test_querier.py 22.2 KB
Newer Older
G
gaocongli 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test the querier module."""
16 17
import time

G
gaocongli 已提交
18 19 20 21
from unittest import TestCase, mock

from google.protobuf.json_format import ParseDict

22
import mindinsight.datavisual.proto_files.mindinsight_lineage_pb2 as summary_pb2
23 24
from mindinsight.lineagemgr.common.exceptions.exceptions import LineageParamTypeError, LineageQuerierParamException
from mindinsight.lineagemgr.lineage_parser import LineageOrganizer
G
gaocongli 已提交
25
from mindinsight.lineagemgr.querier.querier import Querier
李鸿章 已提交
26 27
from mindinsight.lineagemgr.summary.lineage_summary_analyzer import LineageInfo

G
gaocongli 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
from . import event_data


def create_lineage_info(train_event_dict, eval_event_dict, dataset_event_dict):
    """
    Create parsed lineage info tuple.

    Args:
        train_event_dict (Union[dict, None]): The dict of train event.
        eval_event_dict (Union[dict, None]): The dict of evaluation event.
        dataset_event_dict (Union[dict, None]): The dict of dataset graph event.

    Returns:
        namedtuple, parsed lineage info.
    """
    if train_event_dict is not None:
44
        train_event = summary_pb2.LineageEvent()
G
gaocongli 已提交
45 46 47 48 49
        ParseDict(train_event_dict, train_event)
    else:
        train_event = None

    if eval_event_dict is not None:
50
        eval_event = summary_pb2.LineageEvent()
G
gaocongli 已提交
51 52 53 54 55
        ParseDict(eval_event_dict, eval_event)
    else:
        eval_event = None

    if dataset_event_dict is not None:
56
        dataset_event = summary_pb2.LineageEvent()
G
gaocongli 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        ParseDict(dataset_event_dict, dataset_event)
    else:
        dataset_event = None

    lineage_info = LineageInfo(
        train_lineage=train_event,
        eval_lineage=eval_event,
        dataset_graph=dataset_event,
    )
    return lineage_info


def create_filtration_result(summary_dir, train_event_dict,
                             eval_event_dict, metric_dict, dataset_dict):
    """
    Create filteration result.

    Args:
        summary_dir (str): The summary dir.
        train_event_dict (dict): The dict of train event.
        eval_event_dict (dict): The dict of evaluation event.
        metric_dict (dict): The dict of metric.
        dataset_dict (dict): The dict of dataset graph.

    Returns:
        dict, the filteration result.
    """
    filtration_result = {
        "summary_dir": summary_dir,
86 87 88 89 90 91 92 93 94 95 96
        "model_lineage": {
            "loss_function": train_event_dict['train_lineage']['hyper_parameters']['loss_function'],
            "train_dataset_path": train_event_dict['train_lineage']['train_dataset']['train_dataset_path'],
            "train_dataset_count": train_event_dict['train_lineage']['train_dataset']['train_dataset_size'],
            "test_dataset_path": eval_event_dict['evaluation_lineage']['valid_dataset']['valid_dataset_path'],
            "test_dataset_count": eval_event_dict['evaluation_lineage']['valid_dataset']['valid_dataset_size'],
            "network": train_event_dict['train_lineage']['algorithm']['network'],
            "optimizer": train_event_dict['train_lineage']['hyper_parameters']['optimizer'],
            "learning_rate": train_event_dict['train_lineage']['hyper_parameters']['learning_rate'],
            "epoch": train_event_dict['train_lineage']['hyper_parameters']['epoch'],
            "batch_size": train_event_dict['train_lineage']['hyper_parameters']['batch_size'],
L
luopengting 已提交
97
            "device_num": train_event_dict['train_lineage']['hyper_parameters']['device_num'],
98 99 100 101 102 103
            "loss": train_event_dict['train_lineage']['algorithm']['loss'],
            "model_size": train_event_dict['train_lineage']['model']['size'],
            "metric": metric_dict,
            "dataset_mark": '2',
            "user_defined": {}
        },
G
gaocongli 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        "dataset_graph": dataset_dict,
    }
    return filtration_result


def get_lineage_infos():
    """
    Get tuples of lineage info, simulate the function of summary analyzer.

    Returns:
        list[namedtuple], tuples of lineage info.
    """
    train_events = [
        event_data.EVENT_TRAIN_DICT_0,
        event_data.EVENT_TRAIN_DICT_1,
        event_data.EVENT_TRAIN_DICT_2,
        event_data.EVENT_TRAIN_DICT_3,
        event_data.EVENT_TRAIN_DICT_4,
        event_data.EVENT_TRAIN_DICT_5,
        None
    ]
    eval_events = [
        event_data.EVENT_EVAL_DICT_0,
        event_data.EVENT_EVAL_DICT_1,
        event_data.EVENT_EVAL_DICT_2,
        event_data.EVENT_EVAL_DICT_3,
        event_data.EVENT_EVAL_DICT_4,
        None,
        event_data.EVENT_EVAL_DICT_5
    ]
    dataset_events = [
        event_data.EVENT_DATASET_DICT_0
    ]*7

    lineage_infos = list(
        map(
            lambda event: create_lineage_info(event[0], event[1], event[2]),
            zip(train_events, eval_events, dataset_events)
        )
    )

    return lineage_infos


C
chenchao99 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
LINEAGE_INFO_0 = {
    'summary_dir': '/path/to/summary0',
    **event_data.EVENT_TRAIN_DICT_0['train_lineage'],
    'metric': event_data.METRIC_0,
    'valid_dataset': event_data.EVENT_EVAL_DICT_0['evaluation_lineage']['valid_dataset'],
    'dataset_graph': event_data.DATASET_DICT_0
}
LINEAGE_INFO_1 = {
    'summary_dir': '/path/to/summary1',
    **event_data.EVENT_TRAIN_DICT_1['train_lineage'],
    'metric': event_data.METRIC_1,
    'valid_dataset': event_data.EVENT_EVAL_DICT_1['evaluation_lineage']['valid_dataset'],
    'dataset_graph': event_data.DATASET_DICT_0
}
LINEAGE_FILTRATION_0 = create_filtration_result(
    '/path/to/summary0',
    event_data.EVENT_TRAIN_DICT_0,
    event_data.EVENT_EVAL_DICT_0,
    event_data.METRIC_0,
    event_data.DATASET_DICT_0
)
LINEAGE_FILTRATION_1 = create_filtration_result(
    '/path/to/summary1',
    event_data.EVENT_TRAIN_DICT_1,
    event_data.EVENT_EVAL_DICT_1,
    event_data.METRIC_1,
    event_data.DATASET_DICT_0
)
LINEAGE_FILTRATION_2 = create_filtration_result(
    '/path/to/summary2',
    event_data.EVENT_TRAIN_DICT_2,
    event_data.EVENT_EVAL_DICT_2,
    event_data.METRIC_2,
    event_data.DATASET_DICT_0
)
LINEAGE_FILTRATION_3 = create_filtration_result(
    '/path/to/summary3',
    event_data.EVENT_TRAIN_DICT_3,
    event_data.EVENT_EVAL_DICT_3,
    event_data.METRIC_3,
    event_data.DATASET_DICT_0
)
LINEAGE_FILTRATION_4 = create_filtration_result(
    '/path/to/summary4',
    event_data.EVENT_TRAIN_DICT_4,
    event_data.EVENT_EVAL_DICT_4,
    event_data.METRIC_4,
    event_data.DATASET_DICT_0
)
LINEAGE_FILTRATION_5 = {
    "summary_dir": '/path/to/summary5',
199 200 201 202 203 204 205 206 207 208 209 210 211 212
    "model_lineage": {
        "loss_function":
            event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['loss_function'],
        "train_dataset_path": None,
        "train_dataset_count":
            event_data.EVENT_TRAIN_DICT_5['train_lineage']['train_dataset']['train_dataset_size'],
        "test_dataset_path": None,
        "test_dataset_count": None,
        "network": event_data.EVENT_TRAIN_DICT_5['train_lineage']['algorithm']['network'],
        "optimizer": event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['optimizer'],
        "learning_rate":
            event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['learning_rate'],
        "epoch": event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['epoch'],
        "batch_size": event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['batch_size'],
L
luopengting 已提交
213
        "device_num": event_data.EVENT_TRAIN_DICT_5['train_lineage']['hyper_parameters']['device_num'],
214 215 216 217 218 219 220
        "loss": event_data.EVENT_TRAIN_DICT_5['train_lineage']['algorithm']['loss'],
        "model_size": event_data.EVENT_TRAIN_DICT_5['train_lineage']['model']['size'],
        "metric": {},
        "dataset_mark": '2',
        "user_defined": {}
    },
    "dataset_graph": event_data.DATASET_DICT_0
C
chenchao99 已提交
221 222 223
}
LINEAGE_FILTRATION_6 = {
    "summary_dir": '/path/to/summary6',
224 225 226 227 228 229 230 231 232 233 234 235 236
    "model_lineage": {
        "loss_function": None,
        "train_dataset_path": None,
        "train_dataset_count": None,
        "test_dataset_path":
            event_data.EVENT_EVAL_DICT_5['evaluation_lineage']['valid_dataset']['valid_dataset_path'],
        "test_dataset_count":
            event_data.EVENT_EVAL_DICT_5['evaluation_lineage']['valid_dataset']['valid_dataset_size'],
        "network": None,
        "optimizer": None,
        "learning_rate": None,
        "epoch": None,
        "batch_size": None,
L
luopengting 已提交
237
        "device_num": None,
238 239 240 241 242 243 244
        "loss": None,
        "model_size": None,
        "metric": event_data.METRIC_5,
        "dataset_mark": '2',
        "user_defined": {}
    },
    "dataset_graph": event_data.DATASET_DICT_0
C
chenchao99 已提交
245 246 247
}


G
gaocongli 已提交
248 249
class TestQuerier(TestCase):
    """Test the class of `Querier`."""
250 251 252 253 254

    @mock.patch('mindinsight.lineagemgr.lineage_parser.SummaryPathParser.get_latest_lineage_summary')
    @mock.patch('mindinsight.lineagemgr.lineage_parser.SummaryWatcher.list_summary_directories')
    @mock.patch('mindinsight.lineagemgr.lineage_parser.LineageSummaryAnalyzer.get_user_defined_info')
    @mock.patch('mindinsight.lineagemgr.lineage_parser.LineageSummaryAnalyzer.get_summary_infos')
G
gaocongli 已提交
255 256 257 258 259 260 261
    def setUp(self, *args):
        """Initialization before test case execution."""
        args[0].return_value = create_lineage_info(
            event_data.EVENT_TRAIN_DICT_0,
            event_data.EVENT_EVAL_DICT_0,
            event_data.EVENT_DATASET_DICT_0
        )
262
        args[1].return_value = []
263
        args[3].return_value = 'path'
G
gaocongli 已提交
264

265 266 267 268
        args[2].return_value = [{'relative_path': './', 'update_time': 1}]
        single_summary_path = '/path/to/summary0'
        lineage_objects = LineageOrganizer(summary_base_dir=single_summary_path).super_lineage_objs
        self.single_querier = Querier(lineage_objects)
G
gaocongli 已提交
269 270 271

        lineage_infos = get_lineage_infos()
        args[0].side_effect = lineage_infos
272 273 274 275 276 277 278
        summary_base_dir = '/path/to'
        relative_dirs = []
        for i in range(7):
            relative_dirs.append(dict(relative_path=f'./summary{i}', update_time=time.time() - i))
        args[2].return_value = relative_dirs
        lineage_objects = LineageOrganizer(summary_base_dir=summary_base_dir).super_lineage_objs
        self.multi_querier = Querier(lineage_objects)
G
gaocongli 已提交
279 280 281

    def test_get_summary_lineage_success_1(self):
        """Test the success of get_summary_lineage."""
C
chenchao99 已提交
282
        expected_result = [LINEAGE_INFO_0]
G
gaocongli 已提交
283 284 285 286 287
        result = self.single_querier.get_summary_lineage()
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_success_2(self):
        """Test the success of get_summary_lineage."""
C
chenchao99 已提交
288
        expected_result = [LINEAGE_INFO_0]
289
        result = self.single_querier.get_summary_lineage()
G
gaocongli 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_success_3(self):
        """Test the success of get_summary_lineage."""
        expected_result = [
            {
                'summary_dir': '/path/to/summary0',
                'model': event_data.EVENT_TRAIN_DICT_0['train_lineage']['model'],
                'algorithm': event_data.EVENT_TRAIN_DICT_0['train_lineage']['algorithm']
            }
        ]
        result = self.single_querier.get_summary_lineage(
            filter_keys=['model', 'algorithm']
        )
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_success_4(self):
        """Test the success of get_summary_lineage."""
        expected_result = [
C
chenchao99 已提交
309 310
            LINEAGE_INFO_0,
            LINEAGE_INFO_1,
G
gaocongli 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
            {
                'summary_dir': '/path/to/summary2',
                **event_data.EVENT_TRAIN_DICT_2['train_lineage'],
                'metric': event_data.METRIC_2,
                'valid_dataset': event_data.EVENT_EVAL_DICT_2['evaluation_lineage']['valid_dataset'],
                'dataset_graph': event_data.DATASET_DICT_0
            },
            {
                'summary_dir': '/path/to/summary3',
                **event_data.EVENT_TRAIN_DICT_3['train_lineage'],
                'metric': event_data.METRIC_3,
                'valid_dataset': event_data.EVENT_EVAL_DICT_3['evaluation_lineage']['valid_dataset'],
                'dataset_graph': event_data.DATASET_DICT_0
            },
            {
                'summary_dir': '/path/to/summary4',
                **event_data.EVENT_TRAIN_DICT_4['train_lineage'],
                'metric': event_data.METRIC_4,
                'valid_dataset': event_data.EVENT_EVAL_DICT_4['evaluation_lineage']['valid_dataset'],
                'dataset_graph': event_data.DATASET_DICT_0
            },
            {
                'summary_dir': '/path/to/summary5',
                **event_data.EVENT_TRAIN_DICT_5['train_lineage'],
                'metric': {},
                'valid_dataset': {},
                'dataset_graph': event_data.DATASET_DICT_0
            },
            {
                'summary_dir': '/path/to/summary6',
                'hyper_parameters': {},
                'algorithm': {},
                'model': {},
                'train_dataset': {},
                'metric': event_data.METRIC_5,
                'valid_dataset': event_data.EVENT_EVAL_DICT_5['evaluation_lineage']['valid_dataset'],
                'dataset_graph': event_data.DATASET_DICT_0
            }
        ]
        result = self.multi_querier.get_summary_lineage()
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_success_5(self):
        """Test the success of get_summary_lineage."""
C
chenchao99 已提交
355
        expected_result = [LINEAGE_INFO_1]
G
gaocongli 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        result = self.multi_querier.get_summary_lineage(
            summary_dir='/path/to/summary1'
        )
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_success_6(self):
        """Test the success of get_summary_lineage."""
        expected_result = [
            {
                'summary_dir': '/path/to/summary0',
                'hyper_parameters': event_data.EVENT_TRAIN_DICT_0['train_lineage']['hyper_parameters'],
                'train_dataset': event_data.EVENT_TRAIN_DICT_0['train_lineage']['train_dataset'],
                'metric': event_data.METRIC_0,
                'valid_dataset': event_data.EVENT_EVAL_DICT_0['evaluation_lineage']['valid_dataset']
            }
        ]
        filter_keys = [
            'metric', 'hyper_parameters', 'train_dataset', 'valid_dataset'
        ]
        result = self.multi_querier.get_summary_lineage(
            summary_dir='/path/to/summary0', filter_keys=filter_keys
        )
        self.assertListEqual(expected_result, result)

    def test_get_summary_lineage_fail(self):
        """Test the function of get_summary_lineage with exception."""
        filter_keys = ['xxx']
        self.assertRaises(
            LineageQuerierParamException,
            self.multi_querier.get_summary_lineage,
            filter_keys=filter_keys
        )

        self.assertRaises(
            LineageQuerierParamException,
            self.multi_querier.get_summary_lineage,
            summary_dir='xxx'
        )

    def test_filter_summary_lineage_success_1(self):
        """Test the success of filter_summary_lineage."""
        condition = {
            'optimizer': {
                'in': [
                    'ApplyMomentum0',
                    'ApplyMomentum1',
                    'ApplyMomentum2',
                    'ApplyMomentum4'
                ]
            },
            'learning_rate': {
                'lt': 0.5,
                'gt': 0.2
            },
            'sorted_name': 'summary_dir'
        }
        expected_result = {
413
            'customized': event_data.CUSTOMIZED_0,
G
gaocongli 已提交
414
            'object': [
C
chenchao99 已提交
415 416
                LINEAGE_FILTRATION_1,
                LINEAGE_FILTRATION_2
G
gaocongli 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
            ],
            'count': 2,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_2(self):
        """Test the success of filter_summary_lineage."""
        condition = {
            'batch_size': {
                'le': 50,
                'ge': 35
            },
            'model_size': {
                'lt': 400716934,
                'gt': 400716931
            },
            'sorted_name': 'batch_size',
            'sorted_type': 'descending'
        }
        expected_result = {
438
            'customized': event_data.CUSTOMIZED_0,
G
gaocongli 已提交
439
            'object': [
C
chenchao99 已提交
440 441
                LINEAGE_FILTRATION_2,
                LINEAGE_FILTRATION_3
G
gaocongli 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454
            ],
            'count': 2,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_3(self):
        """Test the success of filter_summary_lineage."""
        condition = {
            'limit': 2,
            'offset': 1
        }
        expected_result = {
455
            'customized': event_data.CUSTOMIZED_0,
G
gaocongli 已提交
456
            'object': [
C
chenchao99 已提交
457 458
                LINEAGE_FILTRATION_2,
                LINEAGE_FILTRATION_3
G
gaocongli 已提交
459 460 461 462 463 464 465 466 467
            ],
            'count': 7,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_4(self):
        """Test the success of filter_summary_lineage."""
        expected_result = {
L
luopengting 已提交
468
            'customized': event_data.CUSTOMIZED_2,
G
gaocongli 已提交
469
            'object': [
C
chenchao99 已提交
470 471 472 473 474 475 476
                LINEAGE_FILTRATION_0,
                LINEAGE_FILTRATION_1,
                LINEAGE_FILTRATION_2,
                LINEAGE_FILTRATION_3,
                LINEAGE_FILTRATION_4,
                LINEAGE_FILTRATION_5,
                LINEAGE_FILTRATION_6
G
gaocongli 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490
            ],
            'count': 7,
        }
        result = self.multi_querier.filter_summary_lineage()
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_5(self):
        """Test the success of filter_summary_lineage."""
        condition = {
            'optimizer': {
                'eq': 'ApplyMomentum4'
            }
        }
        expected_result = {
491
            'customized': event_data.CUSTOMIZED_0,
C
chenchao99 已提交
492
            'object': [LINEAGE_FILTRATION_4],
G
gaocongli 已提交
493 494 495 496 497 498 499 500
            'count': 1,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_6(self):
        """Test the success of filter_summary_lineage."""
        condition = {
501
            'sorted_name': 'metric/accuracy',
G
gaocongli 已提交
502 503 504
            'sorted_type': 'ascending'
        }
        expected_result = {
L
luopengting 已提交
505
            'customized': event_data.CUSTOMIZED_2,
G
gaocongli 已提交
506
            'object': [
C
chenchao99 已提交
507 508 509 510 511 512 513
                LINEAGE_FILTRATION_0,
                LINEAGE_FILTRATION_5,
                LINEAGE_FILTRATION_1,
                LINEAGE_FILTRATION_2,
                LINEAGE_FILTRATION_3,
                LINEAGE_FILTRATION_4,
                LINEAGE_FILTRATION_6
G
gaocongli 已提交
514 515 516 517 518 519 520 521 522
            ],
            'count': 7,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_7(self):
        """Test the success of filter_summary_lineage."""
        condition = {
523
            'sorted_name': 'metric/accuracy',
G
gaocongli 已提交
524 525 526
            'sorted_type': 'descending'
        }
        expected_result = {
L
luopengting 已提交
527
            'customized': event_data.CUSTOMIZED_2,
G
gaocongli 已提交
528
            'object': [
C
chenchao99 已提交
529 530 531 532 533 534 535
                LINEAGE_FILTRATION_6,
                LINEAGE_FILTRATION_4,
                LINEAGE_FILTRATION_3,
                LINEAGE_FILTRATION_2,
                LINEAGE_FILTRATION_1,
                LINEAGE_FILTRATION_0,
                LINEAGE_FILTRATION_5
G
gaocongli 已提交
536 537 538 539 540 541 542 543 544
            ],
            'count': 7,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_8(self):
        """Test the success of filter_summary_lineage."""
        condition = {
545
            'metric/accuracy': {
G
gaocongli 已提交
546 547 548 549 550
                'lt': 1.0000006,
                'gt': 1.0000004
            }
        }
        expected_result = {
551
            'customized': event_data.CUSTOMIZED_0,
C
chenchao99 已提交
552
            'object': [LINEAGE_FILTRATION_4],
G
gaocongli 已提交
553 554 555 556 557 558 559 560 561 562 563 564
            'count': 1,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_success_9(self):
        """Test the success of filter_summary_lineage."""
        condition = {
            'limit': 3,
            'offset': 3
        }
        expected_result = {
565
            'customized': {},
G
gaocongli 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
            'object': [],
            'count': 7,
        }
        result = self.multi_querier.filter_summary_lineage(condition=condition)
        self.assertDictEqual(expected_result, result)

    def test_filter_summary_lineage_fail(self):
        """Test the function of filter_summary_lineage with exception."""
        condition = {
            'xxx': {
                'lt': 1.0000006,
                'gt': 1.0000004
            }
        }
        self.assertRaises(
            LineageQuerierParamException,
            self.multi_querier.filter_summary_lineage,
            condition=condition
        )

        condition = {
            'accuracy': {
                'xxx': 1
            }
        }
        self.assertRaises(
            LineageQuerierParamException,
            self.multi_querier.filter_summary_lineage,
            condition=condition
        )

        condition = {
            'sorted_name': 'xxx'
        }
        self.assertRaises(
            LineageQuerierParamException,
            self.multi_querier.filter_summary_lineage,
            condition=condition
        )

606
    def test_init_fail(self):
G
gaocongli 已提交
607
        """Test the function of init with exception."""
608
        obj_dict = 'a'
G
gaocongli 已提交
609
        with self.assertRaises(LineageParamTypeError):
610
            Querier(obj_dict)
G
gaocongli 已提交
611

612
        obj_dict = None
G
gaocongli 已提交
613
        with self.assertRaises(LineageQuerierParamException):
614
            Querier(obj_dict)