nn.h 87.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#pragma once
#include "megdnn/internal/opr_header_prologue.h"

namespace megdnn {

class SeparableConvBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(SeparableConvBase, OperatorBase);
    DEF_OPR_PARAM(SeparableConv);

public:
    using Mode = Param::Mode;

protected:
M
Megvii Engine Team 已提交
14 15 16 17 18 19
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, const TensorLayout& dst);
20 21 22 23 24 25
};

class SeparableConvForward : public SeparableConvBase {
    DEF_OPR_IMPL(SeparableConvForward, SeparableConvBase, 3, 1);

public:
M
Megvii Engine Team 已提交
26 27 28 29 30 31 32 33 34 35
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter_x,
            _megdnn_tensor_in filter_y, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, const TensorLayout& dst) = 0;
36 37

protected:
M
Megvii Engine Team 已提交
38 39 40 41
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, const TensorLayout& dst,
            size_t workspace_in_bytes);
42 43 44
};
using SeparableConv = SeparableConvForward;

45 46 47 48 49 50 51 52 53
namespace detail {

struct PreprocessedFilter {
    //! user data; its lifetime should be bound to MegDNN Convolution
    //! operator
    void* algorithm_id;
    TensorNDArray tensors;
};

54
}  // namespace detail
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/**
 * \brief base class for convolution operation
 *
 * This operator is supposed to perform convolution on arbitrary input
 * dimensions. The input/output format is N, C, dims..., and kernel format can
 * take two forms:
 *  1. OC, IC, dims..., for conventional dense convolution
 *  2. GROUP, OC_PER_GRP, IC_PER_GRP, dims... for sparse group convolution
 *
 * Currently, only 2D images are supported.
 */
template <typename Parameter>
class ConvolutionBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ConvolutionBase, OperatorBase);
    using Param = Parameter;

public:
    Param& param() { return m_param; }
    const Param& param() const { return m_param; }

protected:
    Param m_param;

public:
    static constexpr size_t MAX_SPATIAL_DIM = 2;
    using Mode = typename Param::Mode;
    struct CanonizedFilterMeta {
        DType dtype;
        typename Param::Format format;

        uint32_t
                //! whether filter should be flipped (i.e. is CONVOLUTION)
                should_flip,
                group,  //!< number of groups
                icpg,   //!< input channels per group
                ocpg,   //!< output channels per group
                spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
                //! spatial dim
                spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
                //! spatial dim with dilation applied
                dilated_spatial[MAX_SPATIAL_DIM];

        //! T should be a ConvolutionBase<Z>::CanonizedFilterMeta
        template <typename T>
        void copy_from(const T& b) {
            dtype = b.dtype;
            format = b.format;
            should_flip = b.should_flip;
            group = b.group;
            icpg = b.icpg;
            ocpg = b.ocpg;
            spatial_ndim = b.spatial_ndim;
            memcpy(stride, b.stride, sizeof(stride));
            memcpy(padding, b.padding, sizeof(padding));
            memcpy(spatial, b.spatial, sizeof(spatial));
            memcpy(dilation, b.dilation, sizeof(dilation));
            memcpy(dilated_spatial, b.dilated_spatial, sizeof(dilated_spatial));
        }

        bool operator==(const CanonizedFilterMeta& b) const {
            bool flag = true;
            flag = flag && (format == b.format);
            flag = flag && (dtype == b.dtype);
            flag = flag && (should_flip == b.should_flip);
            flag = flag && (group == b.group);
            flag = flag && (icpg == b.icpg);
            flag = flag && (ocpg == b.ocpg);
            flag = flag && (spatial_ndim == b.spatial_ndim);
            if (flag) {
                for (uint32_t i = 0; i < spatial_ndim; ++i) {
                    flag = flag && (stride[i] == b.stride[i]);
                    flag = flag && (padding[i] == b.padding[i]);
                    flag = flag && (spatial[i] == b.spatial[i]);
                    flag = flag && (dilation[i] == b.dilation[i]);
                    flag = flag && (dilated_spatial[i] == b.dilated_spatial[i]);
                }
            }
            return flag;
        }
    };
136
    using PreprocessedFilter = detail::PreprocessedFilter;
137

138 139 140
protected:
    // Check or deduce output DType
    void check_or_deduce_dtype_fwd(DType src, DType filter, DType& dst) const;
M
Megvii Engine Team 已提交
141 142 143 144 145 146
    CanonizedFilterMeta deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            TensorLayout& dst) const;
    CanonizedFilterMeta check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) const;
147 148 149 150 151 152 153 154 155 156

    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter) const;
};

class MaskPropagate : public OperatorBase {
    DEF_OPR_IMPL(MaskPropagate, OperatorBase, 1, 1);
    DEF_OPR_PARAM(MaskPropagate);

public:
M
Megvii Engine Team 已提交
157 158 159 160 161
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
162 163 164 165 166 167 168 169 170 171 172

    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
};

/**
 * \brief ConvolutionForward Operator with 0/1 Mask matrix
 */
class MaskConvForward : public ConvolutionBase<param::Convolution> {
    DEF_OPR_IMPL(MaskConvForward, ConvolutionBase, 3, 1);

public:
M
Megvii Engine Team 已提交
173 174 175 176 177 178
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in mask,
            _megdnn_tensor_out dst, _megdnn_workspace worksapce) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& dst) = 0;
179 180

    void deduce_dtype(DType src, DType filter, DType mask, DType& dst);
M
Megvii Engine Team 已提交
181 182 183
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, TensorLayout& dst);
184 185

protected:
M
Megvii Engine Team 已提交
186 187 188 189
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& dst,
            size_t workspace_in_bytes);
190 191 192 193 194 195 196 197 198 199 200 201 202 203
};
using MaskConvolution = MaskConvForward;

/**
 * \brief ConvolutionForward operator.
 */
class ConvolutionForward : public ConvolutionBase<param::Convolution>,
                           public detail::MultiAlgoOpr<ConvolutionForward, 3> {
    DEF_OPR_IMPL(ConvolutionForward, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] filter (oc, ic, fh, fw)
204 205 206 207 208 209 210
     * \param[in] preprocessed_filter if weight no preprocessed it will be
     * nullptr, else the preprocessed weights store in the tensors of
     * preprocessed_filter.
     * \param[in] workspace if weight no preprocessed
     * (preprocessed_filter == nullptr), The size of the workspace satisfies the
     * situation that weights is not processed, other wise the size of workspace
     * satisfies the situation that weights is preprocessed
211 212
     * \param[out] dst (n, oc, oh, ow)
     */
M
Megvii Engine Team 已提交
213 214 215 216
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            const PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
217 218 219 220 221 222

    MGE_WIN_DECLSPEC_FUC void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) {
        exec(src, filter, dst, nullptr, workspace);
    }
223
    /**
M
Megvii Engine Team 已提交
224 225
     * \brief execute weight preprocessing, read weights form filter and write
     * to preprocessed_filter after preprocessed.
226 227 228
     *
     * \praram[in] workspace the needed tmp workspace when exec_preprocess
     */
M
Megvii Engine Team 已提交
229 230 231 232
    virtual void exec_preprocess(
            const TensorLayout& src_layout, _megdnn_tensor_in filter,
            const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
233
    MGE_WIN_DECLSPEC_FUC void deduce_dtype(DType src, DType filter, DType& dst);
234

235
    MGE_WIN_DECLSPEC_FUC void deduce_layout(
M
Megvii Engine Team 已提交
236
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
237 238 239 240 241 242 243 244 245

    /**
     * \brief query the workspace needed when executing the opr, if the weights
     * are preprocessed the preprocessed_filter will not be nullptr, else it
     * will be nullptr, the workspace size maybe different whether weights are
     * preprocessed
     *
     * \return the size of workspace needed when executing
     */
246 247
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
248
            const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter) = 0;
249

250 251 252 253 254 255 256 257
    /**
     * \brief deduce the preprocessed filter layouts according to the src,
     * filter and dst layout, the result may contain multi layouts when the
     * weights is not one
     *
     * \return SmallVector<TensorLayout> Derive the layouts of weight
     * preprocessing, return empty if preprocessing is not needed.
     */
258 259 260
    virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
261

262 263 264 265 266 267 268
    /**
     * \brief query the workspace needed when preprocessing the weights,
     * according to the return size, a _megdnn_workspace will be created and
     * passed through exec_preprocess
     *
     * \return the size of workspace needed when preprocessing
     */
269 270 271
    virtual size_t get_preprocess_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
272

273 274 275 276
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION_FORWARD;
    }

277
protected:
278 279 280 281
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes,
            const PreprocessedFilter* preprocessed_filter);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
};
using Convolution = ConvolutionForward;

/**
 * \brief ConvolutionBackwardData operator.
 *
 * Calculating the gradient wrt. convolution input data.
 */
class ConvolutionBackwardData
        : public ConvolutionBase<param::Convolution>,
          public detail::MultiAlgoOpr<ConvolutionBackwardData, 3> {
    DEF_OPR_IMPL(ConvolutionBackwardData, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
301 302 303 304 305 306
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
307

308
    MGE_WIN_DECLSPEC_FUC void deduce_dtype(DType filter, DType diff, DType& grad);
309
    MGE_WIN_DECLSPEC_FUC void deduce_layout(
M
Megvii Engine Team 已提交
310
            const TensorLayout& filter, const TensorLayout& diff, TensorLayout& grad);
311

312 313 314 315
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION_BACKWARD_DATA;
    }

316
protected:
M
Megvii Engine Team 已提交
317 318 319
    CanonizedFilterMeta check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
};

/**
 * \brief ConvolutionBackwardFilter operator.
 *
 * Calculating the gradient wrt. convolution filter.
 */
class ConvolutionBackwardFilter
        : public ConvolutionBase<param::Convolution>,
          public detail::MultiAlgoOpr<ConvolutionBackwardFilter, 3> {
    DEF_OPR_IMPL(ConvolutionBackwardFilter, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (oc, ic, fh, fw)
     */
M
Megvii Engine Team 已提交
338 339 340 341 342 343
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
344

345 346 347 348
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION_BACKWARD_FILTER;
    }

349
protected:
M
Megvii Engine Team 已提交
350 351 352
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
353 354 355 356 357 358 359 360 361 362 363 364 365
};

/**
 * \brief ConvolutionBias operator
 */
class ConvBiasForward : public ConvolutionBase<param::ConvBias>,
                        public detail::MultiAlgoOpr<ConvBiasForward, 5> {
    DEF_OPR_IMPL(ConvBiasForward, ConvolutionBase, 4, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw) or (n, ih, iw, ic)
     * \param[in] filter (oc, ic, fh, fw) or (oc, fh, fw, ic) or (oc/4, fh, fw,
366 367 368
     * 4 * ic)
     * \param[in] bias (1, oc, 1, 1)
     * \param[in] z same as dst
369 370 371 372 373 374 375
     * \param[in] preprocessed_filter if weight no preprocessed it will be
     * nullptr, else the preprocessed weights store in the tensors of
     * preprocessed_filter.
     * \param[in] workspace if weight no preprocessed
     * (preprocessed_filter == nullptr), The size of the workspace satisfies the
     * situation that weights is not processed, other wise the size of workspace
     * satisfies the situation that weights is preprocessed
376
     * \param[out] dst (n, oc, oh, ow) or (n, oh, ow, oc)
377 378 379 380
     *
     * \note if the format is NCHW_WINOGRAD, the filter layout is (alphah,
     * alphaw, oc, ic)
     */
M
Megvii Engine Team 已提交
381 382 383 384 385
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
            _megdnn_tensor_in z, _megdnn_tensor_out dst,
            const PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
386

387 388 389 390 391 392
    MGE_WIN_DECLSPEC_FUC void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
            _megdnn_tensor_in z, _megdnn_tensor_out dst, _megdnn_workspace workspace) {
        exec(src, filter, bias, z, dst, nullptr, workspace);
    }

393
    /**
394 395
     * \brief execute weight preprocessing, read weights form filter and bias,
     * write to preprocessed_filter after preprocessed.
396 397 398 399
     *
     * \praram[in] workspace the needed tmp workspace when exec_preprocess
     * running, the size is got by get_preprocess_workspace_in_bytes
     */
M
Megvii Engine Team 已提交
400 401 402 403 404
    virtual void exec_preprocess(
            const TensorLayout& src_layout, _megdnn_tensor_in filter,
            _megdnn_tensor_in bias, const TensorLayout& z_layout,
            const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
405 406 407
    MGE_WIN_DECLSPEC_FUC void deduce_dtype(
            DType src, DType filter, DType bias, DType z, DType& dst);
    MGE_WIN_DECLSPEC_FUC void deduce_layout(
M
Megvii Engine Team 已提交
408 409
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z, TensorLayout& dst);
410

411 412 413 414 415 416 417 418
    /**
     * \brief query the workspace needed when executing the opr, if the weights
     * are preprocessed the preprocessed_filter will not be nullptr, else it
     * will be nullptr, the workspace size maybe different whether weights are
     * preprocessed
     *
     * \return the size of workspace needed when executing
     */
419 420
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
421
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
422
            const PreprocessedFilter* preprocessed_filter) = 0;
423 424 425 426 427 428 429 430

    /**
     * \brief query the workspace needed when pre-processing the weights,
     * according to the return size, a _megdnn_workspace will be created and
     * passed through exec_preprocess
     *
     * \return the size of workspace needed when pre-processing
     */
431 432 433 434
    virtual size_t get_preprocess_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;
435 436 437 438 439 440 441 442 443

    /**
     * \brief deduce the pre-processed filter layouts according to the src,
     * filter and dst layout, which may contain multi layouts when the weights
     * is not one
     *
     * \return SmallVector<TensorLayout> Derive the layouts of weight
     * preprocessing, return empty if preprocessing is not needed.
     */
444 445 446 447 448
    virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    enum class BiasMode : uint32_t {
        NO_BIAS = 0,             //!< no bias
        BROADCAST_CHANNEL_BIAS,  //!< broadcast channel bias, [1, c, 1, 1]
        BIAS                     //!< [N, C, H, W]
    };

    //! param for winograd algos.
    struct WinogradParam {
        uint32_t channel_block_size;
        uint32_t output_block_size;
        uint32_t tile_size;
        bool operator==(const WinogradParam& rhs) const {
            return channel_block_size == rhs.channel_block_size &&
                   output_block_size == rhs.output_block_size &&
                   tile_size == rhs.tile_size;
        }

        std::string to_string() const;
    };
    static constexpr WinogradParam INVALID_WINOGRAD_PARAM = {0, 0, 0};

    struct DirectParam {
        std::string to_string() const { return ""; }
    };

    struct MatmulParam {
        std::string to_string() const { return ""; }
    };

    struct DefaultParam {
        std::string to_string() const { return ""; }
    };

    //! get algo name, the format is ParamTrait<T>::category:base:p.to_string()
    //! \warning: base must not contain :.
    template <typename T>
485 486 487
    static std::string algo_name(
            const std::string& base, const T& p,
            param::ConvBias::Format format = param::ConvBias::Format::NCHW);
488 489 490 491 492 493 494 495 496 497 498
    /*!
     * \brief parse algo_name and get WinogradParam from algo name.
     *
     * \param algo name string
     * \return WinogradParam parsed from algo name, use pattern
     * winograd:base:m:tile_size.
     *
     * \warning: INVALID_WINOGRAD_PARAM returns if the algo_name is not matched.
     */
    static WinogradParam parse_winograd_name(const std::string& algo_name);

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    /**
     * @brief find if there is nchw_nchwxx conv kernel optimized for argment,
     * nchw44 used for arm, nchw88 used for x86
     *
     * @param src_dtype  conv feature map data type
     * @param filter_dtype  conv filter or weight data type
     * @param dst_dtype output data type
     * @param fm filter meta param
     * @param bias_mode bias mode, no_bias or broadcast or bias
     * @param nonline_mode identity or relu or h_swish or sigmoid
     * @return true, found a kernel
     * @return false, can`t found any kernel
     */
    static bool is_nchw_nchwxx_optimized(
            const DTypeEnum src_dtype, const DTypeEnum filter_dtype,
            const DTypeEnum dst_dtype,
            const ConvolutionBase<param::Convolution>::CanonizedFilterMeta& fm,
            const ConvBiasForward::BiasMode bias_mode,
            const param::ConvBias::NonlineMode nonline_mode);

519 520 521 522
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVBIAS_FORWARD;
    }

523
protected:
524 525
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
526 527
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
            size_t workspace_in_bytes, const PreprocessedFilter* preprocessed_filter);
528 529 530

    CanonizedFilterMeta check_exec_allow_noncontiguous(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
531 532
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
            size_t workspace_in_bytes, const PreprocessedFilter* preprocessed_filter);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
};
using ConvBias = ConvBiasForward;

/**
 * \brief base class for Conv - Nonline - Pooling
 */
class ConvPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ConvPoolingBase, OperatorBase);

    /**
     *  \ Param::Method: Two methods to fetch the input data.
     *  Default methods is WITH_TEXTURE_OBJ.
     *  If you want to use WITH_SHARED_MEM mode,
     *  please make sure that the size of
     *   [ all of the fliter kernels + a channel
     *  of input data + a channel of output data]
     *  should be no large than 38KB.
     *  And the pooling mode should not be "MAX".
     */
    DEF_OPR_PARAM(ConvPooling);

protected:
M
Megvii Engine Team 已提交
555 556 557 558 559 560 561
    virtual void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst) = 0;
    virtual void check_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst,
            size_t workspace_limit_in_bytes) = 0;
562 563 564 565 566 567 568 569 570 571
};

class ConvPoolingForward : public ConvPoolingBase {
    DEF_OPR_IMPL(ConvPoolingForward, ConvPoolingBase, 2, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
M
Megvii Engine Team 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    virtual void exec(
            const _megdnn_in TensorND src, const _megdnn_in TensorND filter,
            const _megdnn_in TensorND bias, _megdnn_out TensorND dst,
            _megdnn_out Workspace workspace) = 0;
    virtual void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& dst) = 0;

protected:
    virtual void check_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst,
            size_t workspace_limit_in_bytes) = 0;
588 589 590 591 592 593 594 595 596 597 598
};
using ConvPooling = ConvPoolingForward;

class GroupLocalBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(GroupLocalBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    using Mode = Param::Mode;

protected:
M
Megvii Engine Team 已提交
599 600 601 602 603
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst);
604 605 606 607 608 609 610 611 612 613 614
};

class GroupLocalForward : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalForward, GroupLocalBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] filter (G, OH, OW, IC/G, FH, FW, OC/G)
     * \param[out] dst (N, OC, OH, OW)
     **/
M
Megvii Engine Team 已提交
615 616 617 618 619
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst) {
620 621
        deduce_layout_fwd(src, filter, dst);
    }
M
Megvii Engine Team 已提交
622 623 624
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
625 626

protected:
M
Megvii Engine Team 已提交
627 628 629
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
630 631 632 633 634 635 636
};
using GroupLocal = GroupLocalForward;

class GroupLocalBackwardData : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalBackwardData, GroupLocalBase, 2, 1);

public:
M
Megvii Engine Team 已提交
637 638 639 640 641 642
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
643 644

protected:
M
Megvii Engine Team 已提交
645 646 647
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
648 649 650 651 652 653
};

class GroupLocalBackwardFilter : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalBackwardFilter, GroupLocalBase, 2, 1);

public:
M
Megvii Engine Team 已提交
654 655 656 657 658 659
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
660 661

protected:
M
Megvii Engine Team 已提交
662 663 664
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
};

class Images2NeibsBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(Images2NeibsBase, OperatorBase);
    DEF_OPR_PARAM(Images2Neibs);

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& filter, const TensorLayout& dst);
};

class Images2NeibsForward : public Images2NeibsBase {
    DEF_OPR_IMPL(Images2NeibsForward, Images2NeibsBase, 1, 1);

public:
    /**
     * \param[in] src (N, C, IH, IW)
     * \param[out] dst (N, C, OH, OW, window_h, window_w)
     *
     * \see
     * http://deeplearning.net/software/theano/library/tensor/nnet/neighbours.html
     *
     * \f$ dst_{n, c, oh, ow, wh, ww} = src_{n, c, ih+wh, iw+fw}\f$,
688 689
     * where \f$ ih=-pad_h+oh*stride_h+(wh-1)*(dilation_h-1),
     * iw=-pad_w+ow*stride_w+(ww-1)*(dilation_w-1)\f$.
690
     */
M
Megvii Engine Team 已提交
691 692 693 694 695
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
696 697 698
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);

protected:
M
Megvii Engine Team 已提交
699 700 701
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
702 703 704 705 706 707 708 709 710 711 712
};
using Images2Neibs = Images2NeibsForward;

class Images2NeibsBackward : public Images2NeibsBase {
    DEF_OPR_IMPL(Images2NeibsBackward, Images2NeibsBase, 1, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
713 714 715 716 717
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& grad) = 0;
718

719
protected:
M
Megvii Engine Team 已提交
720 721 722
    void check_exec(
            const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
723 724 725 726 727 728 729 730 731 732 733 734
};

class SlidingWindowTransposeBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(SlidingWindowTransposeBase, OperatorBase);
    DEF_OPR_PARAM(SlidingWindowTranspose);

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& filter, const TensorLayout& dst);
};

class SlidingWindowTransposeForward : public SlidingWindowTransposeBase {
M
Megvii Engine Team 已提交
735
    DEF_OPR_IMPL(SlidingWindowTransposeForward, SlidingWindowTransposeBase, 1, 1);
736 737 738 739 740 741

public:
    /**
     * \param[in] src (N, C, IH, IW, window_h, window_w)
     * \param[out] dst (N, C, OH, OW)
     */
M
Megvii Engine Team 已提交
742 743 744 745 746
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
747 748 749
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);

protected:
M
Megvii Engine Team 已提交
750 751 752
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
753 754 755 756
};
using SlidingWindowTranspose = SlidingWindowTransposeForward;

class SlidingWindowTransposeBackward : public SlidingWindowTransposeBase {
M
Megvii Engine Team 已提交
757
    DEF_OPR_IMPL(SlidingWindowTransposeBackward, SlidingWindowTransposeBase, 1, 1);
758 759 760 761 762 763

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
764 765 766 767 768
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& grad) = 0;
769

770
protected:
M
Megvii Engine Team 已提交
771 772 773
    void check_exec(
            const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
};

/**
 * \brief base class for Pooling
 */
class PoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(PoolingBase, OperatorBase);
    DEF_OPR_PARAM(Pooling);

public:
    using Mode = Param::Mode;

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& dst);
789 790

public:
791
    static void deduce_layout_impl(
792
            const TensorLayout& src, const Param& param, TensorLayout& dst);
793 794
};

795 796
class PoolingForward : public PoolingBase,
                       public detail::MultiAlgoOpr<PoolingForward, 2> {
797 798 799 800 801 802 803
    DEF_OPR_IMPL(PoolingForward, PoolingBase, 1, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
M
Megvii Engine Team 已提交
804 805 806
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
807
    MGE_WIN_DECLSPEC_FUC void deduce_layout(const TensorLayout& src, TensorLayout& dst);
M
Megvii Engine Team 已提交
808 809
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
810

811 812 813 814
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::POOLING_FORWARD;
    }

815
protected:
M
Megvii Engine Team 已提交
816 817 818
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
819 820 821 822
};

using Pooling = PoolingForward;

823 824
class PoolingBackward : public PoolingBase,
                        public detail::MultiAlgoOpr<PoolingBackward, 4> {
825 826 827 828 829 830 831 832 833
    DEF_OPR_IMPL(PoolingBackward, PoolingBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in PoolingForward::exec
     * \param[in] dst the `dst' parameter in PoolingForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
834 835 836 837 838 839
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_tensor_in diff,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
840

841 842 843 844
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::POOLING_BACKWARD;
    }

845
protected:
M
Megvii Engine Team 已提交
846 847 848
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
849 850
};

851 852 853 854 855 856 857 858
/**
 * \brief base class for AdaptivePooling
 */
class AdaptivePoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(AdaptivePoolingBase, OperatorBase);
    DEF_OPR_PARAM(AdaptivePooling);

protected:
M
Megvii Engine Team 已提交
859 860
    param::Pooling deduce_pooling_param(
            const TensorLayout& src, const TensorLayout& dst);
861 862 863 864 865 866 867 868 869 870
};

class AdaptivePoolingForward : public AdaptivePoolingBase {
    DEF_OPR_IMPL(AdaptivePoolingForward, AdaptivePoolingBase, 1, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
M
Megvii Engine Team 已提交
871 872 873 874 875
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
876 877 878 879 880 881 882 883 884 885 886 887 888 889
};

using AdaptivePooling = AdaptivePoolingForward;

class AdaptivePoolingBackward : public AdaptivePoolingBase {
    DEF_OPR_IMPL(AdaptivePoolingBackward, AdaptivePoolingBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in AdaptivePoolingForward::exec
     * \param[in] dst the `dst' parameter in AdaptivePoolingForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
890 891 892 893 894 895
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_tensor_in diff,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
896 897
};

898 899 900 901 902 903 904 905 906 907 908
/**
 * \brief base class for Local
 */
class LocalBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LocalBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    using Mode = Param::Mode;

protected:
M
Megvii Engine Team 已提交
909 910 911 912 913
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst);
914 915 916 917 918 919 920 921 922 923 924
};

class LocalForward : public LocalBase {
    DEF_OPR_IMPL(LocalForward, LocalBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] filter (oh, ow, ic, fh, fw, oc)
     * \param[out] dst (n, oc, oh, ow)
     */
M
Megvii Engine Team 已提交
925 926 927
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
928 929 930 931 932 933
    /**
     * \brief Deducing output tensor layouts from input tensor layouts.
     *
     * Be aware that the first and second dimension of `filter' are ignored
     * when deducing `dst' layout.
     */
M
Megvii Engine Team 已提交
934 935 936 937 938
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
939 940

protected:
M
Megvii Engine Team 已提交
941 942 943
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
944 945 946 947 948 949 950 951 952 953 954 955
};
using Local = LocalForward;

class LocalBackwardData : public LocalBase {
    DEF_OPR_IMPL(LocalBackwardData, LocalBase, 2, 1);

public:
    /**
     * \param[in] filter (oh, ow, ic, fh, fw, oc)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
956 957 958
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
959

M
Megvii Engine Team 已提交
960 961 962
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
963 964

protected:
M
Megvii Engine Team 已提交
965 966 967
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
968 969 970 971 972 973 974 975 976 977 978
};

class LocalBackwardFilter : public LocalBase {
    DEF_OPR_IMPL(LocalBackwardFilter, LocalBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (oh, ow, ic, fh, fw, oc)
     */
M
Megvii Engine Team 已提交
979 980 981
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
982

M
Megvii Engine Team 已提交
983 984 985
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
986 987

protected:
M
Megvii Engine Team 已提交
988 989 990
    void check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
991 992 993 994 995 996 997 998 999 1000 1001
};

class BNBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(BNBase, OperatorBase);
    DEF_OPR_PARAM(BN);

protected:
    void check_param();
};

class BNForward : public BNBase {
1002
    DEF_OPR_IMPL(BNForward, BNBase, 6, 6);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

public:
    /**
     * \dst[i] = gemma
     * *(x[i]-estimatedMean[k])/sqrt(epsilon+estimatedVariance[k]) + beta \where
     * epsilon is a very small value to avoid a "divide by zero" error.
     * \param[in] src (n, c, h, w)
     * \param[out] dst (n, c, h, w)
     * \param[out] mean (see m_param.ParamDim) Global mean.
     * \param[out] variance (see m_param.ParamDim) Global variance.
1013
     * \param[out] batch_mean (see m_param.ParamDim)
1014
     *   Optionally cached intermediate mean from forward pass
1015
     * \param[out] batch_inv_variance (see m_param.ParamDim)
1016
     *   Optionally cached intermediate variance from forward pass
1017
     * \param[out] reserve (see cudnnBatchNormalizationForwardTrainingEx)
1018 1019 1020
     * src and dst must have the same shape.
     * src and dst must be contiguous.
     */
M
Megvii Engine Team 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in bn_scale,
            _megdnn_tensor_in bn_bias, _megdnn_tensor_inout mean,
            _megdnn_tensor_inout variance, _megdnn_tensor_out batch_mean,
            _megdnn_tensor_out batch_inv_variance, _megdnn_tensor_out reserve,
            _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& bn_scale,
            const TensorLayout& bn_bias, TensorLayout& mean, TensorLayout& variance,
            TensorLayout& batch_mean, TensorLayout& batch_inv_variance,
            TensorLayout& reserve, TensorLayout& dst);
1032 1033 1034 1035
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& bn_scale,
            const TensorLayout& bn_bias, const TensorLayout& mean,
            const TensorLayout& variance, const TensorLayout& batch_mean,
1036
            const TensorLayout& batch_inv_variance, const TensorLayout& reserve,
1037
            const TensorLayout& dst) = 0;
1038
    virtual size_t get_reserve_in_bytes(const TensorLayout& src) = 0;
1039 1040

protected:
M
Megvii Engine Team 已提交
1041 1042 1043 1044 1045 1046
    void check_exec(
            const TensorLayout& src, const TensorLayout& bn_scale,
            const TensorLayout& bn_bias, const TensorLayout& mean,
            const TensorLayout& variance, const TensorLayout& batch_mean,
            const TensorLayout& batch_inv_variance, const TensorLayout& dst,
            size_t workspace_in_bytes, size_t reserve_in_bytes = 0);
1047 1048 1049 1050
};
using BN = BNForward;

class BNBackward : public BNBase {
1051
    DEF_OPR_IMPL(BNBackward, BNBase, 6, 3);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

public:
    /**
     * \param[in] input data of forwarding propagate.
     * \param[in] dy the backpropagated gradient of y.
     * \param[out] dx the backpropagated gradient of x.
     * \param[out] d_bn_scale, the backpropagated gradient of bn_scale.
     * \param[out] d_bn_bias, the backpropagated gradient of bn_bias.
     * Optionally cached intermediate results from forward pass
     * \param[in] saved_batch_mean mean of the input batch.
        Calculated in the forwardpropagation.
     * \param[in] saved_batch_variance of the input batch.
        Calculated in the forwardpropagation.
1065
     * \param[in] reserve (see cudnnBatchNormalizationBackwardEx)
1066
     */
M
Megvii Engine Team 已提交
1067 1068 1069 1070 1071 1072
    virtual void exec(
            _megdnn_tensor_in x, _megdnn_tensor_in dy,
            _megdnn_tensor_in saved_batch_mean, _megdnn_tensor_in saved_batch_variance,
            _megdnn_tensor_in bn_scale, _megdnn_tensor_in reserve,
            _megdnn_tensor_out d_bn_scale, _megdnn_tensor_out d_bn_bias,
            _megdnn_tensor_out dx, _megdnn_workspace workspace) = 0;
1073 1074 1075
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& x, const TensorLayout& dy,
            const TensorLayout& saved_batch_mean,
M
Megvii Engine Team 已提交
1076 1077 1078
            const TensorLayout& saved_batch_variance, const TensorLayout& bn_scale,
            const TensorLayout& reserve, const TensorLayout& d_bn_scale,
            const TensorLayout& d_bn_bias, const TensorLayout& dx) = 0;
1079
    virtual size_t get_reserve_in_bytes(const TensorLayout& src) = 0;
1080 1081

protected:
M
Megvii Engine Team 已提交
1082 1083 1084 1085 1086 1087 1088
    void check_exec(
            const TensorLayout& x, const TensorLayout& dy,
            const TensorLayout& saved_batch_mean,
            const TensorLayout& saved_batch_variance, const TensorLayout& bn_scale,
            const TensorLayout& d_bn_scale, const TensorLayout& d_bn_bias,
            const TensorLayout& dx, size_t workspace_in_bytes,
            size_t reserve_in_bytes = 0);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
};

class LRNBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LRNBase, OperatorBase);
    DEF_OPR_PARAM(LRN);

protected:
    void check_param();
};

class LRNForward : public LRNBase {
    DEF_OPR_IMPL(LRNForward, LRNBase, 1, 1);

public:
    /**
     * \see ImageNet Classification with Deep Convolutional Neural Networks
     * \param[in] src (n, c, h, w)
     * \param[out] dst (n, c, h, w)
     *
     * src and dst must have the same shape.
     * src and dst must be contiguous.
     */
M
Megvii Engine Team 已提交
1111 1112 1113
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
1114
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
M
Megvii Engine Team 已提交
1115 1116
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
1117 1118

protected:
M
Megvii Engine Team 已提交
1119 1120 1121
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
};
using LRN = LRNForward;

class LRNBackward : public LRNBase {
    DEF_OPR_IMPL(LRNBackward, LRNBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in LRNForward::exec
     * \param[in] dst the `dst' parameter in LRNForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     *
     * All tensors should be contiguous and of the same shape.
     */
M
Megvii Engine Team 已提交
1137 1138 1139 1140 1141 1142
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_tensor_in diff,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1143 1144

protected:
M
Megvii Engine Team 已提交
1145 1146 1147
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
1148 1149 1150 1151 1152 1153 1154
};

class ROIPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ROIPoolingBase, OperatorBase);
    DEF_OPR_PARAM(ROIPooling);

protected:
M
Megvii Engine Team 已提交
1155 1156 1157
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
};

class ROIPoolingForward : public ROIPoolingBase {
    DEF_OPR_IMPL(ROIPoolingForward, ROIPoolingBase, 2, 2);

public:
    /**
     * \param[in] src (n, c, ih, iw)
     * \param[in] rois (m, 5)
     * \param[out] dst (m, c, oh, ow)
     * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
     *
     * The internal implementation is akin to
     * https://github.com/rbgirshick/caffe-fast-rcnn .d
     * Note that rois(, 0) denotes the input image index. We store it as
     * a float, but it should be an integer instead.
     *
     * index is a temporary tensor to facilitate its backward operator.
     * It is used to store argmax indicex in MAX mode, and it is not used
     * in AVERAGE mode.
     */
M
Megvii Engine Team 已提交
1179 1180 1181 1182 1183 1184
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in rois, _megdnn_tensor_out dst,
            _megdnn_tensor_out index, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index) = 0;
1185 1186

protected:
M
Megvii Engine Team 已提交
1187 1188 1189
    void check_exec(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index, size_t workspace_in_bytes);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
};
using ROIPooling = ROIPoolingForward;

class ROIPoolingBackward : public ROIPoolingBase {
    DEF_OPR_IMPL(ROIPoolingBackward, ROIPoolingBase, 4, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[in] src the `src' parameter in ROIPoolingForward::exec
     * \param[in] rois the `rois' parameter in ROIPoolingForward::exec
     * \param[in] index the `index' parameter in ROIPoolingForward::exec
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
1204 1205 1206 1207 1208 1209 1210
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in src, _megdnn_tensor_in rois,
            _megdnn_tensor_in index, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& src, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad) = 0;
1211 1212

protected:
M
Megvii Engine Team 已提交
1213 1214 1215 1216
    void check_exec(
            const TensorLayout& diff, const TensorLayout& src, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad,
            size_t workspace_in_bytes);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
};

class Convolution3DBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(Convolution3DBase, OperatorBase);
    DEF_OPR_PARAM(Convolution3D);

public:
    static constexpr size_t MAX_SPATIAL_DIM = 3;
    using Mode = Param::Mode;
    struct CanonizedFilterMeta {
        DTypeEnum dtype_enum;
        Param::Format format;
        uint32_t
                //! whether filter should be flipped (i.e. is CONVOLUTION)
                should_flip,
                group,  //!< number of groups
                icpg,   //!< input channels per group
                ocpg,   //!< output channels per group
                spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
                //! spatial dim
                spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
                //! spatial dim with dilation applied
                dilated_spatial[MAX_SPATIAL_DIM];
    } MEGDNN_PACKED;

protected:
M
Megvii Engine Team 已提交
1243 1244 1245 1246 1247 1248
    CanonizedFilterMeta deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            TensorLayout& dst) const;
    CanonizedFilterMeta check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) const;
1249

1250 1251
    static CanonizedFilterMeta make_canonized_filter_meta_impl(
            size_t src_ndim, const TensorLayout& filter, const Param& param);
1252 1253 1254 1255
    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter) const;
};

M
Megvii Engine Team 已提交
1256 1257
class Convolution3DForward : public Convolution3DBase,
                             public detail::MultiAlgoOpr<Convolution3DForward, 3> {
1258 1259 1260 1261 1262 1263 1264 1265
    DEF_OPR_IMPL(Convolution3DForward, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, id, ih, iw)
     * \param[in] filter (oc, ic, fd, fh, fw)
     * \param[out] dst (n, oc, od, oh, ow)
     */
M
Megvii Engine Team 已提交
1266 1267 1268
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
1269
    MGE_WIN_DECLSPEC_FUC void deduce_layout(
M
Megvii Engine Team 已提交
1270 1271 1272 1273
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
1274

1275 1276 1277 1278
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION3D_FORWARD;
    }

1279
protected:
M
Megvii Engine Team 已提交
1280 1281 1282
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
};
using Convolution3D = Convolution3DForward;

class Convolution3DBackwardData
        : public Convolution3DBase,
          public detail::MultiAlgoOpr<Convolution3DBackwardData, 3> {
    DEF_OPR_IMPL(Convolution3DBackwardData, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] filter (oc, ic, fd, fh, fw)
     * \param[in] diff (n, oc, od, oh, ow)
     * \param[out] grad (n, ic, id, ih, iw)
     */
1297
    static void deduce_layout_impl(
1298 1299
            const TensorLayout& filter, const TensorLayout& diff, const Param& param,
            TensorLayout& grad);
M
Megvii Engine Team 已提交
1300 1301 1302 1303 1304 1305
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1306
    MGE_WIN_DECLSPEC_FUC void deduce_layout(
M
Megvii Engine Team 已提交
1307
            const TensorLayout& filter, const TensorLayout& diff, TensorLayout& grad);
1308

1309 1310 1311 1312
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION3D_BACKWARD_DATA;
    }

1313
protected:
M
Megvii Engine Team 已提交
1314 1315 1316
    CanonizedFilterMeta check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
};

class Convolution3DBackwardFilter
        : public Convolution3DBase,
          public detail::MultiAlgoOpr<Convolution3DBackwardFilter, 3> {
    DEF_OPR_IMPL(Convolution3DBackwardFilter, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, id, ih, iw)
     * \param[in] diff (n, oc, od, oh, ow)
     * \param[out] grad (oc, ic, fd, fh, fw)
     */
M
Megvii Engine Team 已提交
1330 1331 1332 1333 1334 1335
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1336

1337 1338 1339 1340
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION3D_BACKWARD_FILTER;
    }

1341
protected:
M
Megvii Engine Team 已提交
1342 1343 1344
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
1345 1346 1347 1348 1349 1350 1351
};

class LocalShareBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LocalShareBase, OperatorBase);
    DEF_OPR_PARAM(LocalShare);

protected:
M
Megvii Engine Team 已提交
1352 1353 1354 1355 1356
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst);
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
};

class LocalShareForward : public LocalShareBase,
                          public detail::MultiAlgoOpr<LocalShareForward, 3> {
    DEF_OPR_IMPL(LocalShareForward, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     * \param[out] dst (N, OC, OH, OW)
     */
M
Megvii Engine Team 已提交
1370 1371 1372
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
1373 1374 1375
    /**
     * \brief deduce layout of the ouput tensor
     */
M
Megvii Engine Team 已提交
1376 1377 1378 1379 1380
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
1381

1382 1383 1384 1385
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::LOCAL_SHARE_FORWARD;
    }

1386
protected:
M
Megvii Engine Team 已提交
1387 1388 1389
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
1390 1391 1392
};
using LocalShare = LocalShareForward;

M
Megvii Engine Team 已提交
1393 1394
class LocalShareBackwardData : public LocalShareBase,
                               public detail::MultiAlgoOpr<LocalShareBackwardData, 3> {
1395 1396 1397 1398 1399 1400 1401 1402 1403
    DEF_OPR_IMPL(LocalShareBackwardData, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     * \param[in] diff (N, OC, OH, OW)
     * \param[out] grad (N, IC, IH, IW)
     */
M
Megvii Engine Team 已提交
1404 1405 1406 1407 1408 1409 1410 1411
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
    void deduce_layout(
            const TensorLayout& filter, const TensorLayout& diff, TensorLayout& grad);
1412

1413 1414 1415 1416
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::LOCAL_SHARE_BACKWARD_DATA;
    }

1417
protected:
M
Megvii Engine Team 已提交
1418 1419 1420
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
};

class LocalShareBackwardFilter
        : public LocalShareBase,
          public detail::MultiAlgoOpr<LocalShareBackwardFilter, 3> {
    DEF_OPR_IMPL(LocalShareBackwardFilter, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] diff (N, OC, OH, OW)
     * \param[out] grad (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     */
M
Megvii Engine Team 已提交
1435 1436 1437
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
1438

M
Megvii Engine Team 已提交
1439 1440 1441
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1442

1443 1444 1445 1446
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::LOCAL_SHARE_BACKWARD_FILTER;
    }

1447
protected:
M
Megvii Engine Team 已提交
1448 1449 1450
    void check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
1451 1452 1453 1454 1455 1456 1457
};

class ROIAlignBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ROIAlignBase, OperatorBase);
    DEF_OPR_PARAM(ROIAlign);

protected:
M
Megvii Engine Team 已提交
1458 1459 1460 1461 1462 1463
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& rois, TensorLayout& dst,
            TensorLayout& index);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
};

class ROIAlignForward : public ROIAlignBase {
    DEF_OPR_IMPL(ROIAlignForward, ROIAlignBase, 2, 2);

public:
    /**
     * \param[in] src (n, c, ih, iw)
     * \param[in] rois (m, 5)
     * \param[out] dst (m, c, oh, ow)
     * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
     *
     * Note that rois(, 0) denotes the input image index. We store it as
     * a float, but it should be an integer instead.
     *
     * index is a temporary tensor to facilitate its backward operator.
     * It is used to store argmax indicex in MAX mode, and it is not used
     * in AVERAGE mode.
     */
M
Megvii Engine Team 已提交
1483 1484 1485
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in rois, _megdnn_tensor_out dst,
            _megdnn_tensor_out index, _megdnn_workspace workspace) = 0;
1486
    MGE_WIN_DECLSPEC_FUC void deduce_layout(
M
Megvii Engine Team 已提交
1487 1488 1489 1490 1491
            const TensorLayout& src, const TensorLayout& rois, TensorLayout& dst,
            TensorLayout& index);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index) = 0;
1492 1493

protected:
M
Megvii Engine Team 已提交
1494 1495 1496
    void check_exec(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index, size_t workspace_in_bytes);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
};
using ROIAlign = ROIAlignForward;

class ROIAlignBackward : public ROIAlignBase {
    DEF_OPR_IMPL(ROIAlignBackward, ROIAlignBase, 3, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[in] rois the `rois' parameter in ROIAlignForward::exec
     * \param[in] index the `index' parameter in ROIAlignForward::exec
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
1510 1511 1512 1513 1514 1515
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in rois, _megdnn_tensor_in index,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad) = 0;
1516 1517

protected:
M
Megvii Engine Team 已提交
1518 1519 1520 1521
    void check_exec(
            const TensorLayout& diff, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad,
            size_t workspace_in_bytes);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
};

class DeformableConvBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DeformableConvBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    static constexpr size_t MAX_SPATIAL_DIM = 2;
    struct CanonizedFilterMeta : Convolution::CanonizedFilterMeta {
        uint32_t deformable_group;
    };

protected:
    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter,
            const TensorLayout& offset) const;
M
Megvii Engine Team 已提交
1538 1539 1540 1541 1542 1543 1544
    void deduce_layout_fwd(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& offset, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& offset,
            const TensorLayout& dst);
1545 1546
};

M
Megvii Engine Team 已提交
1547 1548
class DeformableConvForward : public DeformableConvBase,
                              public detail::MultiAlgoOpr<DeformableConvForward, 5> {
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
    DEF_OPR_IMPL(DeformableConvForward, DeformableConvBase, 4, 1);

public:
    /**
     * \param[in] im (n, ic, ih, iw)
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[out] dst (n, oc, oh, ow)
     */
M
Megvii Engine Team 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
    virtual void exec(
            _megdnn_tensor_in im, _megdnn_tensor_in filter, _megdnn_tensor_in offset,
            _megdnn_tensor_in mask, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& dst) = 0;
1570

1571 1572 1573 1574
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::DEFORMABLE_CONV_FORWARD;
    }

1575
protected:
M
Megvii Engine Team 已提交
1576 1577 1578 1579
    CanonizedFilterMeta check_exec(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& dst, size_t workspace_in_bytes);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
};
using DeformableConv = DeformableConvForward;

/**
 * \brief DeformableConvBackwardFilter operator.
 *
 * Calculating the gradient wrt. convolution filter.
 */
class DeformableConvBackwardFilter
        : public DeformableConvBase,
          public detail::MultiAlgoOpr<DeformableConvBackwardFilter, 5> {
    DEF_OPR_IMPL(DeformableConvBackwardFilter, DeformableConvBase, 4, 1);

public:
    /**
     * \param[in] im (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[in] out_grad (n, oc, oh, ow)
     * \param[out] filter_grad (oc, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
    virtual void exec(
            _megdnn_tensor_in im, _megdnn_tensor_in offset, _megdnn_tensor_in mask,
            _megdnn_tensor_in out_grad, _megdnn_tensor_out filter_grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& im, const TensorLayout& offset,
            const TensorLayout& mask, const TensorLayout& out_grad,
            const TensorLayout& filter_grad) = 0;
    void deduce_layout(
            const TensorLayout& im, const TensorLayout& offset,
            const TensorLayout& mask, const TensorLayout& out_grad,
            TensorLayout& filter_grad);
1613

1614 1615 1616 1617
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::DEFORMABLE_CONV_BACKWARD_FILTER;
    }

1618
protected:
M
Megvii Engine Team 已提交
1619 1620 1621 1622
    CanonizedFilterMeta check_exec(
            const TensorLayout& im, const TensorLayout& offset,
            const TensorLayout& mask, const TensorLayout& out_grad,
            const TensorLayout& filter_grad, size_t workspace_in_bytes);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
};

/**
 * \brief DeformableConvBackwardData operator.
 *
 * Calculating the gradient wrt. convolution input data, offset and mask.
 */
class DeformableConvBackwardData
        : public DeformableConvBase,
          public detail::MultiAlgoOpr<DeformableConvBackwardData, 8> {
    DEF_OPR_IMPL(DeformableConvBackwardData, DeformableConvBase, 5, 3);

public:
    /**
     * \param[in] im (oc, ic, fh, fw)
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[in] out_grad (n, oc, oh, ow)
     * \param[out] im_grad (n, ic, ih, iw)
     * \param[out] offset_grad (dg, 2, fh, fw, oh, ow)
     * \param[out] mask_grad (dg, fh, fw, oh, ow)
     */
M
Megvii Engine Team 已提交
1646 1647 1648 1649 1650
    virtual void exec(
            _megdnn_tensor_in im, _megdnn_tensor_in filter, _megdnn_tensor_in offset,
            _megdnn_tensor_in mask, _megdnn_tensor_in out_grad,
            _megdnn_tensor_out im_grad, _megdnn_tensor_out offset_grad,
            _megdnn_tensor_out mask_grad, _megdnn_workspace workspace) = 0;
1651 1652 1653 1654 1655
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, const TensorLayout& im_grad,
            const TensorLayout& offset_grad, const TensorLayout& mask_grad) = 0;
M
Megvii Engine Team 已提交
1656 1657 1658 1659 1660
    void deduce_layout(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, TensorLayout& im_grad,
            TensorLayout& offset_grad, TensorLayout& mask_grad);
1661

1662 1663 1664 1665
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::DEFORMABLE_CONV_BACKWARD_DATA;
    }

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
protected:
    CanonizedFilterMeta check_exec(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, const TensorLayout& im_grad,
            const TensorLayout& offset_grad, const TensorLayout& mask_grad,
            size_t workspace_in_bytes);
};

class DeformablePSROIPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DeformablePSROIPoolingBase, OperatorBase);
    DEF_OPR_PARAM(DeformablePSROIPooling);

protected:
M
Megvii Engine Team 已提交
1680 1681 1682
    void deduce_layout_fwd(
            const TensorLayout& data, const TensorLayout& trans,
            const TensorLayout& rois, TensorLayout& out_data, TensorLayout& out_count);
1683

M
Megvii Engine Team 已提交
1684 1685 1686 1687
    void check_layout_fwd(
            const TensorLayout& data, const TensorLayout& trans,
            const TensorLayout& rois, const TensorLayout& out_data,
            const TensorLayout& out_count, size_t workspace_in_bytes);
1688 1689 1690
};

class DeformablePSROIPoolingForward : public DeformablePSROIPoolingBase {
M
Megvii Engine Team 已提交
1691
    DEF_OPR_IMPL(DeformablePSROIPoolingForward, DeformablePSROIPoolingBase, 3, 2);
1692 1693 1694 1695 1696 1697 1698 1699 1700

public:
    /**
     * \param[in]  data       (oc, ic, ih, iw)
     * \param[in]  rois       (xx, xx, xx, xx)
     * \param[in]  trans      (oc, ic, fh, fw)
     * \param[out] out_data   ( n, ic, ih, iw)
     * \param[out] out_count  ( n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_data,
            const TensorLayout& out_count) = 0;
    virtual void exec(
            _megdnn_tensor_in data, _megdnn_tensor_in rois, _megdnn_tensor_in trans,
            _megdnn_tensor_out out_data, _megdnn_tensor_out out_count,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, TensorLayout& out_data, TensorLayout& out_count);
    void check_exec(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_data,
            const TensorLayout& out_count, size_t workspace_in_bytes);
1716 1717 1718 1719 1720
};

using DeformablePSROIPooling = DeformablePSROIPoolingForward;

class DeformablePSROIPoolingBackward : public DeformablePSROIPoolingBase {
M
Megvii Engine Team 已提交
1721
    DEF_OPR_IMPL(DeformablePSROIPoolingBackward, DeformablePSROIPoolingBase, 5, 2);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

public:
    /**
     * \param[in]  data        (oc, ic, ih, iw)
     * \param[in]  rois        (xx, xx, xx, xx)
     * \param[in]  trans       (oc, ic, fh, fw)
     * \param[in]  out_diff    (xx, xx, xx, xx)
     * \param[in]  out_count   (xx, xx, xx, xx)
     * \param[out] data_diff   ( n, ic, ih, iw)
     * \param[out] trans_diff  ( n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
    virtual void exec(
            _megdnn_tensor_in data, _megdnn_tensor_in rois, _megdnn_tensor_in trans,
            _megdnn_tensor_in out_diff, _megdnn_tensor_in out_count,
            _megdnn_tensor_out data_diff, _megdnn_tensor_out trans_diff,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_diff,
            const TensorLayout& out_count, const TensorLayout& data_diff,
            const TensorLayout& trans_diff) = 0;

    void check_exec(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_diff,
            const TensorLayout& out_count, const TensorLayout& data_diff,
            const TensorLayout& trans_diff, size_t workspace_in_bytes);
};

class BatchConvBiasForward : public ConvolutionBase<param::BatchConvBias>,
                             public detail::MultiAlgoOpr<BatchConvBiasForward, 5> {
1753 1754 1755
    DEF_OPR_IMPL(BatchConvBiasForward, ConvolutionBase, 4, 1);

public:
M
Megvii Engine Team 已提交
1756 1757 1758 1759
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
            _megdnn_tensor_in z, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
1760 1761

    void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
M
Megvii Engine Team 已提交
1762 1763 1764
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z, TensorLayout& dst);
1765

M
Megvii Engine Team 已提交
1766 1767 1768 1769
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;
1770

1771 1772 1773 1774
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::BATCH_CONV_FORWARD;
    }

1775
protected:
M
Megvii Engine Team 已提交
1776 1777 1778 1779
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
            size_t workspace_in_bytes);
1780 1781 1782
};
using BatchConvBias = BatchConvBiasForward;

1783 1784 1785 1786 1787 1788
class FakeQuantBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(FakeQuantBase, OperatorBase);
    DEF_OPR_PARAM(FakeQuant);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
M
Megvii Engine Team 已提交
1789 1790 1791
    void check_layout_fwd(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& output);
1792 1793 1794 1795 1796 1797
};

class FakeQuantForward : public FakeQuantBase {
    DEF_OPR_IMPL(FakeQuantForward, FakeQuantBase, 3, 1);

public:
M
Megvii Engine Team 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_out output,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& output) = 0;
1808 1809

protected:
M
Megvii Engine Team 已提交
1810 1811 1812 1813
    void check_exec(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& output,
            size_t workspace_in_bytes);
1814 1815 1816 1817 1818 1819 1820 1821
};

using FakeQuant = FakeQuantForward;

class FakeQuantBackward : public FakeQuantBase {
    DEF_OPR_IMPL(FakeQuantBackward, FakeQuantBase, 4, 1);

public:
M
Megvii Engine Team 已提交
1822 1823 1824 1825 1826 1827 1828 1829
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad) = 0;
1830 1831

protected:
M
Megvii Engine Team 已提交
1832 1833 1834 1835
    void check_exec(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad, size_t workspace_in_bytes);
1836 1837
};

M
Megvii Engine Team 已提交
1838 1839 1840 1841 1842 1843
class TQTBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(TQTBase, OperatorBase);
    DEF_OPR_PARAM(TQT);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
M
Megvii Engine Team 已提交
1844 1845 1846
    void check_layout_fwd(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& output);
M
Megvii Engine Team 已提交
1847 1848 1849 1850 1851 1852
};

class TQTForward : public TQTBase {
    DEF_OPR_IMPL(TQTForward, TQTBase, 2, 1);

public:
M
Megvii Engine Team 已提交
1853 1854 1855 1856 1857 1858 1859 1860
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in scale, _megdnn_tensor_out output,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& scale, TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& output) = 0;
M
Megvii Engine Team 已提交
1861 1862

protected:
M
Megvii Engine Team 已提交
1863 1864 1865
    void check_exec(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& output, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1866 1867 1868 1869 1870 1871 1872
};
using TQT = TQTForward;

class TQTBackward : public TQTBase {
    DEF_OPR_IMPL(TQTBackward, TQTBase, 3, 2);

public:
M
Megvii Engine Team 已提交
1873 1874 1875 1876 1877 1878 1879 1880
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_out grad_x, _megdnn_tensor_out grad_s,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s) = 0;
M
Megvii Engine Team 已提交
1881 1882

protected:
M
Megvii Engine Team 已提交
1883 1884 1885 1886
    void check_exec(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1887 1888
};

M
Megvii Engine Team 已提交
1889 1890 1891 1892 1893 1894
class LSQBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LSQBase, OperatorBase);
    DEF_OPR_PARAM(LSQ);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
M
Megvii Engine Team 已提交
1895 1896 1897 1898
    void check_layout_fwd(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            const TensorLayout& output);
M
Megvii Engine Team 已提交
1899 1900 1901 1902 1903 1904
};

class LSQForward : public LSQBase {
    DEF_OPR_IMPL(LSQForward, LSQBase, 4, 1);

public:
M
Megvii Engine Team 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_in grad_scale,
            _megdnn_tensor_out output, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            const TensorLayout& output) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            const TensorLayout& output, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1923 1924 1925 1926 1927 1928 1929
};
using LSQ = LSQForward;

class LSQBackward : public LSQBase {
    DEF_OPR_IMPL(LSQBackward, LSQBase, 5, 2);

public:
M
Megvii Engine Team 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_in grad_scale,
            _megdnn_tensor_out grad_x, _megdnn_tensor_out grad_s,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad_scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s) = 0;

protected:
    void check_exec(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad_scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1947 1948
};

1949 1950 1951 1952
class LayerNormBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LayerNormBase, OperatorBase);
    DEF_OPR_PARAM(LayerNorm);

1953 1954 1955 1956 1957
public:
    MGE_WIN_DECLSPEC_FUC static void deduce_layout_fwd_impl(
            const TensorLayout& data, const Param& p, TensorLayout& dst,
            TensorLayout& mean, TensorLayout& rstd);

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
protected:
    void deduce_layout_fwd(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, TensorLayout& dst, TensorLayout& mean,
            TensorLayout& rstd);
    void check_layout_fwd(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, const TensorLayout& dst, const TensorLayout& mean,
            const TensorLayout& rstd);
};

class LayerNormForward : public LayerNormBase {
    DEF_OPR_IMPL(LayerNormForward, LayerNormBase, 3, 3);

public:
    virtual void exec(
            _megdnn_tensor_in data, _megdnn_tensor_in weight, _megdnn_tensor_in bias,
            _megdnn_tensor_out dst, _megdnn_tensor_out mean, _megdnn_tensor_out rstd,
            _megdnn_workspace workspace) = 0;
1977
    MGE_WIN_DECLSPEC_FUC void deduce_layout(
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, TensorLayout& dst, TensorLayout& mean,
            TensorLayout& rstd);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, const TensorLayout& dst, const TensorLayout& mean,
            const TensorLayout& rstd) = 0;

protected:
    void check_exec(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, const TensorLayout& dst, const TensorLayout& mean,
            const TensorLayout& rstd, size_t workspace_in_bytes);
};
using LayerNorm = LayerNormForward;

class LayerNormBackward : public LayerNormBase {
    DEF_OPR_IMPL(LayerNormBackward, LayerNormBase, 5, 3);

public:
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in data, _megdnn_tensor_in weight,
            _megdnn_tensor_in mean, _megdnn_tensor_in rstd, _megdnn_tensor_out ddata,
            _megdnn_tensor_out dweight, _megdnn_tensor_out dbias,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& diff, const TensorLayout& data,
            const TensorLayout& weight, const TensorLayout& mean,
            const TensorLayout& rstd, TensorLayout& ddata, TensorLayout& dweight,
            TensorLayout& dbias);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& data,
            const TensorLayout& weight, const TensorLayout& mean,
            const TensorLayout& rstd, const TensorLayout& ddata,
            const TensorLayout& dweight, const TensorLayout& dbias) = 0;

protected:
    void check_exec(
            const TensorLayout& diff, const TensorLayout& data,
            const TensorLayout& weight, const TensorLayout& mean,
            const TensorLayout& rstd, const TensorLayout& ddata,
            const TensorLayout& dweight, const TensorLayout& dbias,
            size_t workspace_in_bytes);
};

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
class DropoutBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DropoutBase, OperatorBase);
    DEF_OPR_PARAM(Dropout);
};

class DropoutForward : public DropoutBase {
    DEF_OPR_IMPL(DropoutForward, DropoutBase, 1, 2);

public:
    void deduce_layout(const TensorLayout& inp, TensorLayout& oup, TensorLayout& mask);
    virtual void exec(
            _megdnn_tensor_in inp, _megdnn_tensor_out oup, _megdnn_tensor_out mask,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& inp, const TensorLayout& oup,
            const TensorLayout& mask) = 0;
    virtual size_t get_mask_size_in_bytes(const TensorLayout& inp) = 0;

protected:
    void check_exec(
            const TensorLayout& inp, const TensorLayout& oup, const TensorLayout& mask,
            size_t workspace_in_bytes);
};
using Dropout = DropoutForward;

class DropoutBackward : public DropoutBase {
    DEF_OPR_IMPL(DropoutBackward, DropoutBase, 2, 1);

public:
    void deduce_layout(
            const TensorLayout& doup, const TensorLayout& mask, TensorLayout& dinp);
    virtual void exec(
            _megdnn_tensor_in doup, _megdnn_tensor_in mask, _megdnn_tensor_out dinp,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& doup, const TensorLayout& mask,
            const TensorLayout& dinp) = 0;

protected:
    void check_exec(
            const TensorLayout& doup, const TensorLayout& mask,
            const TensorLayout& dinp, size_t workspace_in_bytes);
};
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
class SoftmaxBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(SoftmaxBase, OperatorBase);
    DEF_OPR_PARAM(Softmax);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
    void check_layout_fwd(const TensorLayout& input, const TensorLayout& output);
};

class SoftmaxForward : public SoftmaxBase {
    DEF_OPR_IMPL(SoftmaxForward, SoftmaxBase, 1, 1);

public:
    /**
     * \param[in] input input tensor
     * \param[out] output output tensor
     */
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_out output,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& input, TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& output) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& output,
            size_t workspace_in_bytes);
};
using Softmax = SoftmaxForward;

class SoftmaxBackward : public SoftmaxBase {
    DEF_OPR_IMPL(SoftmaxBackward, SoftmaxBase, 2, 1);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in diff, _megdnn_tensor_out grad_x,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& diff,
            const TensorLayout& grad_x) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& diff,
            const TensorLayout& grad_x, size_t workspace_in_bytes);
};
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
class RNNCellForward : public OperatorBase {
    DEF_OPR_PARAM(RNNCell);
    DEF_OPR_IMPL(RNNCellForward, OperatorBase, 6, 1);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in weight_ih,
            _megdnn_tensor_in bias_ih, _megdnn_tensor_in hx,
            _megdnn_tensor_in weight_hh, _megdnn_tensor_in bias_hh,
            _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
2124
    void deduce_layout(
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& dst) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& dst, size_t workspace_in_bytes);
};
using RNNCell = RNNCellForward;

class LSTMCellForward : public OperatorBase {
    // DEF_OPR_PARAM(LSTMCell);
    DEF_OPR_PARAM(Empty);
    DEF_OPR_IMPL(LSTMCellForward, OperatorBase, 7, 3);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in weight_ih,
            _megdnn_tensor_in bias_ih, _megdnn_tensor_in hx,
            _megdnn_tensor_in weight_hh, _megdnn_tensor_in bias_hh,
            _megdnn_tensor_in cx, _megdnn_tensor_out h_new, _megdnn_tensor_out c_new,
            _megdnn_tensor_out gates, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& cx, TensorLayout& h_new, TensorLayout& c_new,
            TensorLayout& gates);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& cx, const TensorLayout& h_new,
            const TensorLayout& c_new, const TensorLayout& gates) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& cx, const TensorLayout& h_new,
            const TensorLayout& c_new, const TensorLayout& gates,
            size_t workspace_in_bytes);
};
using LSTMCell = LSTMCellForward;

class RNNForward : public OperatorBase {
    DEF_OPR_PARAM(RNN);
    DEF_OPR_IMPL(RNNForward, OperatorBase, 3, 3);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in hx,
            _megdnn_tensor_in flatten_weights, _megdnn_tensor_out output,
            _megdnn_tensor_out hy, _megdnn_tensor_out reserve_space,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& hx,
            const TensorLayout& flatten_weights, TensorLayout& output, TensorLayout& hy,
            TensorLayout& reserve_space);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& hx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& reserve_space) = 0;
    virtual size_t get_reserve_size_in_bytes(const TensorLayout& input) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& hx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& reserve_space,
            size_t workspace_in_bytes);
};
using RNN = RNNForward;

class RNNBackward : public OperatorBase {
    DEF_OPR_PARAM(RNN);
    DEF_OPR_IMPL(RNNBackward, OperatorBase, 7, 3);

public:
    virtual void exec(
            _megdnn_tensor_in x, _megdnn_tensor_in y, _megdnn_tensor_in hx,
            _megdnn_tensor_in dy, _megdnn_tensor_in dhy,
            _megdnn_tensor_in flatten_weights, _megdnn_tensor_in reserve_space,
            _megdnn_tensor_out dx, _megdnn_tensor_out dhx, _megdnn_tensor_out dw,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& flatten_weights, const TensorLayout& reserve_space,
            TensorLayout& dx, TensorLayout& dhx, TensorLayout& dw);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& flatten_weights, const TensorLayout& reserve_space,
            const TensorLayout& dx, const TensorLayout& dhx,
            const TensorLayout& dw) = 0;

protected:
    void check_exec(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& flatten_weights, const TensorLayout& reserve_space,
            const TensorLayout& dx, const TensorLayout& dhx, const TensorLayout& dw,
            size_t workspace_in_bytes);
};

class LSTMForward : public OperatorBase {
    DEF_OPR_PARAM(LSTM);
    DEF_OPR_IMPL(LSTMForward, OperatorBase, 4, 4);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in hx, _megdnn_tensor_in cx,
            _megdnn_tensor_in flatten_weights, _megdnn_tensor_out output,
            _megdnn_tensor_out hy, _megdnn_tensor_out cy,
            _megdnn_tensor_out reserve_space, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& hx, const TensorLayout& cx,
            const TensorLayout& flatten_weights, TensorLayout& output, TensorLayout& hy,
            TensorLayout& cy, TensorLayout& reserve_space);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& hx, const TensorLayout& cx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& cy,
            const TensorLayout& reserve_space) = 0;
    virtual size_t get_reserve_size_in_bytes(const TensorLayout& input) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& hx, const TensorLayout& cx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& cy,
            const TensorLayout& reserve_space, size_t workspace_in_bytes);
};
using LSTM = LSTMForward;

class LSTMBackward : public OperatorBase {
    DEF_OPR_PARAM(LSTM);
    DEF_OPR_IMPL(LSTMBackward, OperatorBase, 9, 4);

public:
    virtual void exec(
            _megdnn_tensor_in x, _megdnn_tensor_in y, _megdnn_tensor_in hx,
            _megdnn_tensor_in cx, _megdnn_tensor_in dy, _megdnn_tensor_in dhy,
            _megdnn_tensor_in dcy, _megdnn_tensor_in flatten_weights,
            _megdnn_tensor_in reserve_space, _megdnn_tensor_out dx,
            _megdnn_tensor_out dhx, _megdnn_tensor_out dcx, _megdnn_tensor_out dw,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& cx, const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& dcy, const TensorLayout& flatten_weights,
            const TensorLayout& reserve_space, TensorLayout& dx, TensorLayout& dhx,
            TensorLayout& dcx, TensorLayout& dw);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& cx, const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& dcy, const TensorLayout& flatten_weights,
            const TensorLayout& reserve_space, const TensorLayout& dx,
            const TensorLayout& dhx, const TensorLayout& dcx,
            const TensorLayout& dw) = 0;

protected:
    void check_exec(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& cx, const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& dcy, const TensorLayout& flatten_weights,
            const TensorLayout& reserve_space, const TensorLayout& dx,
            const TensorLayout& dhx, const TensorLayout& dcx, const TensorLayout& dw,
            size_t workspace_in_bytes);
};
2306 2307 2308 2309
}  // namespace megdnn
#include "megdnn/internal/opr_header_epilogue.h"

// vim: syntax=cpp.doxygen