test_querier.py 22.4 KB
Newer Older
G
gaocongli 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test the querier module."""
16 17
import time

G
gaocongli 已提交
18
from unittest import TestCase, mock
19
from unittest.mock import MagicMock
G
gaocongli 已提交
20 21 22

from google.protobuf.json_format import ParseDict

23
import mindinsight.datavisual.proto_files.mindinsight_lineage_pb2 as summary_pb2
24 25
from mindinsight.lineagemgr.common.exceptions.exceptions import LineageParamTypeError, LineageQuerierParamException
from mindinsight.lineagemgr.lineage_parser import LineageOrganizer
G
gaocongli 已提交
26
from mindinsight.lineagemgr.querier.querier import Querier
李鸿章 已提交
27 28
from mindinsight.lineagemgr.summary.lineage_summary_analyzer import LineageInfo

G
gaocongli 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from . import event_data


def create_lineage_info(train_event_dict, eval_event_dict, dataset_event_dict):
    """
    Create parsed lineage info tuple.

    Args:
        train_event_dict (Union[dict, None]): The dict of train event.
        eval_event_dict (Union[dict, None]): The dict of evaluation event.
        dataset_event_dict (Union[dict, None]): The dict of dataset graph event.

    Returns:
        namedtuple, parsed lineage info.
    """
    if train_event_dict is not None:
45
        train_event = summary_pb2.LineageEvent()
G
gaocongli 已提交
46 47 48 49 50
        ParseDict(train_event_dict, train_event)
    else:
        train_event = None

    if eval_event_dict is not None:
51
        eval_event = summary_pb2.LineageEvent()
G
gaocongli 已提交
52 53 54 55 56
        ParseDict(eval_event_dict, eval_event)
    else:
        eval_event = None

    if dataset_event_dict is not None:
57
        dataset_event = summary_pb2.LineageEvent()
G
gaocongli 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        ParseDict(dataset_event_dict, dataset_event)
    else:
        dataset_event = None

    lineage_info = LineageInfo(
        train_lineage=train_event,
        eval_lineage=eval_event,
        dataset_graph=dataset_event,
    )
    return lineage_info


def create_filtration_result(summary_dir, train_event_dict,
                             eval_event_dict, metric_dict, dataset_dict):
    """
    Create filteration result.

    Args:
        summary_dir (str): The summary dir.
        train_event_dict (dict): The dict of train event.
        eval_event_dict (dict): The dict of evaluation event.
        metric_dict (dict): The dict of metric.
        dataset_dict (dict): The dict of dataset graph.

    Returns:
        dict, the filteration result.
    """
    filtration_result = {
        "summary_dir": summary_dir,
87 88 89 90 91 92 93 94 95 96 97
        "model_lineage": {
            "loss_function": train_event_dict['train_lineage']['hyper_parameters']['loss_function'],
            "train_dataset_path": train_event_dict['train_lineage']['train_dataset']['train_dataset_path'],
            "train_dataset_count": train_event_dict['train_lineage']['train_dataset']['train_dataset_size'],
            "test_dataset_path": eval_event_dict['evaluation_lineage']['valid_dataset']['valid_dataset_path'],
            "test_dataset_count": eval_event_dict['evaluation_lineage']['valid_dataset']['valid_dataset_size'],
            "network": train_event_dict['train_lineage']['algorithm']['network'],
            "optimizer": train_event_dict['train_lineage']['hyper_parameters']['optimizer'],
            "learning_rate": train_event_dict['train_lineage']['hyper_parameters']['learning_rate'],
            "epoch": train_event_dict['train_lineage']['hyper_parameters']['epoch'],
            "batch_size": train_event_dict['train_lineage']['hyper_parameters']['batch_size'],
L
luopengting 已提交
98
            "device_num": train_event_dict['train_lineage']['hyper_parameters']['device_num'],
99 100 101 102 103 104
            "loss": train_event_dict['train_lineage']['algorithm']['loss'],
            "model_size": train_event_dict['train_lineage']['model']['size'],
            "metric": metric_dict,
            "dataset_mark": '2',
            "user_defined": {}
        },
G
gaocongli 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        "dataset_graph": dataset_dict,
    }
    return filtration_result


def get_lineage_infos():
    """
    Get tuples of lineage info, simulate the function of summary analyzer.

    Returns:
        list[namedtuple], tuples of lineage info.
    """
    train_events = [
        event_data.EVENT_TRAIN_DICT_0,
        event_data.EVENT_TRAIN_DICT_1,
        event_data.EVENT_TRAIN_DICT_2,
        event_data.EVENT_TRAIN_DICT_3,
        event_data.EVENT_TRAIN_DICT_4,
        event_data.EVENT_TRAIN_DICT_5,
        None
    ]
    eval_events = [
        event_data.EVENT_EVAL_DICT_0,
        event_data.EVENT_EVAL_DICT_1,
        event_data.EVENT_EVAL_DICT_2,
        event_data.EVENT_EVAL_DICT_3,
        event_data.EVENT_EVAL_DICT_4,
        None,
        event_data.EVENT_EVAL_DICT_5
    ]
    dataset_events = [
        event_data.EVENT_DATASET_DICT_0
    ]*7

    lineage_infos = list(
        map(
            lambda event: create_lineage_info(event[0], event[1], event[2]),
            zip(train_events, eval_events, dataset_events)
        )
    )

    return lineage_infos


C
chenchao99 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
LINEAGE_INFO_0 = {
    'summary_dir': '/path/to/summary0',
    **event_data.EVENT_TRAIN_DICT_0['train_lineage'],
    'metric': event_data.METRIC_0,
    'valid_dataset': event_data.EVENT_EVAL_DICT_0['evaluation_lineage']['valid_dataset'],
    'dataset_graph': event_data.DATASET_DICT_0
}
LINEAGE_INFO_1 = {
    'summary_dir': '/path/to/summary1',
    **event_data.EVENT_TRAIN_DICT_1['train_lineage'],
    'metric': event_data.METRIC_1,
    'valid_dataset': event_data.EVENT_EVAL_DICT_1['evaluation_lineage']['valid_dataset'],
    'dataset_graph': event_data.DATASET_DICT_0
}
LINEAGE_FILTRATION_0 = create_filtration_result(
    '/path/to/summary0',
    event_data.EVENT_TRAIN_DICT_0,
    event_data.EVENT_EVAL_DICT_0,
    event_data.METRIC_0,
    event_data.DATASET_DICT_0
)
LINEAGE_FILTRATION_1 = create_filtration_result(
    '/path/to/summary1',
    event_data.EVENT_TRAIN_DICT_1,
    event_data.EVENT_EVAL_DICT_1,
    event_data.METRIC_1,
    event_data.DATASET_DICT_0
)
LINEAGE_FILTRATION_2 = create_filtration_result(
    '/path/to/summary2',
    event_data.EVENT_TRAIN_DICT_2,
    event_data.EVENT_EVAL_DICT_2,
    event_data.METRIC_2,
    event_data.DATASET_DICT_0
)
LINEAGE_FILTRATION_3 = create_filtration_result(
    '/path/to/summary3',
    event_data.EVENT_TRAIN_DICT_3,
    event_data.EVENT_EVAL_DICT_3,
    event_data.METRIC_3,
    event_data.DATASET_DICT_0
)
LINEAGE_FILTRATION_4 = create_filtration_result(
    '/path/to/summary4',
    event_data.EVENT_TRAIN_DICT_4,
    event_data.EVENT_EVAL_DICT_4,
    event_data.METRIC_4,
    event_data.DATASET_DICT_0
)
LINEAGE_FILTRATION_5 = {
    "summary_dir": '/path/to/summary5',
200 201 202 203 204 205 206 207 208 209 210 211 212 213
    "model_lineage": {
        "loss_function":
            event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['loss_function'],
        "train_dataset_path": None,
        "train_dataset_count":
            event_data.EVENT_TRAIN_DICT_5['train_lineage']['train_dataset']['train_dataset_size'],
        "test_dataset_path": None,
        "test_dataset_count": None,
        "network": event_data.EVENT_TRAIN_DICT_5['train_lineage']['algorithm']['network'],
        "optimizer": event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['optimizer'],
        "learning_rate":
            event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['learning_rate'],
        "epoch": event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['epoch'],
        "batch_size": event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['batch_size'],
L
luopengting 已提交
214
        "device_num": event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['device_num'],
215 216 217 218 219 220 221
        "loss": event_data.EVENT_TRAIN_DICT_5['train_lineage']['algorithm']['loss'],
        "model_size": event_data.EVENT_TRAIN_DICT_5['train_lineage']['model']['size'],
        "metric": {},
        "dataset_mark": '2',
        "user_defined": {}
    },
    "dataset_graph": event_data.DATASET_DICT_0
C
chenchao99 已提交
222 223 224
}
LINEAGE_FILTRATION_6 = {
    "summary_dir": '/path/to/summary6',
225 226 227 228 229 230 231 232 233 234 235 236 237
    "model_lineage": {
        "loss_function": None,
        "train_dataset_path": None,
        "train_dataset_count": None,
        "test_dataset_path":
            event_data.EVENT_EVAL_DICT_5['evaluation_lineage']['valid_dataset']['valid_dataset_path'],
        "test_dataset_count":
            event_data.EVENT_EVAL_DICT_5['evaluation_lineage']['valid_dataset']['valid_dataset_size'],
        "network": None,
        "optimizer": None,
        "learning_rate": None,
        "epoch": None,
        "batch_size": None,
L
luopengting 已提交
238
        "device_num": None,
239 240 241 242 243 244 245
        "loss": None,
        "model_size": None,
        "metric": event_data.METRIC_5,
        "dataset_mark": '2',
        "user_defined": {}
    },
    "dataset_graph": event_data.DATASET_DICT_0
C
chenchao99 已提交
246 247 248
}


G
gaocongli 已提交
249 250
class TestQuerier(TestCase):
    """Test the class of `Querier`."""
251

252
    @mock.patch('mindinsight.lineagemgr.lineage_parser.SummaryPathParser.get_lineage_summaries')
253 254 255
    @mock.patch('mindinsight.lineagemgr.lineage_parser.SummaryWatcher.list_summary_directories')
    @mock.patch('mindinsight.lineagemgr.lineage_parser.LineageSummaryAnalyzer.get_user_defined_info')
    @mock.patch('mindinsight.lineagemgr.lineage_parser.LineageSummaryAnalyzer.get_summary_infos')
256 257
    @mock.patch('mindinsight.lineagemgr.lineage_parser.FileHandler')
    def setUp(self, mock_file_handler, *args):
G
gaocongli 已提交
258 259 260 261 262 263
        """Initialization before test case execution."""
        args[0].return_value = create_lineage_info(
            event_data.EVENT_TRAIN_DICT_0,
            event_data.EVENT_EVAL_DICT_0,
            event_data.EVENT_DATASET_DICT_0
        )
264
        args[1].return_value = []
265 266 267 268
        args[3].return_value = ['path']
        mock_file_handler = MagicMock()
        mock_file_handler.size = 1

G
gaocongli 已提交
269

270 271 272 273
        args[2].return_value = [{'relative_path': './', 'update_time': 1}]
        single_summary_path = '/path/to/summary0'
        lineage_objects = LineageOrganizer(summary_base_dir=single_summary_path).super_lineage_objs
        self.single_querier = Querier(lineage_objects)
G
gaocongli 已提交
274 275 276

        lineage_infos = get_lineage_infos()
        args[0].side_effect = lineage_infos
277 278 279 280 281 282 283
        summary_base_dir = '/path/to'
        relative_dirs = []
        for i in range(7):
            relative_dirs.append(dict(relative_path=f'./summary{i}', update_time=time.time() - i))
        args[2].return_value = relative_dirs
        lineage_objects = LineageOrganizer(summary_base_dir=summary_base_dir).super_lineage_objs
        self.multi_querier = Querier(lineage_objects)
G
gaocongli 已提交
284 285 286

    def test_get_summary_lineage_success_1(self):
        """Test the success of get_summary_lineage."""
C
chenchao99 已提交
287
        expected_result = [LINEAGE_INFO_0]
G
gaocongli 已提交
288 289 290 291 292
        result = self.single_querier.get_summary_lineage()
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_success_2(self):
        """Test the success of get_summary_lineage."""
C
chenchao99 已提交
293
        expected_result = [LINEAGE_INFO_0]
294
        result = self.single_querier.get_summary_lineage()
G
gaocongli 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_success_3(self):
        """Test the success of get_summary_lineage."""
        expected_result = [
            {
                'summary_dir': '/path/to/summary0',
                'model': event_data.EVENT_TRAIN_DICT_0['train_lineage']['model'],
                'algorithm': event_data.EVENT_TRAIN_DICT_0['train_lineage']['algorithm']
            }
        ]
        result = self.single_querier.get_summary_lineage(
            filter_keys=['model', 'algorithm']
        )
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_success_4(self):
        """Test the success of get_summary_lineage."""
        expected_result = [
C
chenchao99 已提交
314 315
            LINEAGE_INFO_0,
            LINEAGE_INFO_1,
G
gaocongli 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
            {
                'summary_dir': '/path/to/summary2',
                **event_data.EVENT_TRAIN_DICT_2['train_lineage'],
                'metric': event_data.METRIC_2,
                'valid_dataset': event_data.EVENT_EVAL_DICT_2['evaluation_lineage']['valid_dataset'],
                'dataset_graph': event_data.DATASET_DICT_0
            },
            {
                'summary_dir': '/path/to/summary3',
                **event_data.EVENT_TRAIN_DICT_3['train_lineage'],
                'metric': event_data.METRIC_3,
                'valid_dataset': event_data.EVENT_EVAL_DICT_3['evaluation_lineage']['valid_dataset'],
                'dataset_graph': event_data.DATASET_DICT_0
            },
            {
                'summary_dir': '/path/to/summary4',
                **event_data.EVENT_TRAIN_DICT_4['train_lineage'],
                'metric': event_data.METRIC_4,
                'valid_dataset': event_data.EVENT_EVAL_DICT_4['evaluation_lineage']['valid_dataset'],
                'dataset_graph': event_data.DATASET_DICT_0
            },
            {
                'summary_dir': '/path/to/summary5',
                **event_data.EVENT_TRAIN_DICT_5['train_lineage'],
                'metric': {},
                'valid_dataset': {},
                'dataset_graph': event_data.DATASET_DICT_0
            },
            {
                'summary_dir': '/path/to/summary6',
                'hyper_parameters': {},
                'algorithm': {},
                'model': {},
                'train_dataset': {},
                'metric': event_data.METRIC_5,
                'valid_dataset': event_data.EVENT_EVAL_DICT_5['evaluation_lineage']['valid_dataset'],
                'dataset_graph': event_data.DATASET_DICT_0
            }
        ]
        result = self.multi_querier.get_summary_lineage()
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_success_5(self):
        """Test the success of get_summary_lineage."""
C
chenchao99 已提交
360
        expected_result = [LINEAGE_INFO_1]
G
gaocongli 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
        result = self.multi_querier.get_summary_lineage(
            summary_dir='/path/to/summary1'
        )
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_success_6(self):
        """Test the success of get_summary_lineage."""
        expected_result = [
            {
                'summary_dir': '/path/to/summary0',
                'hyper_parameters': event_data.EVENT_TRAIN_DICT_0['train_lineage']['hyper_parameters'],
                'train_dataset': event_data.EVENT_TRAIN_DICT_0['train_lineage']['train_dataset'],
                'metric': event_data.METRIC_0,
                'valid_dataset': event_data.EVENT_EVAL_DICT_0['evaluation_lineage']['valid_dataset']
            }
        ]
        filter_keys = [
            'metric', 'hyper_parameters', 'train_dataset', 'valid_dataset'
        ]
        result = self.multi_querier.get_summary_lineage(
            summary_dir='/path/to/summary0', filter_keys=filter_keys
        )
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_fail(self):
        """Test the function of get_summary_lineage with exception."""
        filter_keys = ['xxx']
        self.assertRaises(
            LineageQuerierParamException,
            self.multi_querier.get_summary_lineage,
            filter_keys=filter_keys
        )

        self.assertRaises(
            LineageQuerierParamException,
            self.multi_querier.get_summary_lineage,
            summary_dir='xxx'
        )

    def test_filter_summary_lineage_success_1(self):
        """Test the success of filter_summary_lineage."""
        condition = {
            'optimizer': {
                'in': [
                    'ApplyMomentum0',
                    'ApplyMomentum1',
                    'ApplyMomentum2',
                    'ApplyMomentum4'
                ]
            },
            'learning_rate': {
                'lt': 0.5,
                'gt': 0.2
            },
            'sorted_name': 'summary_dir'
        }
        expected_result = {
418
            'customized': event_data.CUSTOMIZED_0,
G
gaocongli 已提交
419
            'object': [
C
chenchao99 已提交
420 421
                LINEAGE_FILTRATION_1,
                LINEAGE_FILTRATION_2
G
gaocongli 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
            ],
            'count': 2,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_2(self):
        """Test the success of filter_summary_lineage."""
        condition = {
            'batch_size': {
                'le': 50,
                'ge': 35
            },
            'model_size': {
                'lt': 400716934,
                'gt': 400716931
            },
            'sorted_name': 'batch_size',
            'sorted_type': 'descending'
        }
        expected_result = {
443
            'customized': event_data.CUSTOMIZED_0,
G
gaocongli 已提交
444
            'object': [
C
chenchao99 已提交
445 446
                LINEAGE_FILTRATION_2,
                LINEAGE_FILTRATION_3
G
gaocongli 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459
            ],
            'count': 2,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_3(self):
        """Test the success of filter_summary_lineage."""
        condition = {
            'limit': 2,
            'offset': 1
        }
        expected_result = {
460
            'customized': event_data.CUSTOMIZED_0,
G
gaocongli 已提交
461
            'object': [
C
chenchao99 已提交
462 463
                LINEAGE_FILTRATION_2,
                LINEAGE_FILTRATION_3
G
gaocongli 已提交
464 465 466 467 468 469 470 471 472
            ],
            'count': 7,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_4(self):
        """Test the success of filter_summary_lineage."""
        expected_result = {
L
luopengting 已提交
473
            'customized': event_data.CUSTOMIZED_2,
G
gaocongli 已提交
474
            'object': [
C
chenchao99 已提交
475 476 477 478 479 480 481
                LINEAGE_FILTRATION_0,
                LINEAGE_FILTRATION_1,
                LINEAGE_FILTRATION_2,
                LINEAGE_FILTRATION_3,
                LINEAGE_FILTRATION_4,
                LINEAGE_FILTRATION_5,
                LINEAGE_FILTRATION_6
G
gaocongli 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495
            ],
            'count': 7,
        }
        result = self.multi_querier.filter_summary_lineage()
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_5(self):
        """Test the success of filter_summary_lineage."""
        condition = {
            'optimizer': {
                'eq': 'ApplyMomentum4'
            }
        }
        expected_result = {
496
            'customized': event_data.CUSTOMIZED_0,
C
chenchao99 已提交
497
            'object': [LINEAGE_FILTRATION_4],
G
gaocongli 已提交
498 499 500 501 502 503 504 505
            'count': 1,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_6(self):
        """Test the success of filter_summary_lineage."""
        condition = {
506
            'sorted_name': 'metric/accuracy',
G
gaocongli 已提交
507 508 509
            'sorted_type': 'ascending'
        }
        expected_result = {
L
luopengting 已提交
510
            'customized': event_data.CUSTOMIZED_2,
G
gaocongli 已提交
511
            'object': [
C
chenchao99 已提交
512 513 514 515 516 517 518
                LINEAGE_FILTRATION_0,
                LINEAGE_FILTRATION_5,
                LINEAGE_FILTRATION_1,
                LINEAGE_FILTRATION_2,
                LINEAGE_FILTRATION_3,
                LINEAGE_FILTRATION_4,
                LINEAGE_FILTRATION_6
G
gaocongli 已提交
519 520 521 522 523 524 525 526 527
            ],
            'count': 7,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_7(self):
        """Test the success of filter_summary_lineage."""
        condition = {
528
            'sorted_name': 'metric/accuracy',
G
gaocongli 已提交
529 530 531
            'sorted_type': 'descending'
        }
        expected_result = {
L
luopengting 已提交
532
            'customized': event_data.CUSTOMIZED_2,
G
gaocongli 已提交
533
            'object': [
C
chenchao99 已提交
534 535 536 537 538 539 540
                LINEAGE_FILTRATION_6,
                LINEAGE_FILTRATION_4,
                LINEAGE_FILTRATION_3,
                LINEAGE_FILTRATION_2,
                LINEAGE_FILTRATION_1,
                LINEAGE_FILTRATION_0,
                LINEAGE_FILTRATION_5
G
gaocongli 已提交
541 542 543 544 545 546 547 548 549
            ],
            'count': 7,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_8(self):
        """Test the success of filter_summary_lineage."""
        condition = {
550
            'metric/accuracy': {
G
gaocongli 已提交
551 552 553 554 555
                'lt': 1.0000006,
                'gt': 1.0000004
            }
        }
        expected_result = {
556
            'customized': event_data.CUSTOMIZED_0,
C
chenchao99 已提交
557
            'object': [LINEAGE_FILTRATION_4],
G
gaocongli 已提交
558 559 560 561 562 563 564 565 566 567 568 569
            'count': 1,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_9(self):
        """Test the success of filter_summary_lineage."""
        condition = {
            'limit': 3,
            'offset': 3
        }
        expected_result = {
570
            'customized': {},
G
gaocongli 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
            'object': [],
            'count': 7,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_fail(self):
        """Test the function of filter_summary_lineage with exception."""
        condition = {
            'xxx': {
                'lt': 1.0000006,
                'gt': 1.0000004
            }
        }
        self.assertRaises(
            LineageQuerierParamException,
            self.multi_querier.filter_summary_lineage,
            condition=condition
        )

        condition = {
            'accuracy': {
                'xxx': 1
            }
        }
        self.assertRaises(
            LineageQuerierParamException,
            self.multi_querier.filter_summary_lineage,
            condition=condition
        )

        condition = {
            'sorted_name': 'xxx'
        }
        self.assertRaises(
            LineageQuerierParamException,
            self.multi_querier.filter_summary_lineage,
            condition=condition
        )

611
    def test_init_fail(self):
G
gaocongli 已提交
612
        """Test the function of init with exception."""
613
        obj_dict = 'a'
G
gaocongli 已提交
614
        with self.assertRaises(LineageParamTypeError):
615
            Querier(obj_dict)
G
gaocongli 已提交
616

617
        obj_dict = None
G
gaocongli 已提交
618
        with self.assertRaises(LineageQuerierParamException):
619
            Querier(obj_dict)