Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindinsight
提交
2ddb2b9c
M
mindinsight
项目概览
MindSpore
/
mindinsight
通知
8
Star
3
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindinsight
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2ddb2b9c
编写于
4月 09, 2020
作者:
L
luopengting
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
merge model_lineage and dataset_lineage, modify/add st and ut for lineage api
上级
15a7ad78
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
308 addition
and
210 deletion
+308
-210
mindinsight/backend/lineagemgr/lineage_api.py
mindinsight/backend/lineagemgr/lineage_api.py
+8
-48
mindinsight/lineagemgr/api/model.py
mindinsight/lineagemgr/api/model.py
+0
-2
mindinsight/lineagemgr/common/exceptions/error_code.py
mindinsight/lineagemgr/common/exceptions/error_code.py
+1
-1
mindinsight/lineagemgr/common/validator/model_parameter.py
mindinsight/lineagemgr/common/validator/model_parameter.py
+36
-6
mindinsight/lineagemgr/querier/querier.py
mindinsight/lineagemgr/querier/querier.py
+34
-5
mindinsight/lineagemgr/querier/query_model.py
mindinsight/lineagemgr/querier/query_model.py
+18
-9
tests/st/func/lineagemgr/api/test_model_api.py
tests/st/func/lineagemgr/api/test_model_api.py
+134
-65
tests/ut/backend/lineagemgr/test_lineage_api.py
tests/ut/backend/lineagemgr/test_lineage_api.py
+5
-5
tests/ut/lineagemgr/api/test_model.py
tests/ut/lineagemgr/api/test_model.py
+0
-12
tests/ut/lineagemgr/querier/test_querier.py
tests/ut/lineagemgr/querier/test_querier.py
+58
-53
tests/ut/lineagemgr/querier/test_query_model.py
tests/ut/lineagemgr/querier/test_query_model.py
+14
-4
未找到文件。
mindinsight/backend/lineagemgr/lineage_api.py
浏览文件 @
2ddb2b9c
...
...
@@ -27,52 +27,20 @@ from mindinsight.utils.exceptions import MindInsightException, ParamValueError
BLUEPRINT
=
Blueprint
(
"lineage"
,
__name__
,
url_prefix
=
settings
.
URL_PREFIX
.
rstrip
(
"/"
))
@
BLUEPRINT
.
route
(
"/
models/model_lineage
"
,
methods
=
[
"POST"
])
def
search_model
():
@
BLUEPRINT
.
route
(
"/
lineagemgr/lineages
"
,
methods
=
[
"POST"
])
def
get_lineage
():
"""
Get model lineage info.
Get model info by summary base dir return a model lineage information list of dict
contains model's all kinds of param and count of summary log.
Returns:
str, the model lineage information.
Raises:
MindInsightException: If method fails to be called.
ParamValueError: If parsing json data search_condition fails.
Examples:
>>> POST http://xxxx/v1/mindinsight/models/model_lineage
"""
search_condition
=
request
.
stream
.
read
()
try
:
search_condition
=
json
.
loads
(
search_condition
if
search_condition
else
"{}"
)
except
Exception
:
raise
ParamValueError
(
"Json data parse failed."
)
model_lineage_info
=
_get_lineage_info
(
lineage_type
=
"model"
,
search_condition
=
search_condition
)
return
jsonify
(
model_lineage_info
)
@
BLUEPRINT
.
route
(
"/datasets/dataset_lineage"
,
methods
=
[
"POST"
])
def
get_datasets_lineage
():
"""
Get dataset lineage.
Get lineage.
Returns:
str, the
dataset
lineage information.
str, the lineage information.
Raises:
MindInsightException: If method fails to be called.
ParamValueError: If parsing json data search_condition fails.
Examples:
>>> POST http://xxxx/v1/mind
data/datasets/dataset_lineage
>>> POST http://xxxx/v1/mind
insight/lineagemgr/lineages
"""
search_condition
=
request
.
stream
.
read
()
try
:
...
...
@@ -80,20 +48,16 @@ def get_datasets_lineage():
except
Exception
:
raise
ParamValueError
(
"Json data parse failed."
)
dataset_lineage_info
=
_get_lineage_info
(
lineage_type
=
"dataset"
,
search_condition
=
search_condition
)
lineage_info
=
_get_lineage_info
(
search_condition
=
search_condition
)
return
jsonify
(
dataset_
lineage_info
)
return
jsonify
(
lineage_info
)
def
_get_lineage_info
(
lineage_type
,
search_condition
):
def
_get_lineage_info
(
search_condition
):
"""
Get lineage info for dataset or model.
Args:
lineage_type (str): Lineage type, 'dataset' or 'model'.
search_condition (dict): Search condition.
Returns:
...
...
@@ -102,10 +66,6 @@ def _get_lineage_info(lineage_type, search_condition):
Raises:
MindInsightException: If method fails to be called.
"""
if
'lineage_type'
in
search_condition
:
raise
ParamValueError
(
"Lineage type does not need to be assigned in a specific interface."
)
if
lineage_type
==
'dataset'
:
search_condition
.
update
({
'lineage_type'
:
'dataset'
})
summary_base_dir
=
str
(
settings
.
SUMMARY_BASE_DIR
)
try
:
lineage_info
=
filter_summary_lineage
(
...
...
mindinsight/lineagemgr/api/model.py
浏览文件 @
2ddb2b9c
...
...
@@ -262,8 +262,6 @@ def _convert_relative_path_to_abspath(summary_base_dir, search_condition):
return
search_condition
summary_dir_condition
=
search_condition
.
get
(
"summary_dir"
)
if
not
set
(
summary_dir_condition
.
keys
()).
issubset
([
'in'
,
'eq'
]):
raise
LineageParamValueError
(
"Invalid operation of summary dir."
)
if
'in'
in
summary_dir_condition
:
summary_paths
=
[]
...
...
mindinsight/lineagemgr/common/exceptions/error_code.py
浏览文件 @
2ddb2b9c
...
...
@@ -193,7 +193,7 @@ class LineageErrorMsg(Enum):
"It should be a string."
LINEAGE_PARAM_LINEAGE_TYPE_ERROR
=
"The parameter lineage_type is invalid. "
\
"It should be
None,
'dataset' or 'model'."
"It should be 'dataset' or 'model'."
SUMMARY_ANALYZE_ERROR
=
"Failed to analyze summary log. {}"
SUMMARY_VERIFICATION_ERROR
=
"Verification failed in summary analysis. {}"
...
...
mindinsight/lineagemgr/common/validator/model_parameter.py
浏览文件 @
2ddb2b9c
...
...
@@ -14,7 +14,7 @@
# ============================================================================
"""Define schema of model lineage input parameters."""
from
marshmallow
import
Schema
,
fields
,
ValidationError
,
pre_load
,
validates
from
marshmallow.validate
import
Range
,
OneOf
from
marshmallow.validate
import
Range
from
mindinsight.lineagemgr.common.exceptions.error_code
import
LineageErrorMsg
,
\
LineageErrors
...
...
@@ -129,10 +129,7 @@ class SearchModelConditionParameter(Schema):
offset
=
fields
.
Int
(
validate
=
lambda
n
:
0
<=
n
<=
100000
)
sorted_name
=
fields
.
Str
()
sorted_type
=
fields
.
Str
(
allow_none
=
True
)
lineage_type
=
fields
.
Str
(
validate
=
OneOf
(
enum_to_list
(
LineageType
)),
allow_none
=
True
)
lineage_type
=
fields
.
Dict
()
@
staticmethod
def
check_dict_value_type
(
data
,
value_type
):
...
...
@@ -174,53 +171,79 @@ class SearchModelConditionParameter(Schema):
@
validates
(
"loss_function"
)
def
check_loss_function
(
self
,
data
):
"""Check loss function."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
str
)
@
validates
(
"train_dataset_path"
)
def
check_train_dataset_path
(
self
,
data
):
"""Check train dataset path."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
str
)
@
validates
(
"train_dataset_count"
)
def
check_train_dataset_count
(
self
,
data
):
"""Check train dataset count."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
int
)
@
validates
(
"test_dataset_path"
)
def
check_test_dataset_path
(
self
,
data
):
"""Check test dataset path."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
str
)
@
validates
(
"test_dataset_count"
)
def
check_test_dataset_count
(
self
,
data
):
"""Check test dataset count."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
int
)
@
validates
(
"network"
)
def
check_network
(
self
,
data
):
"""Check network."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
str
)
@
validates
(
"optimizer"
)
def
check_optimizer
(
self
,
data
):
"""Check optimizer."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
str
)
@
validates
(
"epoch"
)
def
check_epoch
(
self
,
data
):
"""Check epoch."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
int
)
@
validates
(
"batch_size"
)
def
check_batch_size
(
self
,
data
):
"""Check batch size."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
int
)
@
validates
(
"model_size"
)
def
check_model_size
(
self
,
data
):
"""Check model size."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
int
)
@
validates
(
"summary_dir"
)
def
check_summary_dir
(
self
,
data
):
"""Check summary dir."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
str
)
@
validates
(
"lineage_type"
)
def
check_lineage_type
(
self
,
data
):
"""Check lineage type."""
SearchModelConditionParameter
.
check_dict_value_type
(
data
,
str
)
recv_types
=
[]
for
key
,
value
in
data
.
items
():
if
key
==
"in"
:
recv_types
=
value
else
:
recv_types
.
append
(
value
)
lineage_types
=
enum_to_list
(
LineageType
)
if
not
set
(
recv_types
).
issubset
(
lineage_types
):
raise
ValidationError
(
"Given lineage type should be one of %s."
%
lineage_types
)
@
pre_load
def
check_comparision
(
self
,
data
,
**
kwargs
):
"""Check comparision for all parameters in schema."""
for
attr
,
condition
in
data
.
items
():
if
attr
in
[
"limit"
,
"offset"
,
"sorted_name"
,
"sorted_type"
,
"lineage_type"
]:
if
attr
in
[
"limit"
,
"offset"
,
"sorted_name"
,
"sorted_type"
]:
continue
if
not
isinstance
(
attr
,
str
):
...
...
@@ -233,6 +256,13 @@ class SearchModelConditionParameter(Schema):
raise
LineageParamTypeError
(
"The search_condition element {} should be dict."
.
format
(
attr
))
if
attr
in
[
"summary_dir"
,
"lineage_type"
]:
if
not
set
(
condition
.
keys
()).
issubset
([
'in'
,
'eq'
]):
raise
LineageParamValueError
(
"Invalid operation of %s."
%
attr
)
if
len
(
condition
.
keys
())
>
1
:
raise
LineageParamValueError
(
"More than one operation of %s."
%
attr
)
continue
for
key
in
condition
.
keys
():
if
key
not
in
[
"eq"
,
"lt"
,
"gt"
,
"le"
,
"ge"
,
"in"
]:
raise
LineageParamValueError
(
"The compare condition should be in "
...
...
mindinsight/lineagemgr/querier/querier.py
浏览文件 @
2ddb2b9c
...
...
@@ -23,6 +23,7 @@ from mindinsight.lineagemgr.common.exceptions.exceptions import \
LineageEventNotExistException
,
LineageQuerierParamException
,
\
LineageSummaryParseException
,
LineageEventFieldNotExistException
from
mindinsight.lineagemgr.common.log
import
logger
from
mindinsight.lineagemgr.common.utils
import
enum_to_list
from
mindinsight.lineagemgr.querier.query_model
import
LineageObj
,
FIELD_MAPPING
from
mindinsight.lineagemgr.summary.lineage_summary_analyzer
import
\
LineageSummaryAnalyzer
...
...
@@ -318,18 +319,46 @@ class Querier:
customized
[
label
][
"required"
]
=
True
customized
[
label
][
"type"
]
=
type
(
value
).
__name__
search_type
=
condition
.
get
(
ConditionParam
.
LINEAGE_TYPE
.
value
)
lineage_types
=
condition
.
get
(
ConditionParam
.
LINEAGE_TYPE
.
value
)
lineage_types
=
self
.
_get_lineage_types
(
lineage_types
)
object_items
=
[]
for
item
in
offset_results
:
lineage_object
=
dict
()
if
LineageType
.
MODEL
.
value
in
lineage_types
:
lineage_object
.
update
(
item
.
to_model_lineage_dict
())
if
LineageType
.
DATASET
.
value
in
lineage_types
:
lineage_object
.
update
(
item
.
to_dataset_lineage_dict
())
object_items
.
append
(
lineage_object
)
lineage_info
=
{
'customized'
:
customized
,
'object'
:
[
item
.
to_dataset_lineage_dict
()
if
search_type
==
LineageType
.
DATASET
.
value
else
item
.
to_filtration_dict
()
for
item
in
offset_results
],
'object'
:
object_items
,
'count'
:
len
(
results
)
}
return
lineage_info
def
_get_lineage_types
(
self
,
lineage_type_param
):
"""
Get lineage types.
Args:
lineage_type_param (dict): A dict contains "in" or "eq".
Returns:
list, lineage type.
"""
# lineage_type_param is None or an empty dict
if
not
lineage_type_param
:
return
enum_to_list
(
LineageType
)
if
lineage_type_param
.
get
(
"in"
)
is
not
None
:
return
lineage_type_param
.
get
(
"in"
)
return
[
lineage_type_param
.
get
(
"eq"
)]
def
_is_valid_field
(
self
,
field_name
):
"""
Check if field name is valid.
...
...
mindinsight/lineagemgr/querier/query_model.py
浏览文件 @
2ddb2b9c
...
...
@@ -38,6 +38,7 @@ FIELD_MAPPING = {
"loss"
:
Field
(
'algorithm'
,
'loss'
),
"model_size"
:
Field
(
'model'
,
'size'
),
"dataset_mark"
:
Field
(
'dataset_mark'
,
None
),
"lineage_type"
:
Field
(
None
,
None
)
}
...
...
@@ -75,6 +76,7 @@ class LineageObj:
_name_dataset_graph
=
'dataset_graph'
_name_dataset_mark
=
'dataset_mark'
_name_user_defined
=
'user_defined'
_name_model_lineage
=
'model_lineage'
def
__init__
(
self
,
summary_dir
,
**
kwargs
):
self
.
_lineage_info
=
{
...
...
@@ -227,15 +229,6 @@ class LineageObj:
result
[
key
]
=
getattr
(
self
,
key
)
return
result
def
to_filtration_dict
(
self
):
"""
Returns the lineage information required by filtering interface.
Returns:
dict, the lineage information required by filtering interface.
"""
return
self
.
_filtration_result
def
to_dataset_lineage_dict
(
self
):
"""
Returns the dataset part lineage information.
...
...
@@ -250,6 +243,22 @@ class LineageObj:
return
dataset_lineage
def
to_model_lineage_dict
(
self
):
"""
Returns the model part lineage information.
Returns:
dict, the model lineage information.
"""
filtration_result
=
dict
(
self
.
_filtration_result
)
filtration_result
.
pop
(
self
.
_name_dataset_graph
)
model_lineage
=
dict
()
model_lineage
.
update
({
self
.
_name_summary_dir
:
filtration_result
.
pop
(
self
.
_name_summary_dir
)})
model_lineage
.
update
({
self
.
_name_model_lineage
:
filtration_result
})
return
model_lineage
def
get_value_by_key
(
self
,
key
):
"""
Get the value based on the key in `FIELD_MAPPING` or
...
...
tests/st/func/lineagemgr/api/test_model_api.py
浏览文件 @
2ddb2b9c
...
...
@@ -20,7 +20,6 @@ Usage:
The query module test should be run after lineagemgr/collection/model/test_model_lineage.py
pytest lineagemgr
"""
import
os
from
unittest
import
TestCase
...
...
@@ -66,64 +65,70 @@ LINEAGE_INFO_RUN1 = {
}
LINEAGE_FILTRATION_EXCEPT_RUN
=
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'except_run'
),
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
1024
,
'user_defined'
:
{},
'test_dataset_path'
:
None
,
'test_dataset_count'
:
None
,
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
10
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
64
,
'metric'
:
{},
'dataset_graph'
:
DATASET_GRAPH
,
'dataset_mark'
:
2
'model_lineage'
:
{
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
1024
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
None
,
'user_defined'
:
{},
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
10
,
'batch_size'
:
32
,
'loss'
:
0.029999999329447746
,
'model_size'
:
64
,
'metric'
:
{},
'dataset_mark'
:
2
},
'dataset_graph'
:
DATASET_GRAPH
}
LINEAGE_FILTRATION_RUN1
=
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run1'
),
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
731
,
'test_dataset_path'
:
None
,
'user_defined'
:
{},
'test_dataset_count'
:
10240
,
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
14
,
'batch_size'
:
32
,
'loss'
:
None
,
'model_size'
:
64
,
'metric'
:
{
'accuracy'
:
0.78
'model_lineage'
:
{
'loss_function'
:
'SoftmaxCrossEntropyWithLogits'
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
731
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'user_defined'
:
{},
'network'
:
'ResNet'
,
'optimizer'
:
'Momentum'
,
'learning_rate'
:
0.11999999731779099
,
'epoch'
:
14
,
'batch_size'
:
32
,
'loss'
:
None
,
'model_size'
:
64
,
'metric'
:
{
'accuracy'
:
0.78
},
'dataset_mark'
:
2
},
'dataset_graph'
:
DATASET_GRAPH
,
'dataset_mark'
:
2
'dataset_graph'
:
DATASET_GRAPH
}
LINEAGE_FILTRATION_RUN2
=
{
'summary_dir'
:
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'run2'
),
'loss_function'
:
None
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
None
,
'user_defined'
:
{},
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'network'
:
None
,
'optimizer'
:
None
,
'learning_rate'
:
None
,
'epoch'
:
None
,
'batch_size'
:
None
,
'loss'
:
None
,
'model_size'
:
None
,
'metric'
:
{
'accuracy'
:
2.7800000000000002
'model_lineage'
:
{
'loss_function'
:
None
,
'train_dataset_path'
:
None
,
'train_dataset_count'
:
None
,
'test_dataset_path'
:
None
,
'test_dataset_count'
:
10240
,
'user_defined'
:
{},
'network'
:
None
,
'optimizer'
:
None
,
'learning_rate'
:
None
,
'epoch'
:
None
,
'batch_size'
:
None
,
'loss'
:
None
,
'model_size'
:
None
,
'metric'
:
{
'accuracy'
:
2.7800000000000002
},
'dataset_mark'
:
3
},
'dataset_graph'
:
{},
'dataset_mark'
:
3
'dataset_graph'
:
{}
}
...
...
@@ -150,6 +155,14 @@ class TestModelApi(TestCase):
cls
.
empty_dir
=
os
.
path
.
join
(
BASE_SUMMARY_DIR
,
'empty_dir'
)
os
.
makedirs
(
cls
.
empty_dir
)
def
generate_lineage_object
(
self
,
lineage
):
lineage
=
dict
(
lineage
)
lineage_object
=
dict
()
lineage_object
.
update
({
'summary_dir'
:
lineage
.
pop
(
'summary_dir'
)})
lineage_object
.
update
({
'dataset_graph'
:
lineage
.
pop
(
'dataset_graph'
)})
lineage_object
.
update
({
'model_lineage'
:
lineage
})
return
lineage_object
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_gpu_training
...
...
@@ -337,7 +350,7 @@ class TestModelApi(TestCase):
res
=
filter_summary_lineage
(
BASE_SUMMARY_DIR
,
search_condition
)
expect_objects
=
expect_result
.
get
(
'object'
)
for
idx
,
res_object
in
enumerate
(
res
.
get
(
'object'
)):
expect_objects
[
idx
][
'
dataset_mark'
]
=
res_object
.
get
(
'dataset_mark'
)
expect_objects
[
idx
][
'
model_lineage'
][
'dataset_mark'
]
=
res_object
[
'model_lineage'
]
.
get
(
'dataset_mark'
)
assert
expect_result
==
res
expect_result
=
{
...
...
@@ -347,7 +360,7 @@ class TestModelApi(TestCase):
res
=
filter_summary_lineage
(
self
.
dir_with_empty_lineage
)
expect_objects
=
expect_result
.
get
(
'object'
)
for
idx
,
res_object
in
enumerate
(
res
.
get
(
'object'
)):
expect_objects
[
idx
][
'
dataset_mark'
]
=
res_object
.
get
(
'dataset_mark'
)
expect_objects
[
idx
][
'
model_lineage'
][
'dataset_mark'
]
=
res_object
[
'model_lineage'
]
.
get
(
'dataset_mark'
)
assert
expect_result
==
res
@
pytest
.
mark
.
level0
...
...
@@ -385,7 +398,7 @@ class TestModelApi(TestCase):
partial_res
=
filter_summary_lineage
(
BASE_SUMMARY_DIR
,
search_condition
)
expect_objects
=
expect_result
.
get
(
'object'
)
for
idx
,
res_object
in
enumerate
(
partial_res
.
get
(
'object'
)):
expect_objects
[
idx
][
'
dataset_mark'
]
=
res_object
.
get
(
'dataset_mark'
)
expect_objects
[
idx
][
'
model_lineage'
][
'dataset_mark'
]
=
res_object
[
'model_lineage'
]
.
get
(
'dataset_mark'
)
assert
expect_result
==
partial_res
@
pytest
.
mark
.
level0
...
...
@@ -423,7 +436,7 @@ class TestModelApi(TestCase):
partial_res
=
filter_summary_lineage
(
BASE_SUMMARY_DIR
,
search_condition
)
expect_objects
=
expect_result
.
get
(
'object'
)
for
idx
,
res_object
in
enumerate
(
partial_res
.
get
(
'object'
)):
expect_objects
[
idx
][
'
dataset_mark'
]
=
res_object
.
get
(
'dataset_mark'
)
expect_objects
[
idx
][
'
model_lineage'
][
'dataset_mark'
]
=
res_object
[
'model_lineage'
]
.
get
(
'dataset_mark'
)
assert
expect_result
==
partial_res
@
pytest
.
mark
.
level0
...
...
@@ -439,7 +452,6 @@ class TestModelApi(TestCase):
'ge'
:
30
},
'sorted_name'
:
'metric/accuracy'
,
'lineage_type'
:
None
}
expect_result
=
{
'customized'
:
event_data
.
CUSTOMIZED__0
,
...
...
@@ -452,14 +464,16 @@ class TestModelApi(TestCase):
partial_res1
=
filter_summary_lineage
(
BASE_SUMMARY_DIR
,
search_condition1
)
expect_objects
=
expect_result
.
get
(
'object'
)
for
idx
,
res_object
in
enumerate
(
partial_res1
.
get
(
'object'
)):
expect_objects
[
idx
][
'
dataset_mark'
]
=
res_object
.
get
(
'dataset_mark'
)
expect_objects
[
idx
][
'
model_lineage'
][
'dataset_mark'
]
=
res_object
[
'model_lineage'
]
.
get
(
'dataset_mark'
)
assert
expect_result
==
partial_res1
search_condition2
=
{
'batch_size'
:
{
'lt'
:
30
},
'lineage_type'
:
'model'
'lineage_type'
:
{
'eq'
:
'model'
},
}
expect_result
=
{
'customized'
:
{},
...
...
@@ -469,7 +483,7 @@ class TestModelApi(TestCase):
partial_res2
=
filter_summary_lineage
(
BASE_SUMMARY_DIR
,
search_condition2
)
expect_objects
=
expect_result
.
get
(
'object'
)
for
idx
,
res_object
in
enumerate
(
partial_res2
.
get
(
'object'
)):
expect_objects
[
idx
][
'
dataset_mark'
]
=
res_object
.
get
(
'dataset_mark'
)
expect_objects
[
idx
][
'
model_lineage'
][
'dataset_mark'
]
=
res_object
[
'model_lineage'
]
.
get
(
'dataset_mark'
)
assert
expect_result
==
partial_res2
@
pytest
.
mark
.
level0
...
...
@@ -485,7 +499,9 @@ class TestModelApi(TestCase):
'summary_dir'
:
{
'in'
:
[
summary_dir
]
},
'lineage_type'
:
'dataset'
'lineage_type'
:
{
'eq'
:
'dataset'
},
}
expect_result
=
{
'customized'
:
{},
...
...
@@ -705,15 +721,29 @@ class TestModelApi(TestCase):
search_condition
)
# the condition type not supported in summary dir
search_condition
=
{
'summary_dir'
:
{
'lt'
:
'/xxx'
'lineage_type'
:
{
'in'
:
[
'xxx'
]
}
}
self
.
assertRaisesRegex
(
LineageParamSummaryPathError
,
'Invalid operation of summary dir.'
,
LineageSearchConditionParamError
,
"The parameter lineage_type is invalid. It should be 'dataset' or 'model'."
,
filter_summary_lineage
,
BASE_SUMMARY_DIR
,
search_condition
)
search_condition
=
{
'lineage_type'
:
{
'eq'
:
None
}
}
self
.
assertRaisesRegex
(
LineageSearchConditionParamError
,
"The parameter lineage_type is invalid. It should be 'dataset' or 'model'."
,
filter_summary_lineage
,
BASE_SUMMARY_DIR
,
search_condition
...
...
@@ -779,3 +809,42 @@ class TestModelApi(TestCase):
}
partial_res2
=
filter_summary_lineage
(
BASE_SUMMARY_DIR
,
search_condition2
)
assert
expect_result
==
partial_res2
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_single
def
test_filter_summary_lineage_exception_7
(
self
):
"""Test the abnormal execution of the filter_summary_lineage interface."""
condition_keys
=
[
"summary_dir"
,
"lineage_type"
]
for
condition_key
in
condition_keys
:
# the condition type not supported in summary_dir and lineage_type
search_condition
=
{
condition_key
:
{
'lt'
:
'/xxx'
}
}
self
.
assertRaisesRegex
(
LineageSearchConditionParamError
,
f
'Invalid operation of
{
condition_key
}
.'
,
filter_summary_lineage
,
BASE_SUMMARY_DIR
,
search_condition
)
# more than one operation in summary_dir and lineage_type
search_condition
=
{
condition_key
:
{
'in'
:
[
'/xxx'
,
'/yyy'
],
'eq'
:
'/zzz'
,
}
}
self
.
assertRaisesRegex
(
LineageSearchConditionParamError
,
f
'More than one operation of
{
condition_key
}
.'
,
filter_summary_lineage
,
BASE_SUMMARY_DIR
,
search_condition
)
tests/ut/backend/lineagemgr/test_lineage_api.py
浏览文件 @
2ddb2b9c
...
...
@@ -67,7 +67,7 @@ class TestSearchModel(TestCase):
"""Test init."""
APP
.
response_class
=
Response
self
.
app_client
=
APP
.
test_client
()
self
.
url
=
'/v1/mindinsight/
models/model_lineage
'
self
.
url
=
'/v1/mindinsight/
lineagemgr/lineages
'
@
mock
.
patch
(
'mindinsight.backend.lineagemgr.lineage_api.settings'
)
@
mock
.
patch
(
'mindinsight.backend.lineagemgr.lineage_api.filter_summary_lineage'
)
...
...
@@ -78,11 +78,11 @@ class TestSearchModel(TestCase):
'object'
:
[
{
'summary_dir'
:
base_dir
,
**
LINEAGE_FILTRATION_BASE
'model_lineage'
:
LINEAGE_FILTRATION_BASE
},
{
'summary_dir'
:
os
.
path
.
join
(
base_dir
,
'run1'
),
**
LINEAGE_FILTRATION_RUN1
'model_lineage'
:
LINEAGE_FILTRATION_RUN1
}
],
'count'
:
2
...
...
@@ -101,11 +101,11 @@ class TestSearchModel(TestCase):
'object'
:
[
{
'summary_dir'
:
'./'
,
**
LINEAGE_FILTRATION_BASE
'model_lineage'
:
LINEAGE_FILTRATION_BASE
},
{
'summary_dir'
:
'./run1'
,
**
LINEAGE_FILTRATION_RUN1
'model_lineage'
:
LINEAGE_FILTRATION_RUN1
}
],
'count'
:
2
...
...
tests/ut/lineagemgr/api/test_model.py
浏览文件 @
2ddb2b9c
...
...
@@ -131,18 +131,6 @@ class TestModel(TestCase):
self
.
assertDictEqual
(
result
,
search_condition
)
search_condition
=
{
'summary_dir'
:
{
'gt'
:
3
}
}
self
.
assertRaisesRegex
(
LineageParamValueError
,
'Invalid operation of summary dir'
,
_convert_relative_path_to_abspath
,
summary_base_dir
,
search_condition
)
class
TestFilterAPI
(
TestCase
):
...
...
tests/ut/lineagemgr/querier/test_querier.py
浏览文件 @
2ddb2b9c
...
...
@@ -82,22 +82,24 @@ def create_filtration_result(summary_dir, train_event_dict,
"""
filtration_result
=
{
"summary_dir"
:
summary_dir
,
"loss_function"
:
train_event_dict
[
'train_lineage'
][
'hyper_parameters'
][
'loss_function'
],
"train_dataset_path"
:
train_event_dict
[
'train_lineage'
][
'train_dataset'
][
'train_dataset_path'
],
"train_dataset_count"
:
train_event_dict
[
'train_lineage'
][
'train_dataset'
][
'train_dataset_size'
],
"test_dataset_path"
:
eval_event_dict
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_path'
],
"test_dataset_count"
:
eval_event_dict
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_size'
],
"network"
:
train_event_dict
[
'train_lineage'
][
'algorithm'
][
'network'
],
"optimizer"
:
train_event_dict
[
'train_lineage'
][
'hyper_parameters'
][
'optimizer'
],
"learning_rate"
:
train_event_dict
[
'train_lineage'
][
'hyper_parameters'
][
'learning_rate'
],
"epoch"
:
train_event_dict
[
'train_lineage'
][
'hyper_parameters'
][
'epoch'
],
"batch_size"
:
train_event_dict
[
'train_lineage'
][
'hyper_parameters'
][
'batch_size'
],
"loss"
:
train_event_dict
[
'train_lineage'
][
'algorithm'
][
'loss'
],
"model_size"
:
train_event_dict
[
'train_lineage'
][
'model'
][
'size'
],
"metric"
:
metric_dict
,
"model_lineage"
:
{
"loss_function"
:
train_event_dict
[
'train_lineage'
][
'hyper_parameters'
][
'loss_function'
],
"train_dataset_path"
:
train_event_dict
[
'train_lineage'
][
'train_dataset'
][
'train_dataset_path'
],
"train_dataset_count"
:
train_event_dict
[
'train_lineage'
][
'train_dataset'
][
'train_dataset_size'
],
"test_dataset_path"
:
eval_event_dict
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_path'
],
"test_dataset_count"
:
eval_event_dict
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_size'
],
"network"
:
train_event_dict
[
'train_lineage'
][
'algorithm'
][
'network'
],
"optimizer"
:
train_event_dict
[
'train_lineage'
][
'hyper_parameters'
][
'optimizer'
],
"learning_rate"
:
train_event_dict
[
'train_lineage'
][
'hyper_parameters'
][
'learning_rate'
],
"epoch"
:
train_event_dict
[
'train_lineage'
][
'hyper_parameters'
][
'epoch'
],
"batch_size"
:
train_event_dict
[
'train_lineage'
][
'hyper_parameters'
][
'batch_size'
],
"loss"
:
train_event_dict
[
'train_lineage'
][
'algorithm'
][
'loss'
],
"model_size"
:
train_event_dict
[
'train_lineage'
][
'model'
][
'size'
],
"metric"
:
metric_dict
,
"dataset_mark"
:
'2'
,
"user_defined"
:
{}
},
"dataset_graph"
:
dataset_dict
,
"dataset_mark"
:
'2'
,
"user_defined"
:
{}
}
return
filtration_result
...
...
@@ -192,47 +194,50 @@ LINEAGE_FILTRATION_4 = create_filtration_result(
)
LINEAGE_FILTRATION_5
=
{
"summary_dir"
:
'/path/to/summary5'
,
"loss_function"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'loss_function'
],
"train_dataset_path"
:
None
,
"train_dataset_count"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'train_dataset'
][
'train_dataset_size'
],
"test_dataset_path"
:
None
,
"test_dataset_count"
:
None
,
"network"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'network'
],
"optimizer"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'optimizer'
],
"learning_rate"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'learning_rate'
],
"epoch"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'epoch'
],
"batch_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'batch_size'
],
"loss"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'loss'
],
"model_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'model'
][
'size'
],
"metric"
:
{},
"dataset_graph"
:
event_data
.
DATASET_DICT_0
,
"dataset_mark"
:
'2'
,
"user_defined"
:
{}
"model_lineage"
:
{
"loss_function"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'loss_function'
],
"train_dataset_path"
:
None
,
"train_dataset_count"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'train_dataset'
][
'train_dataset_size'
],
"test_dataset_path"
:
None
,
"test_dataset_count"
:
None
,
"network"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'network'
],
"optimizer"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'optimizer'
],
"learning_rate"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'learning_rate'
],
"epoch"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'epoch'
],
"batch_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'hyper_parameters'
][
'batch_size'
],
"loss"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'algorithm'
][
'loss'
],
"model_size"
:
event_data
.
EVENT_TRAIN_DICT_5
[
'train_lineage'
][
'model'
][
'size'
],
"metric"
:
{},
"dataset_mark"
:
'2'
,
"user_defined"
:
{}
},
"dataset_graph"
:
event_data
.
DATASET_DICT_0
}
LINEAGE_FILTRATION_6
=
{
"summary_dir"
:
'/path/to/summary6'
,
"loss_function"
:
None
,
"train_dataset_path"
:
None
,
"train_dataset_count"
:
None
,
"test_dataset_path"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_path'
],
"test_dataset_count"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_size'
],
"network"
:
None
,
"optimizer"
:
None
,
"learning_rate"
:
None
,
"epoch"
:
None
,
"batch_size"
:
None
,
"loss"
:
None
,
"model_size"
:
None
,
"metric"
:
event_data
.
METRIC_5
,
"dataset_graph"
:
event_data
.
DATASET_DICT_0
,
"dataset_mark"
:
'2'
,
"user_defined"
:
{}
"model_lineage"
:
{
"loss_function"
:
None
,
"train_dataset_path"
:
None
,
"train_dataset_count"
:
None
,
"test_dataset_path"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_path'
],
"test_dataset_count"
:
event_data
.
EVENT_EVAL_DICT_5
[
'evaluation_lineage'
][
'valid_dataset'
][
'valid_dataset_size'
],
"network"
:
None
,
"optimizer"
:
None
,
"learning_rate"
:
None
,
"epoch"
:
None
,
"batch_size"
:
None
,
"loss"
:
None
,
"model_size"
:
None
,
"metric"
:
event_data
.
METRIC_5
,
"dataset_mark"
:
'2'
,
"user_defined"
:
{}
},
"dataset_graph"
:
event_data
.
DATASET_DICT_0
}
...
...
tests/ut/lineagemgr/querier/test_query_model.py
浏览文件 @
2ddb2b9c
...
...
@@ -108,8 +108,8 @@ class TestLineageObj(TestCase):
result
=
self
.
lineage_obj
.
get_summary_info
(
filter_keys
)
self
.
assertDictEqual
(
expected_result
,
result
)
def
test_to_
filtration
_dict
(
self
):
"""Test the function of to_
filtration
_dict."""
def
test_to_
model_lineage
_dict
(
self
):
"""Test the function of to_
model_lineage
_dict."""
expected_result
=
create_filtration_result
(
self
.
summary_dir
,
event_data
.
EVENT_TRAIN_DICT_0
,
...
...
@@ -117,8 +117,18 @@ class TestLineageObj(TestCase):
event_data
.
METRIC_0
,
event_data
.
DATASET_DICT_0
)
expected_result
[
'dataset_mark'
]
=
None
result
=
self
.
lineage_obj
.
to_filtration_dict
()
expected_result
[
'model_lineage'
][
'dataset_mark'
]
=
None
expected_result
.
pop
(
'dataset_graph'
)
result
=
self
.
lineage_obj
.
to_model_lineage_dict
()
self
.
assertDictEqual
(
expected_result
,
result
)
def
test_to_dataset_lineage_dict
(
self
):
"""Test the function of to_dataset_lineage_dict."""
expected_result
=
{
"summary_dir"
:
self
.
summary_dir
,
"dataset_graph"
:
event_data
.
DATASET_DICT_0
}
result
=
self
.
lineage_obj
.
to_dataset_lineage_dict
()
self
.
assertDictEqual
(
expected_result
,
result
)
def
test_get_value_by_key
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录