spi.c 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * spi.c - SPI init/core code
 *
 * Copyright (C) 2005 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
25
#include <linux/mutex.h>
26
#include <linux/slab.h>
27
#include <linux/mod_devicetable.h>
28
#include <linux/spi/spi.h>
29
#include <linux/of_spi.h>
30 31


32 33 34
/* SPI bustype and spi_master class are registered after board init code
 * provides the SPI device tables, ensuring that both are present by the
 * time controller driver registration causes spi_devices to "enumerate".
35 36 37
 */
static void spidev_release(struct device *dev)
{
38
	struct spi_device	*spi = to_spi_device(dev);
39 40 41 42 43

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
44
	spi_master_put(spi->master);
45
	kfree(spi);
46 47 48 49 50 51 52
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);

53
	return sprintf(buf, "%s\n", spi->modalias);
54 55 56 57 58 59 60 61 62 63 64
}

static struct device_attribute spi_dev_attrs[] = {
	__ATTR_RO(modalias),
	__ATTR_NULL,
};

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

84 85 86
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
87 88 89 90
	const struct spi_driver	*sdrv = to_spi_driver(drv);

	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
91

92
	return strcmp(spi->modalias, drv->name) == 0;
93 94
}

95
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
96 97 98
{
	const struct spi_device		*spi = to_spi_device(dev);

99
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
100 101 102 103 104 105 106
	return 0;
}

#ifdef	CONFIG_PM

static int spi_suspend(struct device *dev, pm_message_t message)
{
107
	int			value = 0;
108
	struct spi_driver	*drv = to_spi_driver(dev->driver);
109 110

	/* suspend will stop irqs and dma; no more i/o */
111 112 113 114 115 116
	if (drv) {
		if (drv->suspend)
			value = drv->suspend(to_spi_device(dev), message);
		else
			dev_dbg(dev, "... can't suspend\n");
	}
117 118 119 120 121
	return value;
}

static int spi_resume(struct device *dev)
{
122
	int			value = 0;
123
	struct spi_driver	*drv = to_spi_driver(dev->driver);
124 125

	/* resume may restart the i/o queue */
126 127 128 129 130 131
	if (drv) {
		if (drv->resume)
			value = drv->resume(to_spi_device(dev));
		else
			dev_dbg(dev, "... can't resume\n");
	}
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
	return value;
}

#else
#define spi_suspend	NULL
#define spi_resume	NULL
#endif

struct bus_type spi_bus_type = {
	.name		= "spi",
	.dev_attrs	= spi_dev_attrs,
	.match		= spi_match_device,
	.uevent		= spi_uevent,
	.suspend	= spi_suspend,
	.resume		= spi_resume,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->probe(to_spi_device(dev));
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->remove(to_spi_device(dev));
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
172 173 174 175 176
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
177 178 179 180 181 182 183 184 185 186 187 188 189
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
	unsigned		n_board_info;
	struct spi_board_info	board_info[0];
};

static LIST_HEAD(board_list);
205
static DEFINE_MUTEX(board_lock);
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;
	struct device		*dev = master->dev.parent;

	if (!spi_master_get(master))
		return NULL;

	spi = kzalloc(sizeof *spi, GFP_KERNEL);
	if (!spi) {
		dev_err(dev, "cannot alloc spi_device\n");
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
	spi->dev.parent = dev;
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
255
 * Returns 0 on success; negative errno on failure
256 257 258
 */
int spi_add_device(struct spi_device *spi)
{
259
	static DEFINE_MUTEX(spi_add_lock);
260
	struct device *dev = spi->master->dev.parent;
261
	struct device *d;
262 263 264 265 266 267 268 269 270 271 272
	int status;

	/* Chipselects are numbered 0..max; validate. */
	if (spi->chip_select >= spi->master->num_chipselect) {
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
			spi->master->num_chipselect);
		return -EINVAL;
	}

	/* Set the bus ID string */
273
	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
274 275
			spi->chip_select);

276 277 278 279 280 281 282

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

283 284
	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
	if (d != NULL) {
285 286
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
287
		put_device(d);
288 289 290 291 292 293 294 295
		status = -EBUSY;
		goto done;
	}

	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
296
	status = spi_setup(spi);
297 298
	if (status < 0) {
		dev_err(dev, "can't %s %s, status %d\n",
299
				"setup", dev_name(&spi->dev), status);
300
		goto done;
301 302
	}

303
	/* Device may be bound to an active driver when this returns */
304
	status = device_add(&spi->dev);
305
	if (status < 0)
306
		dev_err(dev, "can't %s %s, status %d\n",
307
				"add", dev_name(&spi->dev), status);
308
	else
309
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
310

311 312 313
done:
	mutex_unlock(&spi_add_lock);
	return status;
314 315
}
EXPORT_SYMBOL_GPL(spi_add_device);
316

D
David Brownell 已提交
317 318 319 320 321 322 323
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
324 325 326 327
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
328 329
 *
 * Returns the new device, or NULL.
330
 */
331 332
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
333 334 335 336
{
	struct spi_device	*proxy;
	int			status;

337 338 339 340 341 342 343
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

344 345
	proxy = spi_alloc_device(master);
	if (!proxy)
346 347
		return NULL;

348 349
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

350 351
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
352
	proxy->mode = chip->mode;
353
	proxy->irq = chip->irq;
354
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
355 356 357 358
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

359
	status = spi_add_device(proxy);
360
	if (status < 0) {
361 362
		spi_dev_put(proxy);
		return NULL;
363 364 365 366 367 368
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

D
David Brownell 已提交
369 370 371 372 373 374
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
int __init
spi_register_board_info(struct spi_board_info const *info, unsigned n)
{
	struct boardinfo	*bi;

393
	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
394 395 396
	if (!bi)
		return -ENOMEM;
	bi->n_board_info = n;
397
	memcpy(bi->board_info, info, n * sizeof *info);
398

399
	mutex_lock(&board_lock);
400
	list_add_tail(&bi->list, &board_list);
401
	mutex_unlock(&board_lock);
402 403 404 405 406 407 408
	return 0;
}

/* FIXME someone should add support for a __setup("spi", ...) that
 * creates board info from kernel command lines
 */

409
static void scan_boardinfo(struct spi_master *master)
410 411 412
{
	struct boardinfo	*bi;

413
	mutex_lock(&board_lock);
414 415 416 417 418 419 420
	list_for_each_entry(bi, &board_list, list) {
		struct spi_board_info	*chip = bi->board_info;
		unsigned		n;

		for (n = bi->n_board_info; n > 0; n--, chip++) {
			if (chip->bus_num != master->bus_num)
				continue;
421 422
			/* NOTE: this relies on spi_new_device to
			 * issue diagnostics when given bogus inputs
423 424 425 426
			 */
			(void) spi_new_device(master, chip);
		}
	}
427
	mutex_unlock(&board_lock);
428 429 430 431
}

/*-------------------------------------------------------------------------*/

T
Tony Jones 已提交
432
static void spi_master_release(struct device *dev)
433 434 435
{
	struct spi_master *master;

T
Tony Jones 已提交
436
	master = container_of(dev, struct spi_master, dev);
437 438 439 440 441 442
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
443
	.dev_release	= spi_master_release,
444 445 446 447 448 449
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
450
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
451
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
452
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
453
 * Context: can sleep
454 455 456
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
457
 * an spi_master structure, prior to calling spi_register_master().
458 459 460 461 462
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
463
 * the master's methods before calling spi_register_master(); and (after errors
D
David Brownell 已提交
464
 * adding the device) calling spi_master_put() to prevent a memory leak.
465
 */
466
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
467 468 469
{
	struct spi_master	*master;

D
David Brownell 已提交
470 471 472
	if (!dev)
		return NULL;

473
	master = kzalloc(size + sizeof *master, GFP_KERNEL);
474 475 476
	if (!master)
		return NULL;

T
Tony Jones 已提交
477 478 479
	device_initialize(&master->dev);
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
480
	spi_master_set_devdata(master, &master[1]);
481 482 483 484 485 486 487 488

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
489
 * Context: can sleep
490 491 492 493 494 495 496 497 498 499 500 501 502
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
503 504
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
505
 */
506
int spi_register_master(struct spi_master *master)
507
{
508
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
509
	struct device		*dev = master->dev.parent;
510 511 512
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
513 514 515
	if (!dev)
		return -ENODEV;

516 517 518 519 520 521
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

522
	/* convention:  dynamically assigned bus IDs count down from the max */
523
	if (master->bus_num < 0) {
524 525 526
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
527
		master->bus_num = atomic_dec_return(&dyn_bus_id);
528
		dynamic = 1;
529 530
	}

531 532 533 534
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;

535 536 537
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
538
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
539
	status = device_add(&master->dev);
540
	if (status < 0)
541
		goto done;
542
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
543 544 545 546 547
			dynamic ? " (dynamic)" : "");

	/* populate children from any spi device tables */
	scan_boardinfo(master);
	status = 0;
548 549 550

	/* Register devices from the device tree */
	of_register_spi_devices(master);
551 552 553 554 555 556
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);


557
static int __unregister(struct device *dev, void *master_dev)
558 559
{
	/* note: before about 2.6.14-rc1 this would corrupt memory: */
560 561
	if (dev != master_dev)
		spi_unregister_device(to_spi_device(dev));
562 563 564 565 566 567
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
568
 * Context: can sleep
569 570 571 572 573 574 575 576
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
577 578
	int dummy;

579 580
	dummy = device_for_each_child(master->dev.parent, &master->dev,
					__unregister);
T
Tony Jones 已提交
581
	device_unregister(&master->dev);
582 583 584
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

D
Dave Young 已提交
585 586 587 588 589 590 591 592 593
static int __spi_master_match(struct device *dev, void *data)
{
	struct spi_master *m;
	u16 *bus_num = data;

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

594 595 596
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
597
 * Context: can sleep
598 599 600 601 602 603 604 605
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
606
	struct device		*dev;
607
	struct spi_master	*master = NULL;
D
Dave Young 已提交
608

609
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
610 611 612 613
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
614
	return master;
615 616 617 618 619 620
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
645
	unsigned	bad_bits;
646 647
	int		status;

648 649 650 651 652 653 654 655 656 657
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
	if (bad_bits) {
		dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
			bad_bits);
		return -EINVAL;
	}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

	status = spi->master->setup(spi);

	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
				"%u bits/w, %u Hz max --> %d\n",
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		struct spi_transfer *xfer;
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

	message->spi = spi;
	message->status = -EINPROGRESS;
	return master->transfer(spi, message);
}

D
David Brownell 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
738 739
	int ret;
	unsigned long flags;
D
David Brownell 已提交
740

741
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
742

743 744 745 746
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
747

748 749 750
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
751 752 753
}
EXPORT_SYMBOL_GPL(spi_async);

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

800 801 802 803 804 805 806 807

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

808 809 810 811 812
static void spi_complete(void *arg)
{
	complete(arg);
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;

	message->complete = spi_complete;
	message->context = &done;

	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

	status = spi_async_locked(spi, message);

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

839 840 841 842
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
843
 * Context: can sleep
844 845 846 847 848 849 850 851 852 853 854
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
855 856 857
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
858
 * It returns zero on success, else a negative error code.
859 860 861
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
862
	return __spi_sync(spi, message, 0);
863 864 865
}
EXPORT_SYMBOL_GPL(spi_sync);

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

942 943
/* portable code must never pass more than 32 bytes */
#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
944 945 946 947 948 949 950 951

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
952 953
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
954
 * Context: can sleep
955 956 957 958
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
959
 * This call may only be used from a context that may sleep.
960
 *
D
David Brownell 已提交
961
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
962 963
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
964
 * spi_{async,sync}() calls with dma-safe buffers.
965 966 967 968 969
 */
int spi_write_then_read(struct spi_device *spi,
		const u8 *txbuf, unsigned n_tx,
		u8 *rxbuf, unsigned n_rx)
{
D
David Brownell 已提交
970
	static DEFINE_MUTEX(lock);
971 972 973

	int			status;
	struct spi_message	message;
974
	struct spi_transfer	x[2];
975 976 977 978 979 980 981 982 983
	u8			*local_buf;

	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
	 * (as a pure convenience thing), but we can keep heap costs
	 * out of the hot path ...
	 */
	if ((n_tx + n_rx) > SPI_BUFSIZ)
		return -EINVAL;

984
	spi_message_init(&message);
985 986 987 988 989 990 991 992 993
	memset(x, 0, sizeof x);
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
994

995
	/* ... unless someone else is using the pre-allocated buffer */
D
David Brownell 已提交
996
	if (!mutex_trylock(&lock)) {
997 998 999 1000 1001 1002 1003
		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
		if (!local_buf)
			return -ENOMEM;
	} else
		local_buf = buf;

	memcpy(local_buf, txbuf, n_tx);
1004 1005
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
1006 1007 1008

	/* do the i/o */
	status = spi_sync(spi, &message);
1009
	if (status == 0)
1010
		memcpy(rxbuf, x[1].rx_buf, n_rx);
1011

1012
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
1013
		mutex_unlock(&lock);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
1025 1026
	int	status;

1027
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1028 1029 1030 1031 1032 1033 1034 1035
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
1036

1037 1038 1039
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
1040
	return 0;
1041 1042 1043 1044 1045 1046 1047 1048

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
1049
}
1050

1051 1052
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
1053 1054 1055 1056
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
1057
 */
1058
postcore_initcall(spi_init);
1059