inode.c 134.3 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22 23
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
24
#include <linux/jbd2.h>
25 26 27 28 29 30
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
31
#include <linux/pagevec.h>
32
#include <linux/mpage.h>
33
#include <linux/namei.h>
34 35
#include <linux/uio.h>
#include <linux/bio.h>
36
#include <linux/workqueue.h>
37
#include <linux/kernel.h>
38
#include <linux/printk.h>
39
#include <linux/slab.h>
40
#include <linux/ratelimit.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "ext4_extents.h"
46
#include "truncate.h"
47

48 49
#include <trace/events/ext4.h>

50 51
#define MPAGE_DA_EXTENT_TAIL 0x01

52 53 54
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
55
	trace_ext4_begin_ordered_truncate(inode, new_size);
56 57 58 59 60 61 62 63 64 65 66
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
67 68
}

69
static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 71 72 73 74 75
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76

77 78 79
/*
 * Test whether an inode is a fast symlink.
 */
80
static int ext4_inode_is_fast_symlink(struct inode *inode)
81
{
82
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 84 85 86 87 88 89 90 91 92
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
93
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94
				 int nblocks)
95
{
96 97 98
	int ret;

	/*
99
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100 101 102 103
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
104
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
105
	jbd_debug(2, "restarting handle %p\n", handle);
106
	up_write(&EXT4_I(inode)->i_data_sem);
107
	ret = ext4_journal_restart(handle, nblocks);
108
	down_write(&EXT4_I(inode)->i_data_sem);
109
	ext4_discard_preallocations(inode);
110 111

	return ret;
112 113 114 115 116
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
117
void ext4_evict_inode(struct inode *inode)
118 119
{
	handle_t *handle;
120
	int err;
121

122
	trace_ext4_evict_inode(inode);
123 124 125

	ext4_ioend_wait(inode);

A
Al Viro 已提交
126
	if (inode->i_nlink) {
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
154 155 156 157
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

158
	if (!is_bad_inode(inode))
159
		dquot_initialize(inode);
160

161 162
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
163 164 165 166 167
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

168
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
169
	if (IS_ERR(handle)) {
170
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
171 172 173 174 175
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
176
		ext4_orphan_del(NULL, inode);
177 178 179 180
		goto no_delete;
	}

	if (IS_SYNC(inode))
181
		ext4_handle_sync(handle);
182
	inode->i_size = 0;
183 184
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
185
		ext4_warning(inode->i_sb,
186 187 188
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
189
	if (inode->i_blocks)
190
		ext4_truncate(inode);
191 192 193 194 195 196 197

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
198
	if (!ext4_handle_has_enough_credits(handle, 3)) {
199 200 201 202
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
203
			ext4_warning(inode->i_sb,
204 205 206
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
207
			ext4_orphan_del(NULL, inode);
208 209 210 211
			goto no_delete;
		}
	}

212
	/*
213
	 * Kill off the orphan record which ext4_truncate created.
214
	 * AKPM: I think this can be inside the above `if'.
215
	 * Note that ext4_orphan_del() has to be able to cope with the
216
	 * deletion of a non-existent orphan - this is because we don't
217
	 * know if ext4_truncate() actually created an orphan record.
218 219
	 * (Well, we could do this if we need to, but heck - it works)
	 */
220 221
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
222 223 224 225 226 227 228 229

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
230
	if (ext4_mark_inode_dirty(handle, inode))
231
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
232
		ext4_clear_inode(inode);
233
	else
234 235
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
236 237
	return;
no_delete:
A
Al Viro 已提交
238
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
239 240
}

241 242
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
243
{
244
	return &EXT4_I(inode)->i_reserved_quota;
245
}
246
#endif
247

248 249
/*
 * Calculate the number of metadata blocks need to reserve
250
 * to allocate a block located at @lblock
251
 */
252
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253
{
254
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
255
		return ext4_ext_calc_metadata_amount(inode, lblock);
256

257
	return ext4_ind_calc_metadata_amount(inode, lblock);
258 259
}

260 261 262 263
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
264 265
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
266 267
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
268 269 270
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
271
	trace_ext4_da_update_reserve_space(inode, used);
272 273 274 275 276 277 278 279
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
280

281 282 283
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
284 285
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
286
	ei->i_allocated_meta_blocks = 0;
287

288 289 290 291 292 293
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
294 295
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
296
		ei->i_reserved_meta_blocks = 0;
297
		ei->i_da_metadata_calc_len = 0;
298
	}
299
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
300

301 302
	/* Update quota subsystem for data blocks */
	if (quota_claim)
303
		dquot_claim_block(inode, used);
304
	else {
305 306 307
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
308
		 * not re-claim the quota for fallocated blocks.
309
		 */
310
		dquot_release_reservation_block(inode, used);
311
	}
312 313 314 315 316 317

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
318 319
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
320
		ext4_discard_preallocations(inode);
321 322
}

323
static int __check_block_validity(struct inode *inode, const char *func,
324 325
				unsigned int line,
				struct ext4_map_blocks *map)
326
{
327 328
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
329 330 331 332
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
333 334 335 336 337
		return -EIO;
	}
	return 0;
}

338
#define check_block_validity(inode, map)	\
339
	__check_block_validity((inode), __func__, __LINE__, (map))
340

341
/*
342 343
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
377 378 379 380 381 382 383 384 385
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
386 387 388 389 390
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
391 392
			if (num >= max_pages) {
				done = 1;
393
				break;
394
			}
395 396 397 398 399 400
		}
		pagevec_release(&pvec);
	}
	return num;
}

401
/*
402
 * The ext4_map_blocks() function tries to look up the requested blocks,
403
 * and returns if the blocks are already mapped.
404 405 406 407 408
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
409 410
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
411 412 413 414 415 416 417 418 419 420 421 422
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
423 424
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
425 426
{
	int retval;
427

428 429 430 431
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
432
	/*
433 434
	 * Try to see if we can get the block without requesting a new
	 * file system block.
435 436
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
437
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
438
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
439
	} else {
440
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
441
	}
442
	up_read((&EXT4_I(inode)->i_data_sem));
443

444
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
445
		int ret = check_block_validity(inode, map);
446 447 448 449
		if (ret != 0)
			return ret;
	}

450
	/* If it is only a block(s) look up */
451
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
452 453 454 455 456 457 458 459 460
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
461
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
462 463
		return retval;

464 465 466 467 468 469 470 471 472 473
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
474
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
475

476
	/*
477 478 479 480
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
481 482
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
483 484 485 486 487 488 489

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
490
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
491
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
492 493 494 495
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
496
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
497
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
498
	} else {
499
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
500

501
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
502 503 504 505 506
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
507
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
508
		}
509

510 511 512 513 514 515 516
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
517
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
518 519
			ext4_da_update_reserve_space(inode, retval, 1);
	}
520
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
521
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
522

523
	up_write((&EXT4_I(inode)->i_data_sem));
524
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
525
		int ret = check_block_validity(inode, map);
526 527 528
		if (ret != 0)
			return ret;
	}
529 530 531
	return retval;
}

532 533 534
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

535 536
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
537
{
538
	handle_t *handle = ext4_journal_current_handle();
539
	struct ext4_map_blocks map;
J
Jan Kara 已提交
540
	int ret = 0, started = 0;
541
	int dio_credits;
542

543 544 545 546
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
547
		/* Direct IO write... */
548 549 550
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
551
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
552
		if (IS_ERR(handle)) {
553
			ret = PTR_ERR(handle);
554
			return ret;
555
		}
J
Jan Kara 已提交
556
		started = 1;
557 558
	}

559
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
560
	if (ret > 0) {
561 562 563
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
564
		ret = 0;
565
	}
J
Jan Kara 已提交
566 567
	if (started)
		ext4_journal_stop(handle);
568 569 570
	return ret;
}

571 572 573 574 575 576 577
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

578 579 580
/*
 * `handle' can be NULL if create is zero
 */
581
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
582
				ext4_lblk_t block, int create, int *errp)
583
{
584 585
	struct ext4_map_blocks map;
	struct buffer_head *bh;
586 587 588 589
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

590 591 592 593
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
594

595 596 597 598 599 600 601 602 603 604
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
605
	}
606 607 608
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
609

610 611 612 613 614 615 616 617 618 619 620 621 622
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
623
		}
624 625 626 627 628 629 630
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
631
	}
632 633 634 635 636 637
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
638 639
}

640
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
641
			       ext4_lblk_t block, int create, int *err)
642
{
643
	struct buffer_head *bh;
644

645
	bh = ext4_getblk(handle, inode, block, create, err);
646 647 648 649 650 651 652 653 654 655 656 657 658
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

659 660 661 662 663 664 665
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
666 667 668 669 670 671 672
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

673 674
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
675
	     block_start = block_end, bh = next) {
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
693
 * close off a transaction and start a new one between the ext4_get_block()
694
 * and the commit_write().  So doing the jbd2_journal_start at the start of
695 696
 * prepare_write() is the right place.
 *
697 698
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
699 700 701 702
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
703
 * By accident, ext4 can be reentered when a transaction is open via
704 705 706 707 708 709
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
710
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
711 712 713 714 715
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
716
				       struct buffer_head *bh)
717
{
718 719 720
	int dirty = buffer_dirty(bh);
	int ret;

721 722
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
723
	/*
C
Christoph Hellwig 已提交
724
	 * __block_write_begin() could have dirtied some buffers. Clean
725 726
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
727
	 * by __block_write_begin() isn't a real problem here as we clear
728 729 730 731 732 733 734 735 736
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
737 738
}

739 740
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
741
static int ext4_write_begin(struct file *file, struct address_space *mapping,
742 743
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
744
{
745
	struct inode *inode = mapping->host;
746
	int ret, needed_blocks;
747 748
	handle_t *handle;
	int retries = 0;
749
	struct page *page;
750
	pgoff_t index;
751
	unsigned from, to;
N
Nick Piggin 已提交
752

753
	trace_ext4_write_begin(inode, pos, len, flags);
754 755 756 757 758
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
759
	index = pos >> PAGE_CACHE_SHIFT;
760 761
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
762 763

retry:
764 765 766 767
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
768
	}
769

770 771 772 773
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

774
	page = grab_cache_page_write_begin(mapping, index, flags);
775 776 777 778 779 780 781
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

782
	if (ext4_should_dioread_nolock(inode))
783
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
784
	else
785
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
786 787

	if (!ret && ext4_should_journal_data(inode)) {
788 789 790
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
791 792

	if (ret) {
793 794
		unlock_page(page);
		page_cache_release(page);
795
		/*
796
		 * __block_write_begin may have instantiated a few blocks
797 798
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
799 800 801
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
802
		 */
803
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
804 805 806 807
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
808
			ext4_truncate_failed_write(inode);
809
			/*
810
			 * If truncate failed early the inode might
811 812 813 814 815 816 817
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
818 819
	}

820
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
821
		goto retry;
822
out:
823 824 825
	return ret;
}

N
Nick Piggin 已提交
826 827
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
828 829 830 831
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
832
	return ext4_handle_dirty_metadata(handle, NULL, bh);
833 834
}

835
static int ext4_generic_write_end(struct file *file,
836 837 838
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

881 882 883 884
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
885
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
886 887
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
888
static int ext4_ordered_write_end(struct file *file,
889 890 891
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
892
{
893
	handle_t *handle = ext4_journal_current_handle();
894
	struct inode *inode = mapping->host;
895 896
	int ret = 0, ret2;

897
	trace_ext4_ordered_write_end(inode, pos, len, copied);
898
	ret = ext4_jbd2_file_inode(handle, inode);
899 900

	if (ret == 0) {
901
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
902
							page, fsdata);
903
		copied = ret2;
904
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
905 906 907 908 909
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
910 911
		if (ret2 < 0)
			ret = ret2;
912
	}
913
	ret2 = ext4_journal_stop(handle);
914 915
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
916

917
	if (pos + len > inode->i_size) {
918
		ext4_truncate_failed_write(inode);
919
		/*
920
		 * If truncate failed early the inode might still be
921 922 923 924 925 926 927 928
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
929
	return ret ? ret : copied;
930 931
}

N
Nick Piggin 已提交
932
static int ext4_writeback_write_end(struct file *file,
933 934 935
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
936
{
937
	handle_t *handle = ext4_journal_current_handle();
938
	struct inode *inode = mapping->host;
939 940
	int ret = 0, ret2;

941
	trace_ext4_writeback_write_end(inode, pos, len, copied);
942
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
943
							page, fsdata);
944
	copied = ret2;
945
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 947 948 949 950 951
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

952 953
	if (ret2 < 0)
		ret = ret2;
954

955
	ret2 = ext4_journal_stop(handle);
956 957
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
958

959
	if (pos + len > inode->i_size) {
960
		ext4_truncate_failed_write(inode);
961
		/*
962
		 * If truncate failed early the inode might still be
963 964 965 966 967 968 969
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
970
	return ret ? ret : copied;
971 972
}

N
Nick Piggin 已提交
973
static int ext4_journalled_write_end(struct file *file,
974 975 976
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
977
{
978
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
979
	struct inode *inode = mapping->host;
980 981
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
982
	unsigned from, to;
983
	loff_t new_i_size;
984

985
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
986 987 988
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

989 990
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
991 992 993 994 995
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
996 997

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
998
				to, &partial, write_end_fn);
999 1000
	if (!partial)
		SetPageUptodate(page);
1001 1002
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1003
		i_size_write(inode, pos+copied);
1004
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006 1007
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1008
		ret2 = ext4_mark_inode_dirty(handle, inode);
1009 1010 1011
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1012

1013
	unlock_page(page);
1014
	page_cache_release(page);
1015
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016 1017 1018 1019 1020 1021
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1022
	ret2 = ext4_journal_stop(handle);
1023 1024
	if (!ret)
		ret = ret2;
1025
	if (pos + len > inode->i_size) {
1026
		ext4_truncate_failed_write(inode);
1027
		/*
1028
		 * If truncate failed early the inode might still be
1029 1030 1031 1032 1033 1034
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1035 1036

	return ret ? ret : copied;
1037
}
1038

1039 1040 1041
/*
 * Reserve a single block located at lblock
 */
1042
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043
{
A
Aneesh Kumar K.V 已提交
1044
	int retries = 0;
1045
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046
	struct ext4_inode_info *ei = EXT4_I(inode);
1047
	unsigned long md_needed;
1048
	int ret;
1049 1050 1051 1052 1053 1054

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1055
repeat:
1056
	spin_lock(&ei->i_block_reservation_lock);
1057
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1058
	trace_ext4_da_reserve_space(inode, md_needed);
1059
	spin_unlock(&ei->i_block_reservation_lock);
1060

1061
	/*
1062 1063 1064
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1065
	 */
1066
	ret = dquot_reserve_block(inode, 1);
1067 1068
	if (ret)
		return ret;
1069 1070 1071 1072
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1073
	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1074
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1075 1076 1077 1078
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1079 1080
		return -ENOSPC;
	}
1081
	spin_lock(&ei->i_block_reservation_lock);
1082
	ei->i_reserved_data_blocks++;
1083 1084
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1085

1086 1087 1088
	return 0;       /* success */
}

1089
static void ext4_da_release_space(struct inode *inode, int to_free)
1090 1091
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092
	struct ext4_inode_info *ei = EXT4_I(inode);
1093

1094 1095 1096
	if (!to_free)
		return;		/* Nothing to release, exit */

1097
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098

L
Li Zefan 已提交
1099
	trace_ext4_da_release_space(inode, to_free);
1100
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1101
		/*
1102 1103 1104 1105
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1106
		 */
1107 1108 1109 1110 1111 1112
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1113
	}
1114
	ei->i_reserved_data_blocks -= to_free;
1115

1116 1117 1118 1119 1120 1121
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1122 1123
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1124
		ei->i_reserved_meta_blocks = 0;
1125
		ei->i_da_metadata_calc_len = 0;
1126
	}
1127

1128
	/* update fs dirty data blocks counter */
1129
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1130 1131

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132

1133
	dquot_release_reservation_block(inode, to_free);
1134 1135 1136
}

static void ext4_da_page_release_reservation(struct page *page,
1137
					     unsigned long offset)
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1154
	ext4_da_release_space(page->mapping->host, to_release);
1155
}
1156

1157 1158 1159 1160 1161 1162
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1163
 * them with writepage() call back
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1174 1175
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1176
{
1177 1178 1179 1180 1181
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1182
	loff_t size = i_size_read(inode);
1183 1184
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1185
	int journal_data = ext4_should_journal_data(inode);
1186
	sector_t pblock = 0, cur_logical = 0;
1187
	struct ext4_io_submit io_submit;
1188 1189

	BUG_ON(mpd->next_page <= mpd->first_page);
1190
	memset(&io_submit, 0, sizeof(io_submit));
1191 1192 1193
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1194
	 * If we look at mpd->b_blocknr we would only be looking
1195 1196
	 * at the currently mapped buffer_heads.
	 */
1197 1198 1199
	index = mpd->first_page;
	end = mpd->next_page - 1;

1200
	pagevec_init(&pvec, 0);
1201
	while (index <= end) {
1202
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1203 1204 1205
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1206
			int commit_write = 0, skip_page = 0;
1207 1208
			struct page *page = pvec.pages[i];

1209 1210 1211
			index = page->index;
			if (index > end)
				break;
1212 1213 1214 1215 1216

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1217 1218 1219 1220 1221 1222
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1223 1224 1225 1226 1227
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1228
			/*
1229 1230
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1231
			 * __block_write_begin.  If this fails,
1232
			 * skip the page and move on.
1233
			 */
1234
			if (!page_has_buffers(page)) {
1235
				if (__block_write_begin(page, 0, len,
1236
						noalloc_get_block_write)) {
1237
				skip_page:
1238 1239 1240 1241 1242
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1243

1244 1245
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1246
			do {
1247
				if (!bh)
1248
					goto skip_page;
1249 1250 1251
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1252 1253 1254 1255
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1256 1257 1258 1259 1260 1261 1262
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1263

1264
				/* skip page if block allocation undone */
1265
				if (buffer_delay(bh) || buffer_unwritten(bh))
1266
					skip_page = 1;
1267 1268
				bh = bh->b_this_page;
				block_start += bh->b_size;
1269 1270
				cur_logical++;
				pblock++;
1271 1272
			} while (bh != page_bufs);

1273 1274
			if (skip_page)
				goto skip_page;
1275 1276 1277 1278 1279

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1280
			clear_page_dirty_for_io(page);
1281 1282 1283 1284 1285 1286
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1287
				err = __ext4_journalled_writepage(page, len);
1288
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1289 1290
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1291 1292 1293 1294 1295 1296
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1297 1298
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1299 1300

			if (!err)
1301
				mpd->pages_written++;
1302 1303 1304 1305 1306 1307 1308 1309 1310
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1311
	ext4_io_submit(&io_submit);
1312 1313 1314
	return ret;
}

1315
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1316 1317 1318 1319 1320 1321 1322
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1323 1324
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1325 1326 1327 1328 1329 1330
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1331
			if (page->index > end)
1332 1333 1334 1335 1336 1337 1338
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1339 1340
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1341 1342 1343 1344
	}
	return;
}

1345 1346 1347
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
1360 1361 1362
	return;
}

1363
/*
1364 1365
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1366
 *
1367
 * @mpd - bh describing space
1368 1369 1370 1371
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1372
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1373
{
1374
	int err, blks, get_blocks_flags;
1375
	struct ext4_map_blocks map, *mapp = NULL;
1376 1377 1378 1379
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1380 1381

	/*
1382 1383
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1384
	 */
1385 1386 1387 1388 1389
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1390 1391 1392 1393

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1394
	/*
1395
	 * Call ext4_map_blocks() to allocate any delayed allocation
1396 1397 1398 1399 1400 1401 1402 1403
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1404
	 * want to change *many* call functions, so ext4_map_blocks()
1405
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1406 1407 1408 1409 1410
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1411
	 */
1412 1413
	map.m_lblk = next;
	map.m_len = max_blocks;
1414
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1415 1416
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1417
	if (mpd->b_state & (1 << BH_Delay))
1418 1419
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1420
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1421
	if (blks < 0) {
1422 1423
		struct super_block *sb = mpd->inode->i_sb;

1424
		err = blks;
1425
		/*
1426
		 * If get block returns EAGAIN or ENOSPC and there
1427 1428
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1429 1430
		 */
		if (err == -EAGAIN)
1431
			goto submit_io;
1432 1433

		if (err == -ENOSPC &&
1434
		    ext4_count_free_blocks(sb)) {
1435
			mpd->retval = err;
1436
			goto submit_io;
1437 1438
		}

1439
		/*
1440 1441 1442 1443 1444
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1445
		 */
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1457
		}
1458
		/* invalidate all the pages */
1459
		ext4_da_block_invalidatepages(mpd);
1460 1461 1462

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1463
		return;
1464
	}
1465 1466
	BUG_ON(blks == 0);

1467
	mapp = &map;
1468 1469 1470
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1471

1472 1473
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1474

1475 1476 1477 1478 1479 1480
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
			if (err)
				/* Only if the journal is aborted */
				return;
		}
1481 1482 1483
	}

	/*
1484
	 * Update on-disk size along with block allocation.
1485 1486 1487 1488 1489 1490
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1491 1492 1493 1494 1495
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1496 1497
	}

1498
submit_io:
1499
	mpage_da_submit_io(mpd, mapp);
1500
	mpd->io_done = 1;
1501 1502
}

1503 1504
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1516 1517
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1518 1519
{
	sector_t next;
1520
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1521

1522 1523 1524 1525
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1526
	 * ext4_map_blocks() multiple times in a loop
1527 1528 1529 1530
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1531
	/* check if thereserved journal credits might overflow */
1532
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1553 1554 1555
	/*
	 * First block in the extent
	 */
1556 1557 1558 1559
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1560 1561 1562
		return;
	}

1563
	next = mpd->b_blocknr + nrblocks;
1564 1565 1566
	/*
	 * Can we merge the block to our big extent?
	 */
1567 1568
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1569 1570 1571
		return;
	}

1572
flush_it:
1573 1574 1575 1576
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1577
	mpage_da_map_and_submit(mpd);
1578
	return;
1579 1580
}

1581
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1582
{
1583
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1584 1585
}

1586
/*
1587 1588 1589
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1590 1591 1592 1593 1594 1595 1596
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1597 1598
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1599
				  struct buffer_head *bh, int create)
1600
{
1601
	struct ext4_map_blocks map;
1602
	int ret = 0;
1603 1604 1605 1606
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
1607 1608

	BUG_ON(create == 0);
1609 1610 1611 1612
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1613 1614 1615 1616 1617 1618

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1619 1620 1621 1622 1623 1624
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
1625
		/*
C
Christoph Hellwig 已提交
1626
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1627
		 */
1628
		ret = ext4_da_reserve_space(inode, iblock);
1629 1630 1631 1632
		if (ret)
			/* not enough space to reserve */
			return ret;

1633 1634 1635 1636
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
1637 1638
	}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1650
		set_buffer_mapped(bh);
1651 1652
	}
	return 0;
1653
}
1654

1655 1656 1657
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1658
 * callback function for block_write_begin() and block_write_full_page().
1659
 * These functions should only try to map a single block at a time.
1660 1661 1662 1663 1664
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1665 1666 1667
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1668 1669
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1670 1671
				   struct buffer_head *bh_result, int create)
{
1672
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1673
	return _ext4_get_block(inode, iblock, bh_result, 0);
1674 1675
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1698
	ClearPageChecked(page);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1712 1713
	BUG_ON(!ext4_handle_valid(handle));

1714 1715 1716 1717 1718 1719 1720
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1721
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1722 1723 1724 1725 1726
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1727
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1728 1729 1730 1731
out:
	return ret;
}

1732 1733 1734
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1735
/*
1736 1737 1738 1739
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1740
 * we are writing back data modified via mmap(), no one guarantees in which
1741 1742 1743 1744
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1745 1746 1747 1748 1749
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1775
 */
1776
static int ext4_writepage(struct page *page,
1777
			  struct writeback_control *wbc)
1778
{
T
Theodore Ts'o 已提交
1779
	int ret = 0, commit_write = 0;
1780
	loff_t size;
1781
	unsigned int len;
1782
	struct buffer_head *page_bufs = NULL;
1783 1784
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1785
	trace_ext4_writepage(page);
1786 1787 1788 1789 1790
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1791

T
Theodore Ts'o 已提交
1792 1793
	/*
	 * If the page does not have buffers (for whatever reason),
1794
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1795 1796
	 * fails, redirty the page and move on.
	 */
1797
	if (!page_has_buffers(page)) {
1798
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
1799 1800
					noalloc_get_block_write)) {
		redirty_page:
1801 1802 1803 1804
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
1805 1806 1807 1808 1809
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
1810
		/*
1811 1812 1813 1814
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
1815
		 */
T
Theodore Ts'o 已提交
1816 1817 1818
		goto redirty_page;
	}
	if (commit_write)
1819
		/* now mark the buffer_heads as dirty and uptodate */
1820
		block_commit_write(page, 0, len);
1821

1822
	if (PageChecked(page) && ext4_should_journal_data(inode))
1823 1824 1825 1826
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
1827
		return __ext4_journalled_writepage(page, len);
1828

T
Theodore Ts'o 已提交
1829
	if (buffer_uninit(page_bufs)) {
1830 1831 1832 1833
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
1834 1835
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
1836 1837 1838 1839

	return ret;
}

1840
/*
1841
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
1842
 * calculate the total number of credits to reserve to fit
1843 1844 1845
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
1846
 */
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
1858
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1859 1860 1861 1862 1863
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
1864

1865 1866
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
1867
 * address space and accumulate pages that need writing, and call
1868 1869
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
1870 1871 1872
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
1873 1874
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
1875
{
1876
	struct buffer_head	*bh, *head;
1877
	struct inode		*inode = mapping->host;
1878 1879 1880 1881 1882 1883
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
1884

1885 1886 1887
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
1888 1889 1890 1891
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

1892
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1893 1894 1895 1896
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

1897
	*done_index = index;
1898
	while (index <= end) {
1899
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1900 1901
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
1902
			return 0;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
1914 1915
			if (page->index > end)
				goto out;
1916

1917 1918
			*done_index = page->index + 1;

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

1929 1930 1931
			lock_page(page);

			/*
1932 1933 1934 1935 1936 1937
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
1938
			 */
1939 1940 1941 1942
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
1943 1944 1945 1946
				unlock_page(page);
				continue;
			}

1947
			wait_on_page_writeback(page);
1948 1949
			BUG_ON(PageWriteback(page));

1950
			if (mpd->next_page != page->index)
1951 1952 1953 1954 1955 1956
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
1957 1958
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
1959
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1960 1961
				if (mpd->io_done)
					goto ret_extent_tail;
1962 1963
			} else {
				/*
1964 1965
				 * Page with regular buffer heads,
				 * just add all dirty ones
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
1981 1982
						if (mpd->io_done)
							goto ret_extent_tail;
1983 1984
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
1985 1986 1987 1988 1989 1990 1991 1992 1993
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
1994 1995 1996 1997 1998 1999
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2000 2001 2002 2003 2004
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2005
				    wbc->sync_mode == WB_SYNC_NONE)
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2016
					goto out;
2017 2018 2019 2020 2021
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2022 2023 2024
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2025 2026 2027
out:
	pagevec_release(&pvec);
	cond_resched();
2028 2029 2030 2031
	return ret;
}


2032
static int ext4_da_writepages(struct address_space *mapping,
2033
			      struct writeback_control *wbc)
2034
{
2035 2036
	pgoff_t	index;
	int range_whole = 0;
2037
	handle_t *handle = NULL;
2038
	struct mpage_da_data mpd;
2039
	struct inode *inode = mapping->host;
2040
	int pages_written = 0;
2041
	unsigned int max_pages;
2042
	int range_cyclic, cycled = 1, io_done = 0;
2043 2044
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2045
	loff_t range_start = wbc->range_start;
2046
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2047
	pgoff_t done_index = 0;
2048
	pgoff_t end;
2049

2050
	trace_ext4_da_writepages(inode, wbc);
2051

2052 2053 2054 2055 2056
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2057
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2058
		return 0;
2059 2060 2061 2062 2063

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2064
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2065 2066 2067 2068 2069
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2070
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2071 2072
		return -EROFS;

2073 2074
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2075

2076 2077
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2078
		index = mapping->writeback_index;
2079 2080 2081 2082 2083
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2084 2085
		end = -1;
	} else {
2086
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2087 2088
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2107 2108 2109 2110 2111 2112
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2123
retry:
2124
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2125 2126
		tag_pages_for_writeback(mapping, index, end);

2127
	while (!ret && wbc->nr_to_write > 0) {
2128 2129 2130 2131 2132 2133 2134 2135

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2136
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2137

2138 2139 2140 2141
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2142
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2143
			       "%ld pages, ino %lu; err %d", __func__,
2144
				wbc->nr_to_write, inode->i_ino, ret);
2145 2146
			goto out_writepages;
		}
2147 2148

		/*
2149
		 * Now call write_cache_pages_da() to find the next
2150
		 * contiguous region of logical blocks that need
2151
		 * blocks to be allocated by ext4 and submit them.
2152
		 */
2153
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2154
		/*
2155
		 * If we have a contiguous extent of pages and we
2156 2157 2158 2159
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2160
			mpage_da_map_and_submit(&mpd);
2161 2162
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2163
		trace_ext4_da_write_pages(inode, &mpd);
2164
		wbc->nr_to_write -= mpd.pages_written;
2165

2166
		ext4_journal_stop(handle);
2167

2168
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2169 2170 2171 2172
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2173
			jbd2_journal_force_commit_nested(sbi->s_journal);
2174 2175
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2176 2177 2178 2179
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2180
			pages_written += mpd.pages_written;
2181
			ret = 0;
2182
			io_done = 1;
2183
		} else if (wbc->nr_to_write)
2184 2185 2186 2187 2188 2189
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2190
	}
2191 2192 2193 2194 2195 2196 2197
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2198 2199

	/* Update index */
2200
	wbc->range_cyclic = range_cyclic;
2201 2202 2203 2204 2205
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2206
		mapping->writeback_index = done_index;
2207

2208
out_writepages:
2209
	wbc->nr_to_write -= nr_to_writebump;
2210
	wbc->range_start = range_start;
2211
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2212
	return ret;
2213 2214
}

2215 2216 2217 2218 2219 2220 2221 2222 2223
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2224
	 * counters can get slightly wrong with percpu_counter_batch getting
2225 2226 2227 2228 2229 2230 2231 2232 2233
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
2234 2235
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2236 2237 2238
		 */
		return 1;
	}
2239 2240 2241 2242 2243 2244 2245
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

2246 2247 2248
	return 0;
}

2249
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2250 2251
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2252
{
2253
	int ret, retries = 0;
2254 2255 2256 2257 2258 2259
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2260 2261 2262 2263 2264 2265 2266

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2267
	trace_ext4_da_write_begin(inode, pos, len, flags);
2268
retry:
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2280 2281 2282
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2283

2284
	page = grab_cache_page_write_begin(mapping, index, flags);
2285 2286 2287 2288 2289
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2290 2291
	*pagep = page;

2292
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2293 2294 2295 2296
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2297 2298 2299 2300 2301 2302
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2303
			ext4_truncate_failed_write(inode);
2304 2305
	}

2306 2307
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2308 2309 2310 2311
out:
	return ret;
}

2312 2313 2314 2315 2316
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2317
					    unsigned long offset)
2318 2319 2320 2321 2322 2323 2324 2325 2326
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2327
	for (i = 0; i < idx; i++)
2328 2329
		bh = bh->b_this_page;

2330
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2331 2332 2333 2334
		return 0;
	return 1;
}

2335
static int ext4_da_write_end(struct file *file,
2336 2337 2338
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2339 2340 2341 2342 2343
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2344
	unsigned long start, end;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2358

2359
	trace_ext4_da_write_end(inode, pos, len, copied);
2360
	start = pos & (PAGE_CACHE_SIZE - 1);
2361
	end = start + copied - 1;
2362 2363 2364 2365 2366 2367 2368 2369

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2381

2382 2383 2384
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2385 2386 2387 2388 2389
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2390
		}
2391
	}
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2413
	ext4_da_page_release_reservation(page, offset);
2414 2415 2416 2417 2418 2419 2420

out:
	ext4_invalidatepage(page, offset);

	return;
}

2421 2422 2423 2424 2425
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2426 2427
	trace_ext4_alloc_da_blocks(inode);

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2438
	 *
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2451
	 * the pages by calling redirty_page_for_writepage() but that
2452 2453
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2454
	 * simplifying them because we wouldn't actually intend to
2455 2456 2457
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2458
	 *
2459 2460 2461 2462 2463 2464
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2465

2466 2467 2468 2469 2470
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2471
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2472 2473 2474 2475 2476 2477 2478 2479
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2480
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2481 2482 2483 2484 2485
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2496 2497
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2509
		 * NB. EXT4_STATE_JDATA is not set on files other than
2510 2511 2512 2513 2514 2515
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2516
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2517
		journal = EXT4_JOURNAL(inode);
2518 2519 2520
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2521 2522 2523 2524 2525

		if (err)
			return 0;
	}

2526
	return generic_block_bmap(mapping, block, ext4_get_block);
2527 2528
}

2529
static int ext4_readpage(struct file *file, struct page *page)
2530
{
2531
	trace_ext4_readpage(page);
2532
	return mpage_readpage(page, ext4_get_block);
2533 2534 2535
}

static int
2536
ext4_readpages(struct file *file, struct address_space *mapping,
2537 2538
		struct list_head *pages, unsigned nr_pages)
{
2539
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2540 2541
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2562
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2563
{
2564
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2565

2566 2567
	trace_ext4_invalidatepage(page, offset);

2568 2569 2570 2571 2572
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2573 2574 2575 2576 2577 2578
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2579 2580 2581 2582
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2583 2584
}

2585
static int ext4_releasepage(struct page *page, gfp_t wait)
2586
{
2587
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2588

2589 2590
	trace_ext4_releasepage(page);

2591 2592 2593
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2594 2595 2596 2597
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2598 2599
}

2600 2601 2602 2603 2604
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2605
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2606 2607
		   struct buffer_head *bh_result, int create)
{
2608
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2609
		   inode->i_ino, create);
2610 2611
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2612 2613 2614
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2615 2616
			    ssize_t size, void *private, int ret,
			    bool is_async)
2617
{
2618
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2619 2620
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2621 2622
	unsigned long flags;
	struct ext4_inode_info *ei;
2623

2624 2625
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2626
		goto out;
2627

2628 2629 2630 2631 2632 2633
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
2634
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2635 2636
		ext4_free_io_end(io_end);
		iocb->private = NULL;
2637 2638 2639
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2640
		inode_dio_done(inode);
2641
		return;
2642 2643
	}

2644 2645
	io_end->offset = offset;
	io_end->size = size;
2646 2647 2648 2649
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2650 2651
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2652
	/* Add the io_end to per-inode completed aio dio list*/
2653 2654 2655 2656
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2657 2658 2659

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
2660
	iocb->private = NULL;
2661 2662 2663

	/* XXX: probably should move into the real I/O completion handler */
	inode_dio_done(inode);
2664
}
2665

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

2683 2684 2685 2686
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2687
	inode = io_end->inode;
2688 2689 2690 2691
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
		io_end->flag |= EXT4_IO_END_UNWRITTEN;
		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
	}
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2718
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2737 2738 2739 2740 2741
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2742
 * For holes, we fallocate those blocks, mark them as uninitialized
2743
 * If those blocks were preallocated, we mark sure they are splited, but
2744
 * still keep the range to write as uninitialized.
2745
 *
2746 2747
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2748
 * set up an end_io call back function, which will do the conversion
2749
 * when async direct IO completed.
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
2768 2769 2770
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
2771
 		 * to prevent parallel buffered read to expose the stale data
2772
 		 * before DIO complete the data IO.
2773 2774
		 *
 		 * As to previously fallocated extents, ext4 get_block
2775 2776 2777
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
2778 2779 2780 2781 2782 2783 2784 2785
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
2786
 		 */
2787 2788 2789
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
2790
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2791 2792 2793 2794
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
2795
			 * direct IO, so that later ext4_map_blocks()
2796 2797 2798 2799 2800 2801 2802
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

2803
		ret = __blockdev_direct_IO(rw, iocb, inode,
2804 2805
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
2806
					 ext4_get_block_write,
2807 2808 2809
					 ext4_end_io_dio,
					 NULL,
					 DIO_LOCKING | DIO_SKIP_HOLES);
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
2829 2830
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
2831
			int err;
2832 2833
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
2834
			 * completed, we could do the conversion right here
2835
			 */
2836 2837 2838 2839
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
2840
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2841
		}
2842 2843
		return ret;
	}
2844 2845

	/* for write the the end of file case, we fall back to old way */
2846 2847 2848 2849 2850 2851 2852 2853 2854
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
2855
	ssize_t ret;
2856

2857 2858 2859 2860 2861 2862
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

2863
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2864
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2865 2866 2867 2868 2869 2870
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
2871 2872
}

2873
/*
2874
 * Pages can be marked dirty completely asynchronously from ext4's journalling
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
2886
static int ext4_journalled_set_page_dirty(struct page *page)
2887 2888 2889 2890 2891
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

2892
static const struct address_space_operations ext4_ordered_aops = {
2893 2894
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2895
	.writepage		= ext4_writepage,
2896 2897 2898 2899 2900 2901 2902 2903
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2904
	.error_remove_page	= generic_error_remove_page,
2905 2906
};

2907
static const struct address_space_operations ext4_writeback_aops = {
2908 2909
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2910
	.writepage		= ext4_writepage,
2911 2912 2913 2914 2915 2916 2917 2918
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2919
	.error_remove_page	= generic_error_remove_page,
2920 2921
};

2922
static const struct address_space_operations ext4_journalled_aops = {
2923 2924
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2925
	.writepage		= ext4_writepage,
2926 2927 2928 2929 2930 2931
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
2932
	.direct_IO		= ext4_direct_IO,
2933
	.is_partially_uptodate  = block_is_partially_uptodate,
2934
	.error_remove_page	= generic_error_remove_page,
2935 2936
};

2937
static const struct address_space_operations ext4_da_aops = {
2938 2939
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2940
	.writepage		= ext4_writepage,
2941 2942 2943 2944 2945 2946 2947 2948 2949
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2950
	.error_remove_page	= generic_error_remove_page,
2951 2952
};

2953
void ext4_set_aops(struct inode *inode)
2954
{
2955 2956 2957 2958
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
2959
		inode->i_mapping->a_ops = &ext4_ordered_aops;
2960 2961 2962
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
2963 2964
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
2965
	else
2966
		inode->i_mapping->a_ops = &ext4_journalled_aops;
2967 2968
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
		return -EINVAL;

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	unsigned int end_of_block, range_to_discard;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page)) {
		/*
		 * If the range to be discarded covers a partial block
		 * we need to get the page buffers.  This is because
		 * partial blocks cannot be released and the page needs
		 * to be updated with the contents of the block before
		 * we write the zeros on top of it.
		 */
		if (!(from & (blocksize - 1)) ||
		    !((from + length) & (blocksize - 1))) {
			create_empty_buffers(page, blocksize, 0);
		} else {
			/*
			 * If there are no partial blocks,
			 * there is nothing to update,
			 * so we can return now
			 */
			return 0;
		}
	}

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3176
		} else
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3189
/*
3190
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3191 3192 3193 3194
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3195
int ext4_block_truncate_page(handle_t *handle,
3196
		struct address_space *mapping, loff_t from)
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
{
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned length;
	unsigned blocksize;
	struct inode *inode = mapping->host;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));

	return ext4_block_zero_page_range(handle, mapping, from, length);
}

/*
 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 * starting from file offset 'from'.  The range to be zero'd must
 * be contained with in one block.  If the specified range exceeds
 * the end of the block it will be shortened to end of the block
 * that cooresponds to 'from'
 */
int ext4_block_zero_page_range(handle_t *handle,
		struct address_space *mapping, loff_t from, loff_t length)
3218
{
3219
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3220
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3221
	unsigned blocksize, max, pos;
A
Aneesh Kumar K.V 已提交
3222
	ext4_lblk_t iblock;
3223 3224
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3225
	struct page *page;
3226 3227
	int err = 0;

3228 3229
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3230 3231 3232
	if (!page)
		return -EINVAL;

3233
	blocksize = inode->i_sb->s_blocksize;
3234 3235 3236 3237 3238 3239 3240 3241 3242
	max = blocksize - (offset & (blocksize - 1));

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the block
	 */
	if (length > max || length < 0)
		length = max;

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3265
		ext4_get_block(inode, iblock, bh, 0);
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3286
	if (ext4_should_journal_data(inode)) {
3287
		BUFFER_TRACE(bh, "get write access");
3288
		err = ext4_journal_get_write_access(handle, bh);
3289 3290 3291 3292
		if (err)
			goto unlock;
	}

3293
	zero_user(page, offset, length);
3294 3295 3296 3297

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3298
	if (ext4_should_journal_data(inode)) {
3299
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3300
	} else
3301 3302 3303 3304 3305 3306 3307 3308
		mark_buffer_dirty(bh);

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
		return -ENOTSUPP;

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
		return -ENOTSUPP;
	}

	return ext4_ext_punch_hole(file, offset, length);
}

3345
/*
3346
 * ext4_truncate()
3347
 *
3348 3349
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3366
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3367
 * that this inode's truncate did not complete and it will again call
3368 3369
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3370
 * that's fine - as long as they are linked from the inode, the post-crash
3371
 * ext4_truncate() run will find them and release them.
3372
 */
3373
void ext4_truncate(struct inode *inode)
3374
{
3375 3376
	trace_ext4_truncate_enter(inode);

3377
	if (!ext4_can_truncate(inode))
3378 3379
		return;

3380
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3381

3382
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3383
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3384

3385
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3386
		ext4_ext_truncate(inode);
3387 3388
	else
		ext4_ind_truncate(inode);
3389

3390
	trace_ext4_truncate_exit(inode);
3391 3392 3393
}

/*
3394
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3395 3396 3397 3398
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3399 3400
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3401
{
3402 3403 3404 3405 3406 3407
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3408
	iloc->bh = NULL;
3409 3410
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3411

3412 3413 3414
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3415 3416
		return -EIO;

3417 3418 3419
	/*
	 * Figure out the offset within the block group inode table
	 */
3420
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3421 3422 3423 3424 3425 3426
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3427
	if (!bh) {
3428 3429
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3430 3431 3432 3433
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3457
			int i, start;
3458

3459
			start = inode_offset & ~(inodes_per_block - 1);
3460

3461 3462
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3475
			for (i = start; i < start + inodes_per_block; i++) {
3476 3477
				if (i == inode_offset)
					continue;
3478
				if (ext4_test_bit(i, bitmap_bh->b_data))
3479 3480 3481
					break;
			}
			brelse(bitmap_bh);
3482
			if (i == start + inodes_per_block) {
3483 3484 3485 3486 3487 3488 3489 3490 3491
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3492 3493 3494 3495 3496 3497 3498 3499 3500
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3501
			/* s_inode_readahead_blks is always a power of 2 */
3502 3503 3504 3505 3506 3507 3508
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3509
				num -= ext4_itable_unused_count(sb, gdp);
3510 3511 3512 3513 3514 3515 3516
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3517 3518 3519 3520 3521
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3522
		trace_ext4_load_inode(inode);
3523 3524 3525 3526 3527
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3528 3529
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3530 3531 3532 3533 3534 3535 3536 3537 3538
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3539
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3540 3541
{
	/* We have all inode data except xattrs in memory here. */
3542
	return __ext4_get_inode_loc(inode, iloc,
3543
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3544 3545
}

3546
void ext4_set_inode_flags(struct inode *inode)
3547
{
3548
	unsigned int flags = EXT4_I(inode)->i_flags;
3549 3550

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3551
	if (flags & EXT4_SYNC_FL)
3552
		inode->i_flags |= S_SYNC;
3553
	if (flags & EXT4_APPEND_FL)
3554
		inode->i_flags |= S_APPEND;
3555
	if (flags & EXT4_IMMUTABLE_FL)
3556
		inode->i_flags |= S_IMMUTABLE;
3557
	if (flags & EXT4_NOATIME_FL)
3558
		inode->i_flags |= S_NOATIME;
3559
	if (flags & EXT4_DIRSYNC_FL)
3560 3561 3562
		inode->i_flags |= S_DIRSYNC;
}

3563 3564 3565
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3586
}
3587

3588
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3589
				  struct ext4_inode_info *ei)
3590 3591
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3592 3593
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3594 3595 3596 3597 3598 3599

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3600
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3601 3602 3603 3604 3605
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3606 3607 3608 3609
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3610

3611
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3612
{
3613 3614
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3615 3616
	struct ext4_inode_info *ei;
	struct inode *inode;
3617
	journal_t *journal = EXT4_SB(sb)->s_journal;
3618
	long ret;
3619 3620
	int block;

3621 3622 3623 3624 3625 3626 3627
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3628
	iloc.bh = NULL;
3629

3630 3631
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3632
		goto bad_inode;
3633
	raw_inode = ext4_raw_inode(&iloc);
3634 3635 3636
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3637
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3638 3639 3640 3641 3642
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

3643
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3644 3645 3646 3647 3648 3649 3650 3651 3652
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3653
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3654
			/* this inode is deleted */
3655
			ret = -ESTALE;
3656 3657 3658 3659 3660 3661 3662 3663
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3664
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3665
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3666
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3667 3668
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3669
	inode->i_size = ext4_isize(raw_inode);
3670
	ei->i_disksize = inode->i_size;
3671 3672 3673
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3674 3675
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3676
	ei->i_last_alloc_group = ~0;
3677 3678 3679 3680
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3681
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3682 3683 3684
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3696
		read_lock(&journal->j_state_lock);
3697 3698 3699 3700 3701 3702 3703 3704
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3705
		read_unlock(&journal->j_state_lock);
3706 3707 3708 3709
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3710
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3711
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3712
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3713
		    EXT4_INODE_SIZE(inode->i_sb)) {
3714
			ret = -EIO;
3715
			goto bad_inode;
3716
		}
3717 3718
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3719 3720
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3721 3722
		} else {
			__le32 *magic = (void *)raw_inode +
3723
					EXT4_GOOD_OLD_INODE_SIZE +
3724
					ei->i_extra_isize;
3725
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3726
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3727 3728 3729 3730
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
3731 3732 3733 3734 3735
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3736 3737 3738 3739 3740 3741 3742
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3743
	ret = 0;
3744
	if (ei->i_file_acl &&
3745
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3746 3747
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3748 3749
		ret = -EIO;
		goto bad_inode;
3750
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3751 3752 3753 3754 3755
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3756
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3757 3758
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3759
		/* Validate block references which are part of inode */
3760
		ret = ext4_ind_check_inode(inode);
3761
	}
3762
	if (ret)
3763
		goto bad_inode;
3764

3765
	if (S_ISREG(inode->i_mode)) {
3766 3767 3768
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3769
	} else if (S_ISDIR(inode->i_mode)) {
3770 3771
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3772
	} else if (S_ISLNK(inode->i_mode)) {
3773
		if (ext4_inode_is_fast_symlink(inode)) {
3774
			inode->i_op = &ext4_fast_symlink_inode_operations;
3775 3776 3777
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3778 3779
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3780
		}
3781 3782
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3783
		inode->i_op = &ext4_special_inode_operations;
3784 3785 3786 3787 3788 3789
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3790 3791
	} else {
		ret = -EIO;
3792
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3793
		goto bad_inode;
3794
	}
3795
	brelse(iloc.bh);
3796
	ext4_set_inode_flags(inode);
3797 3798
	unlock_new_inode(inode);
	return inode;
3799 3800

bad_inode:
3801
	brelse(iloc.bh);
3802 3803
	iget_failed(inode);
	return ERR_PTR(ret);
3804 3805
}

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3819
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3820
		raw_inode->i_blocks_high = 0;
3821
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3822 3823 3824 3825 3826 3827
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3828 3829 3830 3831
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3832
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3833
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3834
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3835
	} else {
3836
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3837 3838 3839 3840
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3841
	}
3842
	return 0;
3843 3844
}

3845 3846 3847 3848 3849 3850 3851
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3852
static int ext4_do_update_inode(handle_t *handle,
3853
				struct inode *inode,
3854
				struct ext4_iloc *iloc)
3855
{
3856 3857
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3858 3859 3860 3861 3862
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3863
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3864
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3865

3866
	ext4_get_inode_flags(ei);
3867
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3868
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3869 3870 3871 3872 3873 3874
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3875
		if (!ei->i_dtime) {
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
3893 3894 3895 3896 3897 3898

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

3899 3900
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
3901
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3902
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3903 3904
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
3905 3906
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
3907
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
3924
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3925
			sb->s_dirt = 1;
3926
			ext4_handle_sync(handle);
3927
			err = ext4_handle_dirty_metadata(handle, NULL,
3928
					EXT4_SB(sb)->s_sbh);
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
3943 3944 3945
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
3946

3947 3948 3949 3950 3951
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
3952
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3953 3954
	}

3955
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3956
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3957 3958
	if (!err)
		err = rc;
3959
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3960

3961
	ext4_update_inode_fsync_trans(handle, inode, 0);
3962
out_brelse:
3963
	brelse(bh);
3964
	ext4_std_error(inode->i_sb, err);
3965 3966 3967 3968
	return err;
}

/*
3969
 * ext4_write_inode()
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
3986
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4003
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4004
{
4005 4006
	int err;

4007 4008 4009
	if (current->flags & PF_MEMALLOC)
		return 0;

4010 4011 4012 4013 4014 4015
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4016

4017
		if (wbc->sync_mode != WB_SYNC_ALL)
4018 4019 4020 4021 4022
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4023

4024
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4025 4026
		if (err)
			return err;
4027
		if (wbc->sync_mode == WB_SYNC_ALL)
4028 4029
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4030 4031
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4032 4033
			err = -EIO;
		}
4034
		brelse(iloc.bh);
4035 4036
	}
	return err;
4037 4038 4039
}

/*
4040
 * ext4_setattr()
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4054 4055 4056 4057 4058 4059 4060 4061
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4062
 */
4063
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4064 4065 4066
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4067
	int orphan = 0;
4068 4069 4070 4071 4072 4073
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4074
	if (is_quota_modification(inode, attr))
4075
		dquot_initialize(inode);
4076 4077 4078 4079 4080 4081
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4082
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4083
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4084 4085 4086 4087
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4088
		error = dquot_transfer(inode, attr);
4089
		if (error) {
4090
			ext4_journal_stop(handle);
4091 4092 4093 4094 4095 4096 4097 4098
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4099 4100
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4101 4102
	}

4103
	if (attr->ia_valid & ATTR_SIZE) {
4104 4105
		inode_dio_wait(inode);

4106
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4107 4108
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4109 4110
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4111 4112 4113
		}
	}

4114
	if (S_ISREG(inode->i_mode) &&
4115
	    attr->ia_valid & ATTR_SIZE &&
4116
	    (attr->ia_size < inode->i_size)) {
4117 4118
		handle_t *handle;

4119
		handle = ext4_journal_start(inode, 3);
4120 4121 4122 4123
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4124 4125 4126 4127
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4128 4129
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4130 4131
		if (!error)
			error = rc;
4132
		ext4_journal_stop(handle);
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4145
				orphan = 0;
4146 4147 4148 4149
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4150 4151
	}

4152 4153 4154 4155 4156 4157 4158
	if (attr->ia_valid & ATTR_SIZE) {
		if (attr->ia_size != i_size_read(inode)) {
			truncate_setsize(inode, attr->ia_size);
			ext4_truncate(inode);
		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
			ext4_truncate(inode);
	}
4159

C
Christoph Hellwig 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4169
	if (orphan && inode->i_nlink)
4170
		ext4_orphan_del(NULL, inode);
4171 4172

	if (!rc && (ia_valid & ATTR_MODE))
4173
		rc = ext4_acl_chmod(inode);
4174 4175

err_out:
4176
	ext4_std_error(inode->i_sb, error);
4177 4178 4179 4180 4181
	if (!error)
		error = rc;
	return error;
}

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4206

4207 4208
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4209
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4210
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4211
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4212
}
4213

4214
/*
4215 4216 4217
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4218
 *
4219
 * If datablocks are discontiguous, they are possible to spread over
4220
 * different block groups too. If they are contiuguous, with flexbg,
4221
 * they could still across block group boundary.
4222
 *
4223 4224
 * Also account for superblock, inode, quota and xattr blocks
 */
4225
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4226
{
4227 4228
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4255 4256
	if (groups > ngroups)
		groups = ngroups;
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4270
 * Calculate the total number of credits to reserve to fit
4271 4272
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4273
 *
4274
 * This could be called via ext4_write_begin()
4275
 *
4276
 * We need to consider the worse case, when
4277
 * one new block per extent.
4278
 */
A
Alex Tomas 已提交
4279
int ext4_writepage_trans_blocks(struct inode *inode)
4280
{
4281
	int bpp = ext4_journal_blocks_per_page(inode);
4282 4283
	int ret;

4284
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4285

4286
	/* Account for data blocks for journalled mode */
4287
	if (ext4_should_journal_data(inode))
4288
		ret += bpp;
4289 4290
	return ret;
}
4291 4292 4293 4294 4295

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4296
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4297 4298 4299 4300 4301 4302 4303 4304 4305
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4306
/*
4307
 * The caller must have previously called ext4_reserve_inode_write().
4308 4309
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4310
int ext4_mark_iloc_dirty(handle_t *handle,
4311
			 struct inode *inode, struct ext4_iloc *iloc)
4312 4313 4314
{
	int err = 0;

4315 4316 4317
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4318 4319 4320
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4321
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4322
	err = ext4_do_update_inode(handle, inode, iloc);
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4333 4334
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4335
{
4336 4337 4338 4339 4340 4341 4342 4343 4344
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4345 4346
		}
	}
4347
	ext4_std_error(inode->i_sb, err);
4348 4349 4350
	return err;
}

4351 4352 4353 4354
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4355 4356 4357 4358
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4371 4372
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4405
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4406
{
4407
	struct ext4_iloc iloc;
4408 4409 4410
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4411 4412

	might_sleep();
4413
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4414
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4415 4416
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4417
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4431 4432
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4433 4434
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4435
					ext4_warning(inode->i_sb,
4436 4437 4438
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4439 4440
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4441 4442 4443 4444
				}
			}
		}
	}
4445
	if (!err)
4446
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4447 4448 4449 4450
	return err;
}

/*
4451
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4452 4453 4454 4455 4456
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4457
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4458 4459 4460 4461 4462 4463
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4464
void ext4_dirty_inode(struct inode *inode, int flags)
4465 4466 4467
{
	handle_t *handle;

4468
	handle = ext4_journal_start(inode, 2);
4469 4470
	if (IS_ERR(handle))
		goto out;
4471 4472 4473

	ext4_mark_inode_dirty(handle, inode);

4474
	ext4_journal_stop(handle);
4475 4476 4477 4478 4479 4480 4481 4482
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4483
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4484 4485 4486
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4487
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4488
{
4489
	struct ext4_iloc iloc;
4490 4491 4492

	int err = 0;
	if (handle) {
4493
		err = ext4_get_inode_loc(inode, &iloc);
4494 4495
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4496
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4497
			if (!err)
4498
				err = ext4_handle_dirty_metadata(handle,
4499
								 NULL,
4500
								 iloc.bh);
4501 4502 4503
			brelse(iloc.bh);
		}
	}
4504
	ext4_std_error(inode->i_sb, err);
4505 4506 4507 4508
	return err;
}
#endif

4509
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4525
	journal = EXT4_JOURNAL(inode);
4526 4527
	if (!journal)
		return 0;
4528
	if (is_journal_aborted(journal))
4529 4530
		return -EROFS;

4531 4532
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4543
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4544
	else
4545
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4546
	ext4_set_aops(inode);
4547

4548
	jbd2_journal_unlock_updates(journal);
4549 4550 4551

	/* Finally we can mark the inode as dirty. */

4552
	handle = ext4_journal_start(inode, 1);
4553 4554 4555
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4556
	err = ext4_mark_inode_dirty(handle, inode);
4557
	ext4_handle_sync(handle);
4558 4559
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4560 4561 4562

	return err;
}
4563 4564 4565 4566 4567 4568

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4569
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4570
{
4571
	struct page *page = vmf->page;
4572 4573
	loff_t size;
	unsigned long len;
4574
	int ret;
4575 4576 4577
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4578 4579 4580
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4581 4582

	/*
4583 4584
	 * This check is racy but catches the common case. We rely on
	 * __block_page_mkwrite() to do a reliable check.
4585
	 */
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4597
	}
4598 4599

	lock_page(page);
4600 4601 4602 4603 4604 4605
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4606
	}
4607 4608 4609 4610 4611

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4612
	/*
4613 4614
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4615
	 */
4616 4617
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4618
					ext4_bh_unmapped)) {
4619 4620 4621 4622
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4623
		}
4624
	}
4625
	unlock_page(page);
4626 4627 4628 4629 4630 4631 4632 4633
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4634
		ret = VM_FAULT_SIGBUS;
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4653 4654
	return ret;
}