convolution.cpp 35.9 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/cuda/convolution.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11
 */
12
#include "megdnn/dtype.h"
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "megdnn/oprs.h"
#include "megdnn/opr_param_defs.h"
#include "test/cuda/fixture.h"
#include "test/common/tensor.h"
#include "test/common/workspace_wrapper.h"
#include "test/common/checker.h"
#include "test/common/convolution.h"
#include "test/common/rng.h"
#include "test/cuda/benchmark.h"
#include "src/cuda/utils.h"

#define V1(x) #x
#define V(x) V1(x)
#define CUDNN_VERSION_STRING \
    "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)

namespace megdnn {
namespace test {

32
TEST_F(CUDA, CONVOLUTION_8X8X32) {
33
    if (!cuda::is_compute_capability_required(6, 1)) {
34 35 36 37 38 39 40 41 42
        printf("Skip CUDA.CONVOLUTION_8X8X32 test as current device"
               "doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args;
    {
        auto v = get_args();
43
        for (auto&& a : v) {
44 45 46 47 48
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_dilated_args();
49
        for (auto&& a : v) {
50 51 52 53 54
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_chanwise_args();
55
        for (auto&& a : v) {
56 57 58 59 60
            args.push_back(std::move(a));
        }
    }
    Checker<ConvolutionForward> checker(handle_cuda());
    UniformIntRNG rng(-4, 4);
61
    for (auto arg : args) {
62 63 64
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
65 66 67 68 69 70 71
        checker.set_dtype(0, dtype::Int8())
                .set_dtype(1, dtype::Int8())
                .set_dtype(2, dtype::Int32())
                .set_param(arg.param)
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .execs({arg.src, arg.filter, {}});
72 73 74
    }
}

75
TEST_F(CUDA, CONVOLUTION_FORWARD) {
76 77 78 79
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
80
    for (auto&& arg : args) {
81 82
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
83
        UniformFloatRNG rng(scale, 2 * scale);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
100 101 102 103 104 105 106 107 108
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
109 110 111 112 113 114
        checker.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16())
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
115 116 117 118
    }
}

TEST_F(CUDA, CONV_FORWARD_MATMUL_NCHW4) {
119
    if (!cuda::is_compute_capability_required(6, 1))
120 121 122 123 124 125 126 127 128 129 130 131 132 133
        return;
    using namespace convolution;
    Checker<Convolution> checker(handle_cuda());
    UniformIntRNG int_rng{-127, 127};
    Convolution::Param param;
    param.format = Convolution::Param::Format::NCHW4;

    checker.set_dtype(0, dtype::QuantizedS8(0.132f))
            .set_dtype(1, dtype::QuantizedS8(0.0239f))
            .set_dtype(2, dtype::QuantizedS32(0.132f * 0.0239f))
            .set_rng(0, &int_rng)
            .set_rng(1, &int_rng)
            .set_param(param);

134 135 136 137 138 139 140
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
                    "DEFAULT",
                    {{ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
                              "MATMUL8X8X32", {})
                              .c_str(),
                      {}}}}));
141 142 143 144 145 146 147 148 149 150

    param.sparse = Convolution::Param::Sparse::DENSE;
    param.pad_h = param.pad_w = 1;
    param.stride_h = param.stride_w = 1;
    checker.set_param(param);
    checker.exec({{8, 4, 10, 10, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {}});
}

151
TEST_F(CUDA, CONVOLUTION_1X1_FORWARD) {
152 153 154 155
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
156 157 158
    for (auto&& arg : args) {
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
159
        UniformFloatRNG rng(scale, 2 * scale);
160 161 162 163 164 165 166
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
167 168 169
    }
}

170
TEST_F(CUDA, BENCHMARK_CONVOLUTION_1X1_FORWARD) {
171 172 173 174
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Benchmarker<ConvolutionForward> marker(handle_cuda());
    NormalRNG default_rng;
175 176 177
    for (auto&& arg : args) {
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
178
        UniformFloatRNG rng(scale, 2 * scale);
179 180 181 182 183 184
        marker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
185 186 187
    }
}

188
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA) {
189 190 191 192
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
193
    for (auto&& arg : args) {
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        float scale =
                64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
211
        if (!cuda::is_compute_capability_required(6, 0)) {
212 213 214 215 216 217 218 219 220 221 222 223 224
            src.dtype = dst.dtype = filter.dtype = dtype::Float16();
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
            arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
        }
225 226
        checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
                ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_DATD_BFLOAT16",
227
                                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
228 229 230 231 232 233 234 235 236
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
237 238 239
    }
}

240
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) {
241 242 243 244 245 246 247
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());

    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
    NormalRNG default_rng;
248
    for (auto&& arg : args) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        float scale =
                64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
}

269
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) {
270
    if (!cuda::is_compute_capability_required(6, 1)) {
271 272
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A test as "
               "current device doesn't support\n");
273 274 275 276 277
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw4_conv_bwd_data();
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

    struct AlgoParam {
        int threadblock_m;
        int threadblock_n;
        int threadblock_k;
        int warp_m;
        int warp_n;
        int warp_k;
        int stage;
        std::string to_string() {
            return ssprintf("_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m,
                            threadblock_n, threadblock_k, warp_m, warp_n,
                            warp_k, stage);
        }
    };

    std::vector<AlgoParam> all_params;

    all_params.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2});
    all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2});
    all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1});
    all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2});
    all_params.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2});

    for (auto algo_param : all_params) {
        Checker<ConvolutionBackwardData> checker(handle_cuda());
        std::string algo_name(ssprintf("INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s",
                                       algo_param.to_string().c_str()));
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));

        checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);

        for (auto&& arg : args) {
            UniformIntRNG rng(-3, 3);
            auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
            auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
            TensorLayout dst;
            dst.dtype = dtype::QuantizedS8{1.2f};
            {
                auto opr = handle_cuda()->create_operator<Convolution>();
                opr->param() = arg.param;
                opr->deduce_layout(src, filter, dst);
            }
            checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                    TensorLayoutArray{filter, dst, src});
        }
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A) {
    if (!cuda::is_compute_capability_required(6, 1)) {
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A test as "
               "current device doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw_conv_bwd_data();
337 338 339
    Checker<ConvolutionBackwardData> checker(handle_cuda());

    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
340
            "INT8_NCHW_DOTPROD_IMPLICIT_GEMM"));
341 342

    checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    for (auto&& arg : args) {
        UniformIntRNG rng(-3, 3);
        auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
        auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.2f};
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                TensorLayoutArray{filter, dst, src});
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FAILED_CUDNN7_5) {
361 362 363 364 365 366 367 368
    // BRAIN-481 failed on architectures 7.0, remove the following if statement,
    // when cudnn fixed the problem.
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    std::vector<TestArg> args = get_args_cudnn_7_5_failures();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
369 370 371
    for (auto&& arg : args) {
        float scale =
                128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
372 373 374 375 376 377 378 379 380 381 382
        scale = std::max(scale, 1.f);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
383 384 385 386 387
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
388
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
389 390 391 392 393
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
394 395 396 397 398 399 400 401 402
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
}

403
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER) {
404 405 406 407
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    bool f16_checked = false;
408
    for (auto&& arg : args) {
409 410 411 412 413 414 415 416 417 418 419
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
420 421 422 423 424
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
425 426 427 428 429 430 431

        // reduce on large f16 array may introduce significant error
        if (dst.total_nr_elems() >= 1000 && f16_checked)
            continue;

        f16_checked = true;
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
432 433 434 435 436
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
437 438 439 440 441 442
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
443 444 445

        checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
                ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_FILTER_BFLOAT16",
446
                                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
447 448 449 450 451 452
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
453 454
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
455 456 457
    }
}

458
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_MATMUL) {
459 460 461 462 463
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
464
    for (auto&& arg : args) {
465 466 467 468 469 470 471 472 473 474 475
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
476 477 478 479 480
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
481 482 483
    }
}

484
TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) {
485
    auto eps_getter = [](bool f16, int stage, const char* name) -> float {
486 487 488 489 490 491 492
        if (f16) {
            return stage == 2 ? 0.5 : 0.2;
        }
        if (strstr(name, "WINOGRAD_NONFUSED"))
            return 0.3;
        return 1e-3;
    };
493 494 495 496 497 498
    convolution::test_conv_config_combinations(2, handle_cuda(), false, true,
                                               true, eps_getter, true);
    convolution::test_conv_config_combinations(3, handle_cuda(), false, true,
                                               true, eps_getter, true);
    convolution::test_conv_config_combinations(5, handle_cuda(), false, true,
                                               true, eps_getter, true);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_1) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1" CUDNN_VERSION_STRING));
    NormalRNG default_rng;
    TensorShape s_filter = TensorShape{8, 8, 2, 2},
                s_src = TensorShape{2, 8, 18, 18};
    float scale = 1.0f / sqrt(s_filter[0] * s_filter[2] * s_filter[3]);
    UniformFloatRNG rng(scale, 2 * scale);
    auto src = TensorLayout(s_src, dtype::Float16());
    auto filter = TensorLayout(s_filter, dtype::Float16());
    TensorLayout dst;
    param::Convolution param;
    param.pad_h = param.pad_w = 2;
    param.stride_h = param.stride_w = 2;
    {
        auto opr = handle_cuda()->create_operator<Convolution>();
        opr->param() = param;
        opr->deduce_layout(src, filter, dst);
    }
    src.dtype = dst.dtype = filter.dtype = dtype::Float16();
    param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
    checker.set_rng(0, &rng)
            .set_rng(1, &rng)
            .set_epsilon(0.2)
            .set_param(param)
            .exec(TensorLayoutArray{filter, dst, src});
}

#if MEGDNN_WITH_BENCHMARK
TEST_F(CUDA, CONV_FWD_BENCHMARK) {
535 536 537
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t SH = 1, size_t SW = 1, size_t FH = 1, size_t FW = 1,
                   size_t PH = 0, size_t PW = 0, bool fp16io_c32 = false) {
538 539
        auto benchmarker = Benchmarker<ConvolutionForward>(handle_cuda());
        benchmarker.set_dtype(0, dtype::Float16())
540 541
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
542 543 544 545 546 547
        ConvolutionForward::Param param;
        param.stride_h = SH;
        param.stride_w = SW;
        param.pad_h = PH;
        param.pad_w = PW;
        if (fp16io_c32) {
548 549
            param.compute_mode =
                    ConvolutionForward::Param::ComputeMode::FLOAT32;
550 551
        }
        benchmarker.set_param(param);
552 553
        std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
                new OprProxy<ConvolutionForward>{true}};
554 555 556
        benchmarker.set_proxy(proxy);
        size_t OH = (IH - FH + 2 * PH) / SH + 1;
        size_t OW = (IW - FW + 2 * PW) / SW + 1;
557 558
        auto time = benchmarker.execs(
                {{N, IC, IH, IW}, {OC, IC, FH, FW}, {N, OC, OH, OW}});
559
        time /= 1000.0 * 10.0;
560
        auto flo = (double)N * OC * IC * OH * OW * FH * FW * 2;
561 562
        auto flops = flo / time / 1e12;
        printf("comp_type %s: ", fp16io_c32 ? "32" : "16");
563
        printf("%.3fG FLO, flops %.3fTFLOPS\n", flo / 1e9, flops);
564 565 566 567 568 569 570
    };
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, false);
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, true);
}

TEST_F(CUDA, CONVOLUTION_FWD_BENCHMARK) {
    CUBenchmarker<ConvolutionForward> bench{handle_cuda()};
571 572
    std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
            new OprProxy<ConvolutionForward>{true}};
573 574 575 576 577 578 579 580 581 582 583 584 585
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
586
        bench.proxy()->target_execution_policy.algo.reset();
587 588 589 590 591 592 593 594 595 596
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, filter, dst}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
597
        bench.proxy()->target_execution_policy.algo.reset();
598 599 600 601 602
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, filter, dst}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
603
        bench.proxy()->target_execution_policy.algo.reset();
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, filter, dst}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
657
        bench.proxy()->target_execution_policy.algo.reset();
658 659 660 661 662 663 664 665 666 667
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
668
        bench.proxy()->target_execution_policy.algo.reset();
669 670 671 672 673
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({filter, dst, src}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
674
        bench.proxy()->target_execution_policy.algo.reset();
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC, IH, IW}, dtype::BFloat16()},
                filter{{OC, IC, FH, FH}, dtype::BFloat16()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
               (flo / (used * 1e9)));
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_INT8_DP4A) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::QuantizedS8{1.0f})
                .set_dtype(1, dtype::QuantizedS8{1.0f})
                .set_dtype(2, dtype::QuantizedS8{1.0f});
        param::Convolution param;
        param.format = param::Convolution::Format::NCHW4;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC / 4, IH, IW, 4}, dtype::QuantizedS8{1.0f}},
                filter{{OC, IC / 4, FH, FH, 4}, dtype::QuantizedS8{1.0f}};
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.0f};
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
               (flo / (used * 1e9)));
    };
    run(64, 32, 32, 92, 180, 4, 2, 2);
    run(64, 32, 32, 46, 80, 4, 2, 2);
    run(16, 16, 16, 92, 180, 4, 2, 2);
    run(16, 16, 16, 46, 80, 4, 2, 2);
}
806

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
            new OprProxy<ConvolutionBackwardFilter>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
824
        bench.proxy()->target_execution_policy.algo.reset();
825 826 827 828 829 830 831 832 833 834
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
835
        bench.proxy()->target_execution_policy.algo.reset();
836 837 838 839 840
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, dst, filter}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
841
        bench.proxy()->target_execution_policy.algo.reset();
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, dst, filter}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}
#endif

#undef CUDNN_VERSION_STRING
#undef V
#undef V1

883 884
}  // namespace test
}  // namespace megdnn
885 886

// vim: syntax=cpp.doxygen