spi.c 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * spi.c - SPI init/core code
 *
 * Copyright (C) 2005 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
25
#include <linux/mutex.h>
26
#include <linux/of_device.h>
27
#include <linux/slab.h>
28
#include <linux/mod_devicetable.h>
29
#include <linux/spi/spi.h>
30
#include <linux/of_spi.h>
31 32 33

static void spidev_release(struct device *dev)
{
34
	struct spi_device	*spi = to_spi_device(dev);
35 36 37 38 39

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
40
	spi_master_put(spi->master);
41
	kfree(spi);
42 43 44 45 46 47 48
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);

49
	return sprintf(buf, "%s\n", spi->modalias);
50 51 52 53 54 55 56 57 58 59 60
}

static struct device_attribute spi_dev_attrs[] = {
	__ATTR_RO(modalias),
	__ATTR_NULL,
};

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

80 81 82
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
83 84
	const struct spi_driver	*sdrv = to_spi_driver(drv);

85 86 87 88
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

89 90
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
91

92
	return strcmp(spi->modalias, drv->name) == 0;
93 94
}

95
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
96 97 98
{
	const struct spi_device		*spi = to_spi_device(dev);

99
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
100 101 102 103 104 105 106
	return 0;
}

#ifdef	CONFIG_PM

static int spi_suspend(struct device *dev, pm_message_t message)
{
107
	int			value = 0;
108
	struct spi_driver	*drv = to_spi_driver(dev->driver);
109 110

	/* suspend will stop irqs and dma; no more i/o */
111 112 113 114 115 116
	if (drv) {
		if (drv->suspend)
			value = drv->suspend(to_spi_device(dev), message);
		else
			dev_dbg(dev, "... can't suspend\n");
	}
117 118 119 120 121
	return value;
}

static int spi_resume(struct device *dev)
{
122
	int			value = 0;
123
	struct spi_driver	*drv = to_spi_driver(dev->driver);
124 125

	/* resume may restart the i/o queue */
126 127 128 129 130 131
	if (drv) {
		if (drv->resume)
			value = drv->resume(to_spi_device(dev));
		else
			dev_dbg(dev, "... can't resume\n");
	}
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
	return value;
}

#else
#define spi_suspend	NULL
#define spi_resume	NULL
#endif

struct bus_type spi_bus_type = {
	.name		= "spi",
	.dev_attrs	= spi_dev_attrs,
	.match		= spi_match_device,
	.uevent		= spi_uevent,
	.suspend	= spi_suspend,
	.resume		= spi_resume,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->probe(to_spi_device(dev));
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->remove(to_spi_device(dev));
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
172 173 174 175 176
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
177 178 179 180 181 182 183 184 185 186 187 188 189
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

190 191 192 193 194 195 196 197 198 199
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
200
	struct spi_board_info	board_info;
201 202 203
};

static LIST_HEAD(board_list);
204 205 206 207 208 209
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
210
static DEFINE_MUTEX(board_lock);
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;
	struct device		*dev = master->dev.parent;

	if (!spi_master_get(master))
		return NULL;

	spi = kzalloc(sizeof *spi, GFP_KERNEL);
	if (!spi) {
		dev_err(dev, "cannot alloc spi_device\n");
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
	spi->dev.parent = dev;
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
260
 * Returns 0 on success; negative errno on failure
261 262 263
 */
int spi_add_device(struct spi_device *spi)
{
264
	static DEFINE_MUTEX(spi_add_lock);
265
	struct device *dev = spi->master->dev.parent;
266
	struct device *d;
267 268 269 270 271 272 273 274 275 276 277
	int status;

	/* Chipselects are numbered 0..max; validate. */
	if (spi->chip_select >= spi->master->num_chipselect) {
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
			spi->master->num_chipselect);
		return -EINVAL;
	}

	/* Set the bus ID string */
278
	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
279 280
			spi->chip_select);

281 282 283 284 285 286 287

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

288 289
	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
	if (d != NULL) {
290 291
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
292
		put_device(d);
293 294 295 296 297 298 299 300
		status = -EBUSY;
		goto done;
	}

	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
301
	status = spi_setup(spi);
302 303
	if (status < 0) {
		dev_err(dev, "can't %s %s, status %d\n",
304
				"setup", dev_name(&spi->dev), status);
305
		goto done;
306 307
	}

308
	/* Device may be bound to an active driver when this returns */
309
	status = device_add(&spi->dev);
310
	if (status < 0)
311
		dev_err(dev, "can't %s %s, status %d\n",
312
				"add", dev_name(&spi->dev), status);
313
	else
314
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
315

316 317 318
done:
	mutex_unlock(&spi_add_lock);
	return status;
319 320
}
EXPORT_SYMBOL_GPL(spi_add_device);
321

D
David Brownell 已提交
322 323 324 325 326 327 328
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
329 330 331 332
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
333 334
 *
 * Returns the new device, or NULL.
335
 */
336 337
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
338 339 340 341
{
	struct spi_device	*proxy;
	int			status;

342 343 344 345 346 347 348
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

349 350
	proxy = spi_alloc_device(master);
	if (!proxy)
351 352
		return NULL;

353 354
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

355 356
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
357
	proxy->mode = chip->mode;
358
	proxy->irq = chip->irq;
359
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
360 361 362 363
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

364
	status = spi_add_device(proxy);
365
	if (status < 0) {
366 367
		spi_dev_put(proxy);
		return NULL;
368 369 370 371 372 373
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

374 375 376 377 378 379 380 381 382 383 384 385 386 387
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
388 389 390 391 392 393
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
int __init
spi_register_board_info(struct spi_board_info const *info, unsigned n)
{
410 411
	struct boardinfo *bi;
	int i;
412

413
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
414 415 416
	if (!bi)
		return -ENOMEM;

417 418
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
419

420 421 422 423 424 425
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
426
	}
427 428

	return 0;
429 430 431 432
}

/*-------------------------------------------------------------------------*/

T
Tony Jones 已提交
433
static void spi_master_release(struct device *dev)
434 435 436
{
	struct spi_master *master;

T
Tony Jones 已提交
437
	master = container_of(dev, struct spi_master, dev);
438 439 440 441 442 443
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
444
	.dev_release	= spi_master_release,
445 446 447 448 449 450
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
451
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
452
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
453
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
454
 * Context: can sleep
455 456 457
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
458
 * an spi_master structure, prior to calling spi_register_master().
459 460 461 462 463
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
464
 * the master's methods before calling spi_register_master(); and (after errors
D
David Brownell 已提交
465
 * adding the device) calling spi_master_put() to prevent a memory leak.
466
 */
467
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
468 469 470
{
	struct spi_master	*master;

D
David Brownell 已提交
471 472 473
	if (!dev)
		return NULL;

474
	master = kzalloc(size + sizeof *master, GFP_KERNEL);
475 476 477
	if (!master)
		return NULL;

T
Tony Jones 已提交
478 479 480
	device_initialize(&master->dev);
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
481
	spi_master_set_devdata(master, &master[1]);
482 483 484 485 486 487 488 489

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
490
 * Context: can sleep
491 492 493 494 495 496 497 498 499 500 501 502 503
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
504 505
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
506
 */
507
int spi_register_master(struct spi_master *master)
508
{
509
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
510
	struct device		*dev = master->dev.parent;
511
	struct boardinfo	*bi;
512 513 514
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
515 516 517
	if (!dev)
		return -ENODEV;

518 519 520 521 522 523
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

524
	/* convention:  dynamically assigned bus IDs count down from the max */
525
	if (master->bus_num < 0) {
526 527 528
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
529
		master->bus_num = atomic_dec_return(&dyn_bus_id);
530
		dynamic = 1;
531 532
	}

533 534 535 536
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;

537 538 539
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
540
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
541
	status = device_add(&master->dev);
542
	if (status < 0)
543
		goto done;
544
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
545 546
			dynamic ? " (dynamic)" : "");

547 548 549 550 551 552
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

553
	status = 0;
554 555 556

	/* Register devices from the device tree */
	of_register_spi_devices(master);
557 558 559 560 561 562
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);


563
static int __unregister(struct device *dev, void *null)
564
{
565
	spi_unregister_device(to_spi_device(dev));
566 567 568 569 570 571
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
572
 * Context: can sleep
573 574 575 576 577 578 579 580
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
581 582
	int dummy;

583 584 585 586 587 588
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

	dummy = device_for_each_child(master->dev.parent, &master->dev,
					__unregister);
T
Tony Jones 已提交
589
	device_unregister(&master->dev);
590 591 592
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

D
Dave Young 已提交
593 594 595 596 597 598 599 600 601
static int __spi_master_match(struct device *dev, void *data)
{
	struct spi_master *m;
	u16 *bus_num = data;

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

602 603 604
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
605
 * Context: can sleep
606 607 608 609 610 611 612 613
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
614
	struct device		*dev;
615
	struct spi_master	*master = NULL;
D
Dave Young 已提交
616

617
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
618 619 620 621
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
622
	return master;
623 624 625 626 627 628
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
653
	unsigned	bad_bits;
654 655
	int		status;

656 657 658 659 660 661 662 663 664 665
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
	if (bad_bits) {
		dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
			bad_bits);
		return -EINVAL;
	}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

	status = spi->master->setup(spi);

	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
				"%u bits/w, %u Hz max --> %d\n",
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		struct spi_transfer *xfer;
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

	message->spi = spi;
	message->status = -EINPROGRESS;
	return master->transfer(spi, message);
}

D
David Brownell 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
746 747
	int ret;
	unsigned long flags;
D
David Brownell 已提交
748

749
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
750

751 752 753 754
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
755

756 757 758
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
759 760 761
}
EXPORT_SYMBOL_GPL(spi_async);

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

808 809 810 811 812 813 814 815

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

816 817 818 819 820
static void spi_complete(void *arg)
{
	complete(arg);
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;

	message->complete = spi_complete;
	message->context = &done;

	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

	status = spi_async_locked(spi, message);

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

847 848 849 850
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
851
 * Context: can sleep
852 853 854 855 856 857 858 859 860 861 862
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
863 864 865
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
866
 * It returns zero on success, else a negative error code.
867 868 869
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
870
	return __spi_sync(spi, message, 0);
871 872 873
}
EXPORT_SYMBOL_GPL(spi_sync);

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

950 951
/* portable code must never pass more than 32 bytes */
#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
952 953 954 955 956 957 958 959

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
960 961
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
962
 * Context: can sleep
963 964 965 966
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
967
 * This call may only be used from a context that may sleep.
968
 *
D
David Brownell 已提交
969
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
970 971
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
972
 * spi_{async,sync}() calls with dma-safe buffers.
973 974 975 976 977
 */
int spi_write_then_read(struct spi_device *spi,
		const u8 *txbuf, unsigned n_tx,
		u8 *rxbuf, unsigned n_rx)
{
D
David Brownell 已提交
978
	static DEFINE_MUTEX(lock);
979 980 981

	int			status;
	struct spi_message	message;
982
	struct spi_transfer	x[2];
983 984 985 986 987 988 989 990 991
	u8			*local_buf;

	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
	 * (as a pure convenience thing), but we can keep heap costs
	 * out of the hot path ...
	 */
	if ((n_tx + n_rx) > SPI_BUFSIZ)
		return -EINVAL;

992
	spi_message_init(&message);
993 994 995 996 997 998 999 1000 1001
	memset(x, 0, sizeof x);
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
1002

1003
	/* ... unless someone else is using the pre-allocated buffer */
D
David Brownell 已提交
1004
	if (!mutex_trylock(&lock)) {
1005 1006 1007 1008 1009 1010 1011
		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
		if (!local_buf)
			return -ENOMEM;
	} else
		local_buf = buf;

	memcpy(local_buf, txbuf, n_tx);
1012 1013
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
1014 1015 1016

	/* do the i/o */
	status = spi_sync(spi, &message);
1017
	if (status == 0)
1018
		memcpy(rxbuf, x[1].rx_buf, n_rx);
1019

1020
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
1021
		mutex_unlock(&lock);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
1033 1034
	int	status;

1035
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1036 1037 1038 1039 1040 1041 1042 1043
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
1044

1045 1046 1047
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
1048
	return 0;
1049 1050 1051 1052 1053 1054 1055 1056

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
1057
}
1058

1059 1060
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
1061 1062 1063 1064
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
1065
 */
1066
postcore_initcall(spi_init);
1067