amd_iommu_init.c 50.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
23
#include <linux/slab.h>
24
#include <linux/syscore_ops.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27
#include <linux/amd-iommu.h>
28
#include <linux/export.h>
29
#include <acpi/acpi.h>
30
#include <asm/pci-direct.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/x86_init.h>
34
#include <asm/iommu_table.h>
35
#include <asm/io_apic.h>
36
#include <asm/irq_remapping.h>
37 38 39

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
40
#include "irq_remapping.h"
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47
60 61 62 63
#define IVHD_DEV_SPECIAL		0x48

#define IVHD_SPECIAL_IOAPIC		1
#define IVHD_SPECIAL_HPET		2
64

J
Joerg Roedel 已提交
65 66 67 68
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
69 70 71 72 73 74 75 76 77 78 79 80 81

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

82 83 84 85 86 87 88 89 90 91 92
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
93 94 95 96 97 98 99 100 101 102 103 104
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

105 106 107 108
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
109 110 111 112 113 114 115
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

116 117 118 119
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
120 121 122 123 124 125 126 127 128 129 130
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

131
bool amd_iommu_dump;
132
bool amd_iommu_irq_remap __read_mostly;
133

134
static bool amd_iommu_detected;
135
static bool __initdata amd_iommu_disabled;
136

137 138
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
139
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
140
					   we find in ACPI */
141
u32 amd_iommu_unmap_flush;		/* if true, flush on every unmap */
142

143
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
144
					   system */
145

146 147 148 149
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;

150 151
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
152
bool amd_iommu_iotlb_sup __read_mostly = true;
153

154 155
u32 amd_iommu_max_pasids __read_mostly = ~0;

156 157
bool amd_iommu_v2_present __read_mostly;

158 159
bool amd_iommu_force_isolation __read_mostly;

160 161 162 163 164 165
/*
 * List of protection domains - used during resume
 */
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;

166 167 168 169 170 171
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
172
struct dev_table_entry *amd_iommu_dev_table;
173 174 175 176 177 178

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
179
u16 *amd_iommu_alias_table;
180 181 182 183 184

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
185
struct amd_iommu **amd_iommu_rlookup_table;
186 187

/*
188 189 190 191 192
 * This table is used to find the irq remapping table for a given device id
 * quickly.
 */
struct irq_remap_table **irq_lookup_table;

193
/*
F
Frank Arnold 已提交
194
 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
195 196
 * to know which ones are already in use.
 */
197 198
unsigned long *amd_iommu_pd_alloc_bitmap;

199 200 201
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
enum iommu_init_state {
	IOMMU_START_STATE,
	IOMMU_IVRS_DETECTED,
	IOMMU_ACPI_FINISHED,
	IOMMU_ENABLED,
	IOMMU_PCI_INIT,
	IOMMU_INTERRUPTS_EN,
	IOMMU_DMA_OPS,
	IOMMU_INITIALIZED,
	IOMMU_NOT_FOUND,
	IOMMU_INIT_ERROR,
};

static enum iommu_init_state init_state = IOMMU_START_STATE;

218
static int amd_iommu_enable_interrupts(void);
219
static int __init iommu_go_to_state(enum iommu_init_state state);
220

221 222 223 224 225 226
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

227 228 229
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
230
			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
231 232 233 234

	return 1UL << shift;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/* Access to l1 and l2 indexed register spaces */

static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
	pci_read_config_dword(iommu->dev, 0xfc, &val);
	return val;
}

static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
	pci_write_config_dword(iommu->dev, 0xfc, val);
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}

static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf0, address);
	pci_read_config_dword(iommu->dev, 0xf4, &val);
	return val;
}

static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
	pci_write_config_dword(iommu->dev, 0xf4, val);
}

268 269 270 271 272 273 274 275
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
276

277 278 279 280
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
281
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

299
/* Programs the physical address of the device table into the IOMMU hardware */
300
static void iommu_set_device_table(struct amd_iommu *iommu)
301
{
302
	u64 entry;
303 304 305 306 307 308 309 310 311

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

312
/* Generic functions to enable/disable certain features of the IOMMU. */
313
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
314 315 316 317 318 319 320 321
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

322
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
323 324 325
{
	u32 ctrl;

326
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
327 328 329 330
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

331 332 333 334 335 336 337 338 339 340
static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl &= ~CTRL_INV_TO_MASK;
	ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

341
/* Function to enable the hardware */
342
static void iommu_enable(struct amd_iommu *iommu)
343 344 345 346
{
	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

347
static void iommu_disable(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
348
{
349 350 351 352 353 354 355 356
	/* Disable command buffer */
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	/* Disable event logging and event interrupts */
	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);

	/* Disable IOMMU hardware itself */
357
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
J
Joerg Roedel 已提交
358 359
}

360 361 362 363
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
J
Joerg Roedel 已提交
364
static u8 __iomem * __init iommu_map_mmio_space(u64 address)
365
{
366 367 368 369
	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
		pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
			address);
		pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
370
		return NULL;
371
	}
372

J
Joerg Roedel 已提交
373
	return (u8 __iomem *)ioremap_nocache(address, MMIO_REGION_LENGTH);
374 375 376 377 378 379 380 381 382
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

383 384 385 386 387 388 389 390 391
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

392 393 394 395 396 397 398 399
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

400 401 402 403
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
404 405 406 407 408
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
409
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
410 411 412 413

	return 0;
}

414 415 416 417
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
438
			/* all the above subfield types refer to device ids */
439
			update_last_devid(dev->devid);
440 441 442 443
			break;
		default:
			break;
		}
444
		p += ivhd_entry_length(p);
445 446 447 448 449 450 451
	}

	WARN_ON(p != end);

	return 0;
}

452 453 454 455 456
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
457 458 459 460 461 462 463 464 465 466 467 468
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
469
	if (checksum != 0)
470
		/* ACPI table corrupt */
471
		return -ENODEV;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

492 493
/****************************************************************************
 *
F
Frank Arnold 已提交
494
 * The following functions belong to the code path which parses the ACPI table
495 496 497 498 499 500 501 502 503 504 505
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
506 507
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
508
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
509 510 511 512 513
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

514
	iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
515

516 517 518
	return cmd_buf;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * This function resets the command buffer if the IOMMU stopped fetching
 * commands from it.
 */
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

533 534 535 536 537 538 539 540 541 542 543
/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
544
	entry |= MMIO_CMD_SIZE_512;
545

546
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
547
		    &entry, sizeof(entry));
548

549
	amd_iommu_reset_cmd_buffer(iommu);
550
	iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
551 552 553 554
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
555
	free_pages((unsigned long)iommu->cmd_buf,
556
		   get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
557 558
}

559 560 561 562 563 564 565 566 567
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

568 569
	iommu->evt_buf_size = EVT_BUFFER_SIZE;

570 571 572 573 574 575 576 577 578
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

579
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
580

581 582 583
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

584 585 586 587
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

588
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
589 590 591 592 593 594 595
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_ppr_log(struct amd_iommu *iommu)
{
	iommu->ppr_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(PPR_LOG_SIZE));

	if (iommu->ppr_log == NULL)
		return NULL;

	return iommu->ppr_log;
}

static void iommu_enable_ppr_log(struct amd_iommu *iommu)
{
	u64 entry;

	if (iommu->ppr_log == NULL)
		return;

	entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;

	memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
		    &entry, sizeof(entry));

	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_PPFLOG_EN);
	iommu_feature_enable(iommu, CONTROL_PPR_EN);
}

static void __init free_ppr_log(struct amd_iommu *iommu)
{
	if (iommu->ppr_log == NULL)
		return;

	free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
}

636 637 638 639 640 641 642 643
static void iommu_enable_gt(struct amd_iommu *iommu)
{
	if (!iommu_feature(iommu, FEATURE_GT))
		return;

	iommu_feature_enable(iommu, CONTROL_GT_EN);
}

644
/* sets a specific bit in the device table entry. */
645 646
static void set_dev_entry_bit(u16 devid, u8 bit)
{
647 648
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
649

650
	amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
651 652
}

653 654
static int get_dev_entry_bit(u16 devid, u8 bit)
{
655 656
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
657

658
	return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
659 660 661 662 663 664 665 666 667 668 669 670 671 672
}


void amd_iommu_apply_erratum_63(u16 devid)
{
	int sysmgt;

	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);

	if (sysmgt == 0x01)
		set_dev_entry_bit(devid, DEV_ENTRY_IW);
}

673 674 675 676 677 678
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

679 680 681 682
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
683 684
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

701 702
	amd_iommu_apply_erratum_63(devid);

703
	set_iommu_for_device(iommu, devid);
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static int add_special_device(u8 type, u8 id, u16 devid)
{
	struct devid_map *entry;
	struct list_head *list;

	if (type != IVHD_SPECIAL_IOAPIC && type != IVHD_SPECIAL_HPET)
		return -EINVAL;

	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return -ENOMEM;

	entry->id    = id;
	entry->devid = devid;

	if (type == IVHD_SPECIAL_IOAPIC)
		list = &ioapic_map;
	else
		list = &hpet_map;

	list_add_tail(&entry->list, list);

	return 0;
}

731
/*
F
Frank Arnold 已提交
732
 * Reads the device exclusion range from ACPI and initializes the IOMMU with
733 734
 * it
 */
735 736 737 738 739 740 741 742
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
743 744 745 746 747
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
748 749 750 751 752 753
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

754 755 756 757
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
758
static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
759 760 761 762
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
763 764
	u16 devid = 0, devid_start = 0, devid_to = 0;
	u32 dev_i, ext_flags = 0;
765
	bool alias = false;
766 767 768
	struct ivhd_entry *e;

	/*
769
	 * First save the recommended feature enable bits from ACPI
770
	 */
771
	iommu->acpi_flags = h->flags;
772 773 774 775 776 777 778

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

779

780 781 782 783
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
784 785 786 787 788 789 790 791 792 793 794

			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
				    " last device %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(iommu->first_device),
				    PCI_SLOT(iommu->first_device),
				    PCI_FUNC(iommu->first_device),
				    PCI_BUS(iommu->last_device),
				    PCI_SLOT(iommu->last_device),
				    PCI_FUNC(iommu->last_device),
				    e->flags);

795 796
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
797 798
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
799 800
			break;
		case IVHD_DEV_SELECT:
801 802 803 804 805 806 807 808

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

809
			devid = e->devid;
810
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
811 812
			break;
		case IVHD_DEV_SELECT_RANGE_START:
813 814 815 816 817 818 819 820

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

821 822 823
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
824
			alias = false;
825 826
			break;
		case IVHD_DEV_ALIAS:
827 828 829 830 831 832 833 834 835 836 837

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

838 839
			devid = e->devid;
			devid_to = e->ext >> 8;
840
			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
841
			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
842 843 844
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
845 846 847 848 849 850 851 852 853 854 855 856

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

857 858 859 860
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
861
			alias = true;
862 863
			break;
		case IVHD_DEV_EXT_SELECT:
864 865 866 867 868 869 870 871

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

872
			devid = e->devid;
873 874
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
875 876
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
877 878 879 880 881 882 883 884

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

885 886 887
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
888
			alias = false;
889 890
			break;
		case IVHD_DEV_RANGE_END:
891 892 893 894 895 896

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

897 898
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
899
				if (alias) {
900
					amd_iommu_alias_table[dev_i] = devid_to;
901 902 903 904 905
					set_dev_entry_from_acpi(iommu,
						devid_to, flags, ext_flags);
				}
				set_dev_entry_from_acpi(iommu, dev_i,
							flags, ext_flags);
906 907
			}
			break;
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		case IVHD_DEV_SPECIAL: {
			u8 handle, type;
			const char *var;
			u16 devid;
			int ret;

			handle = e->ext & 0xff;
			devid  = (e->ext >>  8) & 0xffff;
			type   = (e->ext >> 24) & 0xff;

			if (type == IVHD_SPECIAL_IOAPIC)
				var = "IOAPIC";
			else if (type == IVHD_SPECIAL_HPET)
				var = "HPET";
			else
				var = "UNKNOWN";

			DUMP_printk("  DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n",
				    var, (int)handle,
				    PCI_BUS(devid),
				    PCI_SLOT(devid),
				    PCI_FUNC(devid));

			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
			ret = add_special_device(type, handle, devid);
			if (ret)
				return ret;
			break;
		}
937 938 939 940
		default:
			break;
		}

941
		p += ivhd_entry_length(p);
942
	}
943 944

	return 0;
945 946
}

947
/* Initializes the device->iommu mapping for the driver */
948 949
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
950
	u32 i;
951 952 953 954 955 956 957

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

958 959 960
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
961
	free_event_buffer(iommu);
962
	free_ppr_log(iommu);
963 964 965 966 967 968 969
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

970
	for_each_iommu_safe(iommu, next) {
971 972 973 974 975 976
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

977 978 979 980 981 982
/*
 * Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations)
 * Workaround:
 *     BIOS should disable L2B micellaneous clock gating by setting
 *     L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b
 */
983
static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu)
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
{
	u32 value;

	if ((boot_cpu_data.x86 != 0x15) ||
	    (boot_cpu_data.x86_model < 0x10) ||
	    (boot_cpu_data.x86_model > 0x1f))
		return;

	pci_write_config_dword(iommu->dev, 0xf0, 0x90);
	pci_read_config_dword(iommu->dev, 0xf4, &value);

	if (value & BIT(2))
		return;

	/* Select NB indirect register 0x90 and enable writing */
	pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8));

	pci_write_config_dword(iommu->dev, 0xf4, value | 0x4);
	pr_info("AMD-Vi: Applying erratum 746 workaround for IOMMU at %s\n",
		dev_name(&iommu->dev->dev));

	/* Clear the enable writing bit */
	pci_write_config_dword(iommu->dev, 0xf0, 0x90);
}

1009 1010 1011 1012 1013
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
1014 1015
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
1016 1017
	int ret;

1018
	spin_lock_init(&iommu->lock);
1019 1020

	/* Add IOMMU to internal data structures */
1021
	list_add_tail(&iommu->list, &amd_iommu_list);
1022 1023 1024 1025 1026 1027 1028 1029 1030
	iommu->index             = amd_iommus_present++;

	if (unlikely(iommu->index >= MAX_IOMMUS)) {
		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
		return -ENOSYS;
	}

	/* Index is fine - add IOMMU to the array */
	amd_iommus[iommu->index] = iommu;
1031 1032 1033 1034

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
1035
	iommu->devid   = h->devid;
1036
	iommu->cap_ptr = h->cap_ptr;
1037
	iommu->pci_seg = h->pci_seg;
1038 1039 1040 1041 1042 1043 1044 1045 1046
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

1047 1048 1049 1050
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

1051 1052
	iommu->int_enabled = false;

1053 1054 1055
	ret = init_iommu_from_acpi(iommu, h);
	if (ret)
		return ret;
1056 1057 1058 1059 1060 1061 1062

	/*
	 * Make sure IOMMU is not considered to translate itself. The IVRS
	 * table tells us so, but this is a lie!
	 */
	amd_iommu_rlookup_table[iommu->devid] = NULL;

1063 1064
	init_iommu_devices(iommu);

1065
	return 0;
1066 1067
}

1068 1069 1070 1071
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
1086

1087
			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
1088 1089 1090 1091 1092 1093 1094
				    "seg: %d flags: %01x info %04x\n",
				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

1095
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
1096 1097
			if (iommu == NULL)
				return -ENOMEM;
1098

1099
			ret = init_iommu_one(iommu, h);
1100 1101
			if (ret)
				return ret;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static int iommu_init_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
	u32 range, misc, low, high;

	iommu->dev = pci_get_bus_and_slot(PCI_BUS(iommu->devid),
					  iommu->devid & 0xff);
	if (!iommu->dev)
		return -ENODEV;

	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);

	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));

	if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
		amd_iommu_iotlb_sup = false;

	/* read extended feature bits */
	low  = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
	high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);

	iommu->features = ((u64)high << 32) | low;

	if (iommu_feature(iommu, FEATURE_GT)) {
		int glxval;
		u32 pasids;
		u64 shift;

		shift   = iommu->features & FEATURE_PASID_MASK;
		shift >>= FEATURE_PASID_SHIFT;
		pasids  = (1 << shift);

		amd_iommu_max_pasids = min(amd_iommu_max_pasids, pasids);

		glxval   = iommu->features & FEATURE_GLXVAL_MASK;
		glxval >>= FEATURE_GLXVAL_SHIFT;

		if (amd_iommu_max_glx_val == -1)
			amd_iommu_max_glx_val = glxval;
		else
			amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
	}

	if (iommu_feature(iommu, FEATURE_GT) &&
	    iommu_feature(iommu, FEATURE_PPR)) {
		iommu->is_iommu_v2   = true;
		amd_iommu_v2_present = true;
	}

	if (iommu_feature(iommu, FEATURE_PPR)) {
		iommu->ppr_log = alloc_ppr_log(iommu);
		if (!iommu->ppr_log)
			return -ENOMEM;
	}

	if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
		amd_iommu_np_cache = true;

	if (is_rd890_iommu(iommu->dev)) {
		int i, j;

		iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number,
				PCI_DEVFN(0, 0));

		/*
		 * Some rd890 systems may not be fully reconfigured by the
		 * BIOS, so it's necessary for us to store this information so
		 * it can be reprogrammed on resume
		 */
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
				&iommu->stored_addr_lo);
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
				&iommu->stored_addr_hi);

		/* Low bit locks writes to configuration space */
		iommu->stored_addr_lo &= ~1;

		for (i = 0; i < 6; i++)
			for (j = 0; j < 0x12; j++)
				iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);

		for (i = 0; i < 0x83; i++)
			iommu->stored_l2[i] = iommu_read_l2(iommu, i);
	}

1207 1208
	amd_iommu_erratum_746_workaround(iommu);

1209 1210 1211
	return pci_enable_device(iommu->dev);
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
static void print_iommu_info(void)
{
	static const char * const feat_str[] = {
		"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
		"IA", "GA", "HE", "PC"
	};
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		int i;

		pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n",
			dev_name(&iommu->dev->dev), iommu->cap_ptr);

		if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
			pr_info("AMD-Vi:  Extended features: ");
1228
			for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
1229 1230 1231 1232
				if (iommu_feature(iommu, (1ULL << i)))
					pr_cont(" %s", feat_str[i]);
			}
		pr_cont("\n");
1233
		}
1234
	}
1235 1236
	if (irq_remapping_enabled)
		pr_info("AMD-Vi: Interrupt remapping enabled\n");
1237 1238
}

1239
static int __init amd_iommu_init_pci(void)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_pci(iommu);
		if (ret)
			break;
	}

	ret = amd_iommu_init_devices();

1252 1253
	print_iommu_info();

1254 1255 1256
	return ret;
}

1257 1258 1259
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
F
Frank Arnold 已提交
1260
 * in the system. It's a bit challenging because there could be multiple
1261 1262 1263 1264 1265
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

1266
static int iommu_setup_msi(struct amd_iommu *iommu)
1267 1268 1269
{
	int r;

1270 1271 1272
	r = pci_enable_msi(iommu->dev);
	if (r)
		return r;
1273

1274 1275 1276 1277 1278
	r = request_threaded_irq(iommu->dev->irq,
				 amd_iommu_int_handler,
				 amd_iommu_int_thread,
				 0, "AMD-Vi",
				 iommu->dev);
1279 1280 1281

	if (r) {
		pci_disable_msi(iommu->dev);
1282
		return r;
1283 1284
	}

1285
	iommu->int_enabled = true;
1286

1287 1288 1289
	return 0;
}

1290
static int iommu_init_msi(struct amd_iommu *iommu)
1291
{
1292 1293
	int ret;

1294
	if (iommu->int_enabled)
1295
		goto enable_faults;
1296

1297
	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
1298 1299 1300 1301 1302 1303
		ret = iommu_setup_msi(iommu);
	else
		ret = -ENODEV;

	if (ret)
		return ret;
1304

1305 1306
enable_faults:
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1307

1308 1309 1310 1311
	if (iommu->ppr_log != NULL)
		iommu_feature_enable(iommu, CONTROL_PPFINT_EN);

	return 0;
1312 1313
}

1314 1315 1316 1317
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
F
Frank Arnold 已提交
1318
 * gathered (like exclusion and unity mapping ranges).
1319 1320 1321
 *
 ****************************************************************************/

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

1332
/* called when we find an exclusion range definition in ACPI */
1333 1334 1335 1336 1337 1338 1339 1340 1341
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
1342
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

1356
/* called for unity map ACPI definition */
1357 1358
static int __init init_unity_map_range(struct ivmd_header *m)
{
J
Joerg Roedel 已提交
1359
	struct unity_map_entry *e = NULL;
1360
	char *s;
1361 1362 1363 1364 1365 1366 1367

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
1368 1369
		kfree(e);
		return 0;
1370
	case ACPI_IVMD_TYPE:
1371
		s = "IVMD_TYPEi\t\t\t";
1372 1373 1374
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
1375
		s = "IVMD_TYPE_ALL\t\t";
1376 1377 1378 1379
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1380
		s = "IVMD_TYPE_RANGE\t\t";
1381 1382 1383 1384 1385 1386 1387 1388
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1389 1390 1391 1392 1393 1394 1395
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1396 1397 1398 1399 1400
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1401
/* iterates over all memory definitions we find in the ACPI table */
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1423 1424 1425 1426
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
1427
static void init_device_table_dma(void)
1428
{
1429
	u32 devid;
1430 1431 1432 1433 1434 1435 1436

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static void __init uninit_device_table_dma(void)
{
	u32 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		amd_iommu_dev_table[devid].data[0] = 0ULL;
		amd_iommu_dev_table[devid].data[1] = 0ULL;
	}
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
static void init_device_table(void)
{
	u32 devid;

	if (!amd_iommu_irq_remap)
		return;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		set_dev_entry_bit(devid, DEV_ENTRY_IRQ_TBL_EN);
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static void iommu_init_flags(struct amd_iommu *iommu)
{
	iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

	iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1480 1481 1482

	/* Set IOTLB invalidation timeout to 1s */
	iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
1483 1484
}

1485
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1486
{
1487 1488
	int i, j;
	u32 ioc_feature_control;
1489
	struct pci_dev *pdev = iommu->root_pdev;
1490 1491

	/* RD890 BIOSes may not have completely reconfigured the iommu */
1492
	if (!is_rd890_iommu(iommu->dev) || !pdev)
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		return;

	/*
	 * First, we need to ensure that the iommu is enabled. This is
	 * controlled by a register in the northbridge
	 */

	/* Select Northbridge indirect register 0x75 and enable writing */
	pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
	pci_read_config_dword(pdev, 0x64, &ioc_feature_control);

	/* Enable the iommu */
	if (!(ioc_feature_control & 0x1))
		pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);

	/* Restore the iommu BAR */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo);
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
			       iommu->stored_addr_hi);

	/* Restore the l1 indirect regs for each of the 6 l1s */
	for (i = 0; i < 6; i++)
		for (j = 0; j < 0x12; j++)
			iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);

	/* Restore the l2 indirect regs */
	for (i = 0; i < 0x83; i++)
		iommu_write_l2(iommu, i, iommu->stored_l2[i]);

	/* Lock PCI setup registers */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo | 1);
1526 1527
}

1528 1529 1530 1531
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1532
static void early_enable_iommus(void)
1533 1534 1535
{
	struct amd_iommu *iommu;

1536
	for_each_iommu(iommu) {
1537
		iommu_disable(iommu);
1538
		iommu_init_flags(iommu);
1539 1540 1541
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
1542 1543
		iommu_set_exclusion_range(iommu);
		iommu_enable(iommu);
1544
		iommu_flush_all_caches(iommu);
1545 1546 1547
	}
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
static void enable_iommus_v2(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		iommu_enable_ppr_log(iommu);
		iommu_enable_gt(iommu);
	}
}

static void enable_iommus(void)
{
	early_enable_iommus();

	enable_iommus_v2();
}

1565 1566 1567 1568 1569 1570 1571 1572
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

1573 1574 1575 1576 1577
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

1578
static void amd_iommu_resume(void)
1579
{
1580 1581 1582 1583 1584
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_apply_resume_quirks(iommu);

1585 1586
	/* re-load the hardware */
	enable_iommus();
1587 1588

	amd_iommu_enable_interrupts();
1589 1590
}

1591
static int amd_iommu_suspend(void)
1592
{
1593 1594 1595 1596
	/* disable IOMMUs to go out of the way for BIOS */
	disable_iommus();

	return 0;
1597 1598
}

1599
static struct syscore_ops amd_iommu_syscore_ops = {
1600 1601 1602 1603
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

1604 1605
static void __init free_on_init_error(void)
{
1606 1607
	free_pages((unsigned long)irq_lookup_table,
		   get_order(rlookup_table_size));
1608

1609 1610 1611
	if (amd_iommu_irq_cache) {
		kmem_cache_destroy(amd_iommu_irq_cache);
		amd_iommu_irq_cache = NULL;
1612

1613
	}
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));

	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));

	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));

	free_iommu_all();

#ifdef CONFIG_GART_IOMMU
	/*
	 * We failed to initialize the AMD IOMMU - try fallback to GART
	 * if possible.
	 */
	gart_iommu_init();

#endif
}

1636 1637 1638
/* SB IOAPIC is always on this device in AMD systems */
#define IOAPIC_SB_DEVID		((0x00 << 8) | PCI_DEVFN(0x14, 0))

1639 1640
static bool __init check_ioapic_information(void)
{
1641
	bool ret, has_sb_ioapic;
1642 1643
	int idx;

1644 1645
	has_sb_ioapic = false;
	ret           = false;
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	for (idx = 0; idx < nr_ioapics; idx++) {
		int devid, id = mpc_ioapic_id(idx);

		devid = get_ioapic_devid(id);
		if (devid < 0) {
			pr_err(FW_BUG "AMD-Vi: IOAPIC[%d] not in IVRS table\n", id);
			ret = false;
		} else if (devid == IOAPIC_SB_DEVID) {
			has_sb_ioapic = true;
			ret           = true;
1657 1658 1659
		}
	}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	if (!has_sb_ioapic) {
		/*
		 * We expect the SB IOAPIC to be listed in the IVRS
		 * table. The system timer is connected to the SB IOAPIC
		 * and if we don't have it in the list the system will
		 * panic at boot time.  This situation usually happens
		 * when the BIOS is buggy and provides us the wrong
		 * device id for the IOAPIC in the system.
		 */
		pr_err(FW_BUG "AMD-Vi: No southbridge IOAPIC found in IVRS table\n");
	}

	if (!ret)
		pr_err("AMD-Vi: Disabling interrupt remapping due to BIOS Bug(s)\n");

	return ret;
1676 1677
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
static void __init free_dma_resources(void)
{
	amd_iommu_uninit_devices();

	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));

	free_unity_maps();
}

1688
/*
1689 1690 1691
 * This is the hardware init function for AMD IOMMU in the system.
 * This function is called either from amd_iommu_init or from the interrupt
 * remapping setup code.
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
1710 1711
 * After everything is set up the IOMMUs are enabled and the necessary
 * hotplug and suspend notifiers are registered.
1712
 */
1713
static int __init early_amd_iommu_init(void)
1714
{
1715 1716 1717
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;
1718 1719
	int i, ret = 0;

1720
	if (!amd_iommu_detected)
1721 1722
		return -ENODEV;

1723 1724 1725 1726 1727 1728 1729 1730 1731
	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return -ENODEV;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return -EINVAL;
	}

1732 1733 1734 1735 1736
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
1737 1738
	ret = find_last_devid_acpi(ivrs_base);
	if (ret)
1739 1740
		goto out;

1741 1742 1743
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1744 1745

	/* Device table - directly used by all IOMMUs */
1746
	ret = -ENOMEM;
1747
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
1759
		goto out;
1760 1761

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1762 1763
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1764 1765
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
1766
		goto out;
1767

1768 1769
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1770 1771
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
1772
		goto out;
1773 1774

	/*
1775
	 * let all alias entries point to itself
1776
	 */
1777
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1778 1779 1780 1781 1782 1783 1784 1785
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

1786 1787
	spin_lock_init(&amd_iommu_pd_lock);

1788 1789 1790 1791
	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
1792 1793
	ret = init_iommu_all(ivrs_base);
	if (ret)
1794
		goto out;
1795

1796 1797 1798
	if (amd_iommu_irq_remap)
		amd_iommu_irq_remap = check_ioapic_information();

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	if (amd_iommu_irq_remap) {
		/*
		 * Interrupt remapping enabled, create kmem_cache for the
		 * remapping tables.
		 */
		amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
				MAX_IRQS_PER_TABLE * sizeof(u32),
				IRQ_TABLE_ALIGNMENT,
				0, NULL);
		if (!amd_iommu_irq_cache)
			goto out;
1810 1811 1812 1813 1814 1815

		irq_lookup_table = (void *)__get_free_pages(
				GFP_KERNEL | __GFP_ZERO,
				get_order(rlookup_table_size));
		if (!irq_lookup_table)
			goto out;
1816 1817
	}

1818 1819
	ret = init_memory_definitions(ivrs_base);
	if (ret)
1820
		goto out;
1821

1822 1823 1824
	/* init the device table */
	init_device_table();

1825
out:
1826 1827 1828 1829
	/* Don't leak any ACPI memory */
	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
	ivrs_base = NULL;

1830 1831 1832
	return ret;
}

1833
static int amd_iommu_enable_interrupts(void)
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_msi(iommu);
		if (ret)
			goto out;
	}

out:
	return ret;
}

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
static bool detect_ivrs(void)
{
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;

	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return false;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return false;
	}

	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);

1865 1866 1867
	/* Make sure ACS will be enabled during PCI probe */
	pci_request_acs();

1868 1869 1870
	if (!disable_irq_remap)
		amd_iommu_irq_remap = true;

1871 1872 1873
	return true;
}

1874 1875
static int amd_iommu_init_dma(void)
{
1876
	struct amd_iommu *iommu;
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	int ret;

	if (iommu_pass_through)
		ret = amd_iommu_init_passthrough();
	else
		ret = amd_iommu_init_dma_ops();

	if (ret)
		return ret;

1887 1888 1889 1890 1891
	init_device_table_dma();

	for_each_iommu(iommu)
		iommu_flush_all_caches(iommu);

1892 1893 1894 1895 1896 1897 1898
	amd_iommu_init_api();

	amd_iommu_init_notifier();

	return 0;
}

1899
/****************************************************************************
1900
 *
1901 1902 1903 1904 1905
 * AMD IOMMU Initialization State Machine
 *
 ****************************************************************************/

static int __init state_next(void)
1906 1907 1908
{
	int ret = 0;

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	switch (init_state) {
	case IOMMU_START_STATE:
		if (!detect_ivrs()) {
			init_state	= IOMMU_NOT_FOUND;
			ret		= -ENODEV;
		} else {
			init_state	= IOMMU_IVRS_DETECTED;
		}
		break;
	case IOMMU_IVRS_DETECTED:
		ret = early_amd_iommu_init();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
		break;
	case IOMMU_ACPI_FINISHED:
		early_enable_iommus();
		register_syscore_ops(&amd_iommu_syscore_ops);
		x86_platform.iommu_shutdown = disable_iommus;
		init_state = IOMMU_ENABLED;
		break;
	case IOMMU_ENABLED:
		ret = amd_iommu_init_pci();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
		enable_iommus_v2();
		break;
	case IOMMU_PCI_INIT:
		ret = amd_iommu_enable_interrupts();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
		break;
	case IOMMU_INTERRUPTS_EN:
		ret = amd_iommu_init_dma();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS;
		break;
	case IOMMU_DMA_OPS:
		init_state = IOMMU_INITIALIZED;
		break;
	case IOMMU_INITIALIZED:
		/* Nothing to do */
		break;
	case IOMMU_NOT_FOUND:
	case IOMMU_INIT_ERROR:
		/* Error states => do nothing */
		ret = -EINVAL;
		break;
	default:
		/* Unknown state */
		BUG();
	}
1956

1957 1958
	return ret;
}
1959

1960 1961 1962
static int __init iommu_go_to_state(enum iommu_init_state state)
{
	int ret = 0;
1963

1964 1965 1966 1967 1968 1969
	while (init_state != state) {
		ret = state_next();
		if (init_state == IOMMU_NOT_FOUND ||
		    init_state == IOMMU_INIT_ERROR)
			break;
	}
1970

1971
	return ret;
1972
}
1973

1974 1975 1976 1977 1978
#ifdef CONFIG_IRQ_REMAP
int __init amd_iommu_prepare(void)
{
	return iommu_go_to_state(IOMMU_ACPI_FINISHED);
}
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
int __init amd_iommu_supported(void)
{
	return amd_iommu_irq_remap ? 1 : 0;
}

int __init amd_iommu_enable(void)
{
	int ret;

	ret = iommu_go_to_state(IOMMU_ENABLED);
	if (ret)
		return ret;
1992

1993
	irq_remapping_enabled = 1;
1994

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	return 0;
}

void amd_iommu_disable(void)
{
	amd_iommu_suspend();
}

int amd_iommu_reenable(int mode)
{
	amd_iommu_resume();

	return 0;
}
2009

2010 2011 2012 2013 2014 2015
int __init amd_iommu_enable_faulting(void)
{
	/* We enable MSI later when PCI is initialized */
	return 0;
}
#endif
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 */
static int __init amd_iommu_init(void)
{
	int ret;

	ret = iommu_go_to_state(IOMMU_INITIALIZED);
	if (ret) {
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		free_dma_resources();
		if (!irq_remapping_enabled) {
			disable_iommus();
			free_on_init_error();
		} else {
			struct amd_iommu *iommu;

			uninit_device_table_dma();
			for_each_iommu(iommu)
				iommu_flush_all_caches(iommu);
		}
2039 2040 2041
	}

	return ret;
2042 2043
}

2044 2045 2046 2047 2048 2049 2050
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
2051
int __init amd_iommu_detect(void)
2052
{
2053
	int ret;
2054

2055
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
2056
		return -ENODEV;
2057

2058
	if (amd_iommu_disabled)
2059
		return -ENODEV;
2060

2061 2062 2063
	ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
	if (ret)
		return ret;
2064

2065 2066 2067 2068 2069
	amd_iommu_detected = true;
	iommu_detected = 1;
	x86_init.iommu.iommu_init = amd_iommu_init;

	return 0;
2070 2071
}

2072 2073 2074 2075 2076 2077 2078
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

2079 2080 2081 2082 2083 2084 2085
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

2086 2087 2088
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
2089
		if (strncmp(str, "fullflush", 9) == 0)
2090
			amd_iommu_unmap_flush = true;
2091 2092
		if (strncmp(str, "off", 3) == 0)
			amd_iommu_disabled = true;
2093 2094
		if (strncmp(str, "force_isolation", 15) == 0)
			amd_iommu_force_isolation = true;
2095 2096 2097 2098 2099
	}

	return 1;
}

2100
__setup("amd_iommu_dump", parse_amd_iommu_dump);
2101
__setup("amd_iommu=", parse_amd_iommu_options);
2102 2103 2104

IOMMU_INIT_FINISH(amd_iommu_detect,
		  gart_iommu_hole_init,
J
Joerg Roedel 已提交
2105 2106
		  NULL,
		  NULL);
2107 2108 2109 2110 2111 2112

bool amd_iommu_v2_supported(void)
{
	return amd_iommu_v2_present;
}
EXPORT_SYMBOL(amd_iommu_v2_supported);