)
					xfer->rx_buf = master->dummy_rx;
			}
		}
	}

	return __spi_map_msg(master, msg);
}
766

767 768 769 770 771 772 773 774 775 776 777 778 779
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
 * drivers which impelment a transfer_one() operation.  It provides
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
780
	int ms = 1;
781 782 783 784 785 786

	spi_set_cs(msg->spi, true);

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

787
		reinit_completion(&master->xfer_completion);
788 789 790 791 792 793 794 795

		ret = master->transfer_one(master, msg->spi, xfer);
		if (ret < 0) {
			dev_err(&msg->spi->dev,
				"SPI transfer failed: %d\n", ret);
			goto out;
		}

796 797
		if (ret > 0) {
			ret = 0;
798
			ms = xfer->len * 8 * 1000 / xfer->speed_hz;
799
			ms += ms + 100; /* some tolerance */
800 801 802 803 804 805 806 807

			ms = wait_for_completion_timeout(&master->xfer_completion,
							 msecs_to_jiffies(ms));
		}

		if (ms == 0) {
			dev_err(&msg->spi->dev, "SPI transfer timed out\n");
			msg->status = -ETIMEDOUT;
808
		}
809 810 811 812 813 814 815 816 817 818 819 820 821 822

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
823 824 825
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
849
 * transfer has finished and the next one may be scheduled.
850 851 852 853 854 855 856
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);
	unsigned long flags;
	bool was_busy = false;
	int ret;

	/* Lock queue and check for queue work */
	spin_lock_irqsave(&master->queue_lock, flags);
	if (list_empty(&master->queue) || !master->running) {
877 878 879
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
880 881 882
		}
		master->busy = false;
		spin_unlock_irqrestore(&master->queue_lock, flags);
883 884 885 886
		kfree(master->dummy_rx);
		master->dummy_rx = NULL;
		kfree(master->dummy_tx);
		master->dummy_tx = NULL;
887 888 889 890
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
891 892 893 894
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
895
		trace_spi_master_idle(master);
896 897 898 899 900 901 902 903 904 905
		return;
	}

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}
	/* Extract head of queue */
	master->cur_msg =
906
		list_first_entry(&master->queue, struct spi_message, queue);
907 908 909 910 911 912 913 914

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

915 916 917 918 919 920 921 922 923
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return;
		}
	}

924 925 926
	if (!was_busy)
		trace_spi_master_busy(master);

927
	if (!was_busy && master->prepare_transfer_hardware) {
928 929 930 931
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
932 933 934

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
935 936 937 938
			return;
		}
	}

939 940
	trace_spi_message_start(master->cur_msg);

941 942 943 944 945 946 947 948 949 950 951 952
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
			return;
		}
		master->cur_msg_prepared = true;
	}

953 954 955 956 957 958 959
	ret = spi_map_msg(master, master->cur_msg);
	if (ret) {
		master->cur_msg->status = ret;
		spi_finalize_current_message(master);
		return;
	}

960 961 962
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
963
			"failed to transfer one message from queue\n");
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		return;
	}
}

static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
980
					   &master->kworker, "%s",
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
		return -ENOMEM;
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
1019 1020
	next = list_first_entry_or_null(&master->queue, struct spi_message,
					queue);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
1038
	int ret;
1039 1040 1041 1042 1043 1044 1045 1046

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	master->cur_msg = NULL;

	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

1047 1048
	spi_unmap_msg(master, mesg);

1049 1050 1051 1052 1053 1054 1055 1056 1057
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
	master->cur_msg_prepared = false;

1058 1059 1060
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
1061 1062

	trace_spi_message_done(mesg);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
1102
		usleep_range(10000, 11000);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
1164
	if (!master->busy)
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->transfer = spi_queued_transfer;
1176 1177
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
1178 1179 1180 1181 1182 1183 1184

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
1185
	master->queued = true;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
	spi_destroy_queue(master);
1196
err_init_queue:
1197 1198 1199 1200 1201
	return ret;
}

/*-------------------------------------------------------------------------*/

1202
#if defined(CONFIG_OF)
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;
	int rc;
T
Trent Piepho 已提交
1215
	u32 value;
1216 1217 1218 1219

	if (!master->dev.of_node)
		return;

1220
	for_each_available_child_of_node(master->dev.of_node, nc) {
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		/* Alloc an spi_device */
		spi = spi_alloc_device(master);
		if (!spi) {
			dev_err(&master->dev, "spi_device alloc error for %s\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}

		/* Select device driver */
		if (of_modalias_node(nc, spi->modalias,
				     sizeof(spi->modalias)) < 0) {
			dev_err(&master->dev, "cannot find modalias for %s\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}

		/* Device address */
T
Trent Piepho 已提交
1240 1241 1242 1243
		rc = of_property_read_u32(nc, "reg", &value);
		if (rc) {
			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
				nc->full_name, rc);
1244 1245 1246
			spi_dev_put(spi);
			continue;
		}
T
Trent Piepho 已提交
1247
		spi->chip_select = value;
1248 1249 1250 1251 1252 1253 1254 1255

		/* Mode (clock phase/polarity/etc.) */
		if (of_find_property(nc, "spi-cpha", NULL))
			spi->mode |= SPI_CPHA;
		if (of_find_property(nc, "spi-cpol", NULL))
			spi->mode |= SPI_CPOL;
		if (of_find_property(nc, "spi-cs-high", NULL))
			spi->mode |= SPI_CS_HIGH;
1256 1257
		if (of_find_property(nc, "spi-3wire", NULL))
			spi->mode |= SPI_3WIRE;
1258 1259
		if (of_find_property(nc, "spi-lsb-first", NULL))
			spi->mode |= SPI_LSB_FIRST;
1260

W
wangyuhang 已提交
1261
		/* Device DUAL/QUAD mode */
T
Trent Piepho 已提交
1262 1263 1264
		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
			switch (value) {
			case 1:
1265
				break;
T
Trent Piepho 已提交
1266
			case 2:
1267 1268
				spi->mode |= SPI_TX_DUAL;
				break;
T
Trent Piepho 已提交
1269
			case 4:
1270 1271 1272
				spi->mode |= SPI_TX_QUAD;
				break;
			default:
1273 1274 1275 1276
				dev_warn(&master->dev,
					 "spi-tx-bus-width %d not supported\n",
					 value);
				break;
1277
			}
W
wangyuhang 已提交
1278 1279
		}

T
Trent Piepho 已提交
1280 1281 1282
		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
			switch (value) {
			case 1:
1283
				break;
T
Trent Piepho 已提交
1284
			case 2:
1285 1286
				spi->mode |= SPI_RX_DUAL;
				break;
T
Trent Piepho 已提交
1287
			case 4:
1288 1289 1290
				spi->mode |= SPI_RX_QUAD;
				break;
			default:
1291 1292 1293 1294
				dev_warn(&master->dev,
					 "spi-rx-bus-width %d not supported\n",
					 value);
				break;
1295
			}
W
wangyuhang 已提交
1296 1297
		}

1298
		/* Device speed */
T
Trent Piepho 已提交
1299 1300 1301 1302
		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
		if (rc) {
			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
				nc->full_name, rc);
1303 1304 1305
			spi_dev_put(spi);
			continue;
		}
T
Trent Piepho 已提交
1306
		spi->max_speed_hz = value;
1307 1308 1309 1310 1311 1312 1313 1314 1315

		/* IRQ */
		spi->irq = irq_of_parse_and_map(nc, 0);

		/* Store a pointer to the node in the device structure */
		of_node_get(nc);
		spi->dev.of_node = nc;

		/* Register the new device */
1316
		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		rc = spi_add_device(spi);
		if (rc) {
			dev_err(&master->dev, "spi_device register error %s\n",
				nc->full_name);
			spi_dev_put(spi);
		}

	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
			spi->chip_select = sb->device_selection;
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct list_head resource_list;
	struct acpi_device *adev;
	struct spi_device *spi;
	int ret;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;
	if (acpi_bus_get_status(adev) || !adev->status.present)
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1382
	ACPI_COMPANION_SET(&spi->dev, adev);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1395
	adev->power.flags.ignore_parent = true;
1396
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1397
	if (spi_add_device(spi)) {
1398
		adev->power.flags.ignore_parent = false;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1412
	handle = ACPI_HANDLE(master->dev.parent);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1426
static void spi_master_release(struct device *dev)
1427 1428 1429
{
	struct spi_master *master;

T
Tony Jones 已提交
1430
	master = container_of(dev, struct spi_master, dev);
1431 1432 1433 1434 1435 1436
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1437
	.dev_release	= spi_master_release,
1438 1439 1440
};


1441

1442 1443 1444
/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1445
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1446
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1447
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1448
 * Context: can sleep
1449 1450 1451
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1452
 * an spi_master structure, prior to calling spi_register_master().
1453 1454 1455 1456 1457
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1458
 * the master's methods before calling spi_register_master(); and (after errors
1459 1460
 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 * leak.
1461
 */
1462
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1463 1464 1465
{
	struct spi_master	*master;

D
David Brownell 已提交
1466 1467 1468
	if (!dev)
		return NULL;

J
Jingoo Han 已提交
1469
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1470 1471 1472
	if (!master)
		return NULL;

T
Tony Jones 已提交
1473
	device_initialize(&master->dev);
1474 1475
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1476 1477
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
1478
	spi_master_set_devdata(master, &master[1]);
1479 1480 1481 1482 1483

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1484 1485 1486
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1487
	int nb, i, *cs;
1488 1489 1490 1491 1492 1493
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
J
Jingoo Han 已提交
1494
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1495

1496 1497
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1498
		return 0;
1499 1500
	else if (nb < 0)
		return nb;
1501 1502 1503 1504 1505 1506 1507 1508 1509

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1510
	for (i = 0; i < master->num_chipselect; i++)
1511
		cs[i] = -ENOENT;
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1525 1526 1527
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1528
 * Context: can sleep
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1542 1543
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1544
 */
1545
int spi_register_master(struct spi_master *master)
1546
{
1547
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1548
	struct device		*dev = master->dev.parent;
1549
	struct boardinfo	*bi;
1550 1551 1552
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1553 1554 1555
	if (!dev)
		return -ENODEV;

1556 1557 1558 1559
	status = of_spi_register_master(master);
	if (status)
		return status;

1560 1561 1562 1563 1564 1565
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1566 1567 1568
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1569
	/* convention:  dynamically assigned bus IDs count down from the max */
1570
	if (master->bus_num < 0) {
1571 1572 1573
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1574
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1575
		dynamic = 1;
1576 1577
	}

1578 1579 1580
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;
1581
	init_completion(&master->xfer_completion);
1582 1583
	if (!master->max_dma_len)
		master->max_dma_len = INT_MAX;
1584

1585 1586 1587
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1588
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1589
	status = device_add(&master->dev);
1590
	if (status < 0)
1591
		goto done;
1592
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1593 1594
			dynamic ? " (dynamic)" : "");

1595 1596 1597 1598 1599 1600
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1601
			device_del(&master->dev);
1602 1603 1604 1605
			goto done;
		}
	}

1606 1607 1608 1609 1610 1611
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1612
	/* Register devices from the device tree and ACPI */
1613
	of_register_spi_devices(master);
1614
	acpi_register_spi_devices(master);
1615 1616 1617 1618 1619
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
1644
	if (!ret) {
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

1655
static int __unregister(struct device *dev, void *null)
1656
{
1657
	spi_unregister_device(to_spi_device(dev));
1658 1659 1660 1661 1662 1663
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1664
 * Context: can sleep
1665 1666 1667 1668 1669 1670 1671 1672
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1673 1674
	int dummy;

1675 1676 1677 1678 1679
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1680 1681 1682 1683
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1684
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1685
	device_unregister(&master->dev);
1686 1687 1688
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

1720
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
1721 1722
{
	struct spi_master *m;
1723
	const u16 *bus_num = data;
D
Dave Young 已提交
1724 1725 1726 1727 1728

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1729 1730 1731
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1732
 * Context: can sleep
1733 1734 1735 1736 1737 1738 1739 1740
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
1741
	struct device		*dev;
1742
	struct spi_master	*master = NULL;
D
Dave Young 已提交
1743

1744
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
1745 1746 1747 1748
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
1749
	return master;
1750 1751 1752 1753 1754 1755
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
1780
	unsigned	bad_bits, ugly_bits;
1781
	int		status = 0;
1782

W
wangyuhang 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
1796 1797 1798 1799
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
1800 1801 1802 1803 1804 1805 1806 1807 1808
	ugly_bits = bad_bits &
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
1809
	if (bad_bits) {
1810
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1811 1812 1813 1814
			bad_bits);
		return -EINVAL;
	}

1815 1816 1817
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

1818 1819 1820
	if (!spi->max_speed_hz)
		spi->max_speed_hz = spi->master->max_speed_hz;

1821 1822
	if (spi->master->setup)
		status = spi->master->setup(spi);
1823

J
Jingoo Han 已提交
1824
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

1837
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1838 1839
{
	struct spi_master *master = spi->master;
1840
	struct spi_transfer *xfer;
1841
	int w_size;
1842

1843 1844 1845
	if (list_empty(&message->transfers))
		return -EINVAL;

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

1865
	/**
1866 1867
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
1868 1869
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1870 1871
	 */
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1872
		message->frame_length += xfer->len;
1873 1874
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
1875 1876

		if (!xfer->speed_hz)
1877
			xfer->speed_hz = spi->max_speed_hz;
1878 1879 1880 1881

		if (master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
			xfer->speed_hz = master->max_speed_hz;
1882

1883 1884 1885 1886 1887 1888 1889 1890
		if (master->bits_per_word_mask) {
			/* Only 32 bits fit in the mask */
			if (xfer->bits_per_word > 32)
				return -EINVAL;
			if (!(master->bits_per_word_mask &
					BIT(xfer->bits_per_word - 1)))
				return -EINVAL;
		}
1891

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
1904
		if (xfer->len % w_size)
1905 1906
			return -EINVAL;

1907 1908 1909
		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
W
wangyuhang 已提交
1910 1911 1912 1913 1914 1915

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
1916 1917
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
1918
		 */
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
1931
		/* check transfer rx_nbits */
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
1944 1945
	}

1946
	message->status = -EINPROGRESS;
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	message->spi = spi;

	trace_spi_message_submit(message);

1959 1960 1961
	return master->transfer(spi, message);
}

D
David Brownell 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
1994 1995
	int ret;
	unsigned long flags;
D
David Brownell 已提交
1996

1997 1998 1999 2000
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2001
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
2002

2003 2004 2005 2006
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
2007

2008 2009 2010
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
2011 2012 2013
}
EXPORT_SYMBOL_GPL(spi_async);

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

2049 2050 2051 2052
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

2064 2065 2066 2067 2068 2069 2070 2071

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

2072 2073 2074 2075 2076
static void spi_complete(void *arg)
{
	complete(arg);
}

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;

	message->complete = spi_complete;
	message->context = &done;

	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

	status = spi_async_locked(spi, message);

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

2103 2104 2105 2106
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
2107
 * Context: can sleep
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
2119 2120 2121
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
2122
 * It returns zero on success, else a negative error code.
2123 2124 2125
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
2126
	return __spi_sync(spi, message, 0);
2127 2128 2129
}
EXPORT_SYMBOL_GPL(spi_sync);

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
2141
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

2206
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
2207
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2208 2209 2210 2211 2212 2213 2214 2215

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
2216 2217
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
2218
 * Context: can sleep
2219 2220 2221 2222
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
2223
 * This call may only be used from a context that may sleep.
2224
 *
D
David Brownell 已提交
2225
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
2226 2227
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
2228
 * spi_{async,sync}() calls with dma-safe buffers.
2229 2230
 */
int spi_write_then_read(struct spi_device *spi,
2231 2232
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
2233
{
D
David Brownell 已提交
2234
	static DEFINE_MUTEX(lock);
2235 2236 2237

	int			status;
	struct spi_message	message;
2238
	struct spi_transfer	x[2];
2239 2240
	u8			*local_buf;

2241 2242 2243 2244
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
2245
	 */
2246
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2247 2248
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
2249 2250 2251 2252 2253
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
2254

2255
	spi_message_init(&message);
J
Jingoo Han 已提交
2256
	memset(x, 0, sizeof(x));
2257 2258 2259 2260 2261 2262 2263 2264
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
2265

2266
	memcpy(local_buf, txbuf, n_tx);
2267 2268
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
2269 2270 2271

	/* do the i/o */
	status = spi_sync(spi, &message);
2272
	if (status == 0)
2273
		memcpy(rxbuf, x[1].rx_buf, n_rx);
2274

2275
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
2276
		mutex_unlock(&lock);
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
2288 2289
	int	status;

2290
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2291 2292 2293 2294 2295 2296 2297 2298
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
2299

2300 2301 2302
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
2303
	return 0;
2304 2305 2306 2307 2308 2309 2310 2311

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
2312
}
2313

2314 2315
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
2316 2317 2318 2319
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
2320
 */
2321
postcore_initcall(spi_init);
2322