nn.h 86.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#pragma once
#include "megdnn/internal/opr_header_prologue.h"

namespace megdnn {

class SeparableConvBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(SeparableConvBase, OperatorBase);
    DEF_OPR_PARAM(SeparableConv);

public:
    using Mode = Param::Mode;

protected:
M
Megvii Engine Team 已提交
14 15 16 17 18 19
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, const TensorLayout& dst);
20 21 22 23 24 25
};

class SeparableConvForward : public SeparableConvBase {
    DEF_OPR_IMPL(SeparableConvForward, SeparableConvBase, 3, 1);

public:
M
Megvii Engine Team 已提交
26 27 28 29 30 31 32 33 34 35
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter_x,
            _megdnn_tensor_in filter_y, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, const TensorLayout& dst) = 0;
36 37

protected:
M
Megvii Engine Team 已提交
38 39 40 41
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, const TensorLayout& dst,
            size_t workspace_in_bytes);
42 43 44
};
using SeparableConv = SeparableConvForward;

45 46 47 48 49 50 51 52 53
namespace detail {

struct PreprocessedFilter {
    //! user data; its lifetime should be bound to MegDNN Convolution
    //! operator
    void* algorithm_id;
    TensorNDArray tensors;
};

54
}  // namespace detail
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/**
 * \brief base class for convolution operation
 *
 * This operator is supposed to perform convolution on arbitrary input
 * dimensions. The input/output format is N, C, dims..., and kernel format can
 * take two forms:
 *  1. OC, IC, dims..., for conventional dense convolution
 *  2. GROUP, OC_PER_GRP, IC_PER_GRP, dims... for sparse group convolution
 *
 * Currently, only 2D images are supported.
 */
template <typename Parameter>
class ConvolutionBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ConvolutionBase, OperatorBase);
    using Param = Parameter;

public:
    Param& param() { return m_param; }
    const Param& param() const { return m_param; }

protected:
    Param m_param;

public:
    static constexpr size_t MAX_SPATIAL_DIM = 2;
    using Mode = typename Param::Mode;
    struct CanonizedFilterMeta {
        DType dtype;
        typename Param::Format format;

        uint32_t
                //! whether filter should be flipped (i.e. is CONVOLUTION)
                should_flip,
                group,  //!< number of groups
                icpg,   //!< input channels per group
                ocpg,   //!< output channels per group
                spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
                //! spatial dim
                spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
                //! spatial dim with dilation applied
                dilated_spatial[MAX_SPATIAL_DIM];

        //! T should be a ConvolutionBase<Z>::CanonizedFilterMeta
        template <typename T>
        void copy_from(const T& b) {
            dtype = b.dtype;
            format = b.format;
            should_flip = b.should_flip;
            group = b.group;
            icpg = b.icpg;
            ocpg = b.ocpg;
            spatial_ndim = b.spatial_ndim;
            memcpy(stride, b.stride, sizeof(stride));
            memcpy(padding, b.padding, sizeof(padding));
            memcpy(spatial, b.spatial, sizeof(spatial));
            memcpy(dilation, b.dilation, sizeof(dilation));
            memcpy(dilated_spatial, b.dilated_spatial, sizeof(dilated_spatial));
        }

        bool operator==(const CanonizedFilterMeta& b) const {
            bool flag = true;
            flag = flag && (format == b.format);
            flag = flag && (dtype == b.dtype);
            flag = flag && (should_flip == b.should_flip);
            flag = flag && (group == b.group);
            flag = flag && (icpg == b.icpg);
            flag = flag && (ocpg == b.ocpg);
            flag = flag && (spatial_ndim == b.spatial_ndim);
            if (flag) {
                for (uint32_t i = 0; i < spatial_ndim; ++i) {
                    flag = flag && (stride[i] == b.stride[i]);
                    flag = flag && (padding[i] == b.padding[i]);
                    flag = flag && (spatial[i] == b.spatial[i]);
                    flag = flag && (dilation[i] == b.dilation[i]);
                    flag = flag && (dilated_spatial[i] == b.dilated_spatial[i]);
                }
            }
            return flag;
        }
    };
136
    using PreprocessedFilter = detail::PreprocessedFilter;
137

138 139 140
protected:
    // Check or deduce output DType
    void check_or_deduce_dtype_fwd(DType src, DType filter, DType& dst) const;
M
Megvii Engine Team 已提交
141 142 143 144 145 146
    CanonizedFilterMeta deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            TensorLayout& dst) const;
    CanonizedFilterMeta check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) const;
147 148 149 150 151 152 153 154 155 156

    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter) const;
};

class MaskPropagate : public OperatorBase {
    DEF_OPR_IMPL(MaskPropagate, OperatorBase, 1, 1);
    DEF_OPR_PARAM(MaskPropagate);

public:
M
Megvii Engine Team 已提交
157 158 159 160 161
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
162 163 164 165 166 167 168 169 170 171 172

    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
};

/**
 * \brief ConvolutionForward Operator with 0/1 Mask matrix
 */
class MaskConvForward : public ConvolutionBase<param::Convolution> {
    DEF_OPR_IMPL(MaskConvForward, ConvolutionBase, 3, 1);

public:
M
Megvii Engine Team 已提交
173 174 175 176 177 178
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in mask,
            _megdnn_tensor_out dst, _megdnn_workspace worksapce) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& dst) = 0;
179 180

    void deduce_dtype(DType src, DType filter, DType mask, DType& dst);
M
Megvii Engine Team 已提交
181 182 183
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, TensorLayout& dst);
184 185

protected:
M
Megvii Engine Team 已提交
186 187 188 189
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& dst,
            size_t workspace_in_bytes);
190 191 192 193 194 195 196 197 198 199 200 201 202 203
};
using MaskConvolution = MaskConvForward;

/**
 * \brief ConvolutionForward operator.
 */
class ConvolutionForward : public ConvolutionBase<param::Convolution>,
                           public detail::MultiAlgoOpr<ConvolutionForward, 3> {
    DEF_OPR_IMPL(ConvolutionForward, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] filter (oc, ic, fh, fw)
204 205 206 207 208 209 210
     * \param[in] preprocessed_filter if weight no preprocessed it will be
     * nullptr, else the preprocessed weights store in the tensors of
     * preprocessed_filter.
     * \param[in] workspace if weight no preprocessed
     * (preprocessed_filter == nullptr), The size of the workspace satisfies the
     * situation that weights is not processed, other wise the size of workspace
     * satisfies the situation that weights is preprocessed
211 212
     * \param[out] dst (n, oc, oh, ow)
     */
M
Megvii Engine Team 已提交
213 214 215 216
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            const PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
217
    /**
M
Megvii Engine Team 已提交
218 219
     * \brief execute weight preprocessing, read weights form filter and write
     * to preprocessed_filter after preprocessed.
220 221 222
     *
     * \praram[in] workspace the needed tmp workspace when exec_preprocess
     */
M
Megvii Engine Team 已提交
223 224 225 226
    virtual void exec_preprocess(
            const TensorLayout& src_layout, _megdnn_tensor_in filter,
            const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
227
    void deduce_dtype(DType src, DType filter, DType& dst);
228

M
Megvii Engine Team 已提交
229 230
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
231 232 233 234 235 236 237 238 239

    /**
     * \brief query the workspace needed when executing the opr, if the weights
     * are preprocessed the preprocessed_filter will not be nullptr, else it
     * will be nullptr, the workspace size maybe different whether weights are
     * preprocessed
     *
     * \return the size of workspace needed when executing
     */
240 241
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
242
            const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter) = 0;
243

244 245 246 247 248 249 250 251
    /**
     * \brief deduce the preprocessed filter layouts according to the src,
     * filter and dst layout, the result may contain multi layouts when the
     * weights is not one
     *
     * \return SmallVector<TensorLayout> Derive the layouts of weight
     * preprocessing, return empty if preprocessing is not needed.
     */
252 253 254
    virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
255

256 257 258 259 260 261 262
    /**
     * \brief query the workspace needed when preprocessing the weights,
     * according to the return size, a _megdnn_workspace will be created and
     * passed through exec_preprocess
     *
     * \return the size of workspace needed when preprocessing
     */
263 264 265
    virtual size_t get_preprocess_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
266

267 268 269 270
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION_FORWARD;
    }

271
protected:
272 273 274 275
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes,
            const PreprocessedFilter* preprocessed_filter);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
};
using Convolution = ConvolutionForward;

/**
 * \brief ConvolutionBackwardData operator.
 *
 * Calculating the gradient wrt. convolution input data.
 */
class ConvolutionBackwardData
        : public ConvolutionBase<param::Convolution>,
          public detail::MultiAlgoOpr<ConvolutionBackwardData, 3> {
    DEF_OPR_IMPL(ConvolutionBackwardData, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
295 296 297 298 299 300
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
301

302
    MGE_WIN_DECLSPEC_FUC void deduce_dtype(DType filter, DType diff, DType& grad);
M
Megvii Engine Team 已提交
303 304
    void deduce_layout(
            const TensorLayout& filter, const TensorLayout& diff, TensorLayout& grad);
305

306 307 308 309
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION_BACKWARD_DATA;
    }

310
protected:
M
Megvii Engine Team 已提交
311 312 313
    CanonizedFilterMeta check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
};

/**
 * \brief ConvolutionBackwardFilter operator.
 *
 * Calculating the gradient wrt. convolution filter.
 */
class ConvolutionBackwardFilter
        : public ConvolutionBase<param::Convolution>,
          public detail::MultiAlgoOpr<ConvolutionBackwardFilter, 3> {
    DEF_OPR_IMPL(ConvolutionBackwardFilter, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (oc, ic, fh, fw)
     */
M
Megvii Engine Team 已提交
332 333 334 335 336 337
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
338

339 340 341 342
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION_BACKWARD_FILTER;
    }

343
protected:
M
Megvii Engine Team 已提交
344 345 346
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
347 348 349 350 351 352 353 354 355 356 357 358 359
};

/**
 * \brief ConvolutionBias operator
 */
class ConvBiasForward : public ConvolutionBase<param::ConvBias>,
                        public detail::MultiAlgoOpr<ConvBiasForward, 5> {
    DEF_OPR_IMPL(ConvBiasForward, ConvolutionBase, 4, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw) or (n, ih, iw, ic)
     * \param[in] filter (oc, ic, fh, fw) or (oc, fh, fw, ic) or (oc/4, fh, fw,
360 361 362
     * 4 * ic)
     * \param[in] bias (1, oc, 1, 1)
     * \param[in] z same as dst
363 364 365 366 367 368 369
     * \param[in] preprocessed_filter if weight no preprocessed it will be
     * nullptr, else the preprocessed weights store in the tensors of
     * preprocessed_filter.
     * \param[in] workspace if weight no preprocessed
     * (preprocessed_filter == nullptr), The size of the workspace satisfies the
     * situation that weights is not processed, other wise the size of workspace
     * satisfies the situation that weights is preprocessed
370
     * \param[out] dst (n, oc, oh, ow) or (n, oh, ow, oc)
371 372 373 374
     *
     * \note if the format is NCHW_WINOGRAD, the filter layout is (alphah,
     * alphaw, oc, ic)
     */
M
Megvii Engine Team 已提交
375 376 377 378 379
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
            _megdnn_tensor_in z, _megdnn_tensor_out dst,
            const PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
380 381

    /**
382 383
     * \brief execute weight preprocessing, read weights form filter and bias,
     * write to preprocessed_filter after preprocessed.
384 385 386 387
     *
     * \praram[in] workspace the needed tmp workspace when exec_preprocess
     * running, the size is got by get_preprocess_workspace_in_bytes
     */
M
Megvii Engine Team 已提交
388 389 390 391 392
    virtual void exec_preprocess(
            const TensorLayout& src_layout, _megdnn_tensor_in filter,
            _megdnn_tensor_in bias, const TensorLayout& z_layout,
            const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
393
    void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
M
Megvii Engine Team 已提交
394 395 396
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z, TensorLayout& dst);
397

398 399 400 401 402 403 404 405
    /**
     * \brief query the workspace needed when executing the opr, if the weights
     * are preprocessed the preprocessed_filter will not be nullptr, else it
     * will be nullptr, the workspace size maybe different whether weights are
     * preprocessed
     *
     * \return the size of workspace needed when executing
     */
406 407
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
408
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
409
            const PreprocessedFilter* preprocessed_filter) = 0;
410 411 412 413 414 415 416 417

    /**
     * \brief query the workspace needed when pre-processing the weights,
     * according to the return size, a _megdnn_workspace will be created and
     * passed through exec_preprocess
     *
     * \return the size of workspace needed when pre-processing
     */
418 419 420 421
    virtual size_t get_preprocess_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;
422 423 424 425 426 427 428 429 430

    /**
     * \brief deduce the pre-processed filter layouts according to the src,
     * filter and dst layout, which may contain multi layouts when the weights
     * is not one
     *
     * \return SmallVector<TensorLayout> Derive the layouts of weight
     * preprocessing, return empty if preprocessing is not needed.
     */
431 432 433 434 435
    virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    enum class BiasMode : uint32_t {
        NO_BIAS = 0,             //!< no bias
        BROADCAST_CHANNEL_BIAS,  //!< broadcast channel bias, [1, c, 1, 1]
        BIAS                     //!< [N, C, H, W]
    };

    //! param for winograd algos.
    struct WinogradParam {
        uint32_t channel_block_size;
        uint32_t output_block_size;
        uint32_t tile_size;
        bool operator==(const WinogradParam& rhs) const {
            return channel_block_size == rhs.channel_block_size &&
                   output_block_size == rhs.output_block_size &&
                   tile_size == rhs.tile_size;
        }

        std::string to_string() const;
    };
    static constexpr WinogradParam INVALID_WINOGRAD_PARAM = {0, 0, 0};

    struct DirectParam {
        std::string to_string() const { return ""; }
    };

    struct MatmulParam {
        std::string to_string() const { return ""; }
    };

    struct DefaultParam {
        std::string to_string() const { return ""; }
    };

    //! get algo name, the format is ParamTrait<T>::category:base:p.to_string()
    //! \warning: base must not contain :.
    template <typename T>
472 473 474
    static std::string algo_name(
            const std::string& base, const T& p,
            param::ConvBias::Format format = param::ConvBias::Format::NCHW);
475 476 477 478 479 480 481 482 483 484 485
    /*!
     * \brief parse algo_name and get WinogradParam from algo name.
     *
     * \param algo name string
     * \return WinogradParam parsed from algo name, use pattern
     * winograd:base:m:tile_size.
     *
     * \warning: INVALID_WINOGRAD_PARAM returns if the algo_name is not matched.
     */
    static WinogradParam parse_winograd_name(const std::string& algo_name);

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    /**
     * @brief find if there is nchw_nchwxx conv kernel optimized for argment,
     * nchw44 used for arm, nchw88 used for x86
     *
     * @param src_dtype  conv feature map data type
     * @param filter_dtype  conv filter or weight data type
     * @param dst_dtype output data type
     * @param fm filter meta param
     * @param bias_mode bias mode, no_bias or broadcast or bias
     * @param nonline_mode identity or relu or h_swish or sigmoid
     * @return true, found a kernel
     * @return false, can`t found any kernel
     */
    static bool is_nchw_nchwxx_optimized(
            const DTypeEnum src_dtype, const DTypeEnum filter_dtype,
            const DTypeEnum dst_dtype,
            const ConvolutionBase<param::Convolution>::CanonizedFilterMeta& fm,
            const ConvBiasForward::BiasMode bias_mode,
            const param::ConvBias::NonlineMode nonline_mode);

506 507 508 509
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVBIAS_FORWARD;
    }

510
protected:
511 512
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
513 514
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
            size_t workspace_in_bytes, const PreprocessedFilter* preprocessed_filter);
515 516 517

    CanonizedFilterMeta check_exec_allow_noncontiguous(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
518 519
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
            size_t workspace_in_bytes, const PreprocessedFilter* preprocessed_filter);
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
};
using ConvBias = ConvBiasForward;

/**
 * \brief base class for Conv - Nonline - Pooling
 */
class ConvPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ConvPoolingBase, OperatorBase);

    /**
     *  \ Param::Method: Two methods to fetch the input data.
     *  Default methods is WITH_TEXTURE_OBJ.
     *  If you want to use WITH_SHARED_MEM mode,
     *  please make sure that the size of
     *   [ all of the fliter kernels + a channel
     *  of input data + a channel of output data]
     *  should be no large than 38KB.
     *  And the pooling mode should not be "MAX".
     */
    DEF_OPR_PARAM(ConvPooling);

protected:
M
Megvii Engine Team 已提交
542 543 544 545 546 547 548
    virtual void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst) = 0;
    virtual void check_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst,
            size_t workspace_limit_in_bytes) = 0;
549 550 551 552 553 554 555 556 557 558
};

class ConvPoolingForward : public ConvPoolingBase {
    DEF_OPR_IMPL(ConvPoolingForward, ConvPoolingBase, 2, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
M
Megvii Engine Team 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    virtual void exec(
            const _megdnn_in TensorND src, const _megdnn_in TensorND filter,
            const _megdnn_in TensorND bias, _megdnn_out TensorND dst,
            _megdnn_out Workspace workspace) = 0;
    virtual void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& dst) = 0;

protected:
    virtual void check_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst,
            size_t workspace_limit_in_bytes) = 0;
575 576 577 578 579 580 581 582 583 584 585
};
using ConvPooling = ConvPoolingForward;

class GroupLocalBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(GroupLocalBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    using Mode = Param::Mode;

protected:
M
Megvii Engine Team 已提交
586 587 588 589 590
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst);
591 592 593 594 595 596 597 598 599 600 601
};

class GroupLocalForward : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalForward, GroupLocalBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] filter (G, OH, OW, IC/G, FH, FW, OC/G)
     * \param[out] dst (N, OC, OH, OW)
     **/
M
Megvii Engine Team 已提交
602 603 604 605 606
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst) {
607 608
        deduce_layout_fwd(src, filter, dst);
    }
M
Megvii Engine Team 已提交
609 610 611
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
612 613

protected:
M
Megvii Engine Team 已提交
614 615 616
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
617 618 619 620 621 622 623
};
using GroupLocal = GroupLocalForward;

class GroupLocalBackwardData : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalBackwardData, GroupLocalBase, 2, 1);

public:
M
Megvii Engine Team 已提交
624 625 626 627 628 629
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
630 631

protected:
M
Megvii Engine Team 已提交
632 633 634
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
635 636 637 638 639 640
};

class GroupLocalBackwardFilter : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalBackwardFilter, GroupLocalBase, 2, 1);

public:
M
Megvii Engine Team 已提交
641 642 643 644 645 646
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
647 648

protected:
M
Megvii Engine Team 已提交
649 650 651
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
};

class Images2NeibsBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(Images2NeibsBase, OperatorBase);
    DEF_OPR_PARAM(Images2Neibs);

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& filter, const TensorLayout& dst);
};

class Images2NeibsForward : public Images2NeibsBase {
    DEF_OPR_IMPL(Images2NeibsForward, Images2NeibsBase, 1, 1);

public:
    /**
     * \param[in] src (N, C, IH, IW)
     * \param[out] dst (N, C, OH, OW, window_h, window_w)
     *
     * \see
     * http://deeplearning.net/software/theano/library/tensor/nnet/neighbours.html
     *
     * \f$ dst_{n, c, oh, ow, wh, ww} = src_{n, c, ih+wh, iw+fw}\f$,
675 676
     * where \f$ ih=-pad_h+oh*stride_h+(wh-1)*(dilation_h-1),
     * iw=-pad_w+ow*stride_w+(ww-1)*(dilation_w-1)\f$.
677
     */
M
Megvii Engine Team 已提交
678 679 680 681 682
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
683 684 685
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);

protected:
M
Megvii Engine Team 已提交
686 687 688
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
689 690 691 692 693 694 695 696 697 698 699
};
using Images2Neibs = Images2NeibsForward;

class Images2NeibsBackward : public Images2NeibsBase {
    DEF_OPR_IMPL(Images2NeibsBackward, Images2NeibsBase, 1, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
700 701 702 703 704
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& grad) = 0;
705

706
protected:
M
Megvii Engine Team 已提交
707 708 709
    void check_exec(
            const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
710 711 712 713 714 715 716 717 718 719 720 721
};

class SlidingWindowTransposeBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(SlidingWindowTransposeBase, OperatorBase);
    DEF_OPR_PARAM(SlidingWindowTranspose);

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& filter, const TensorLayout& dst);
};

class SlidingWindowTransposeForward : public SlidingWindowTransposeBase {
M
Megvii Engine Team 已提交
722
    DEF_OPR_IMPL(SlidingWindowTransposeForward, SlidingWindowTransposeBase, 1, 1);
723 724 725 726 727 728

public:
    /**
     * \param[in] src (N, C, IH, IW, window_h, window_w)
     * \param[out] dst (N, C, OH, OW)
     */
M
Megvii Engine Team 已提交
729 730 731 732 733
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
734 735 736
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);

protected:
M
Megvii Engine Team 已提交
737 738 739
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
740 741 742 743
};
using SlidingWindowTranspose = SlidingWindowTransposeForward;

class SlidingWindowTransposeBackward : public SlidingWindowTransposeBase {
M
Megvii Engine Team 已提交
744
    DEF_OPR_IMPL(SlidingWindowTransposeBackward, SlidingWindowTransposeBase, 1, 1);
745 746 747 748 749 750

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
751 752 753 754 755
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& grad) = 0;
756

757
protected:
M
Megvii Engine Team 已提交
758 759 760
    void check_exec(
            const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
};

/**
 * \brief base class for Pooling
 */
class PoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(PoolingBase, OperatorBase);
    DEF_OPR_PARAM(Pooling);

public:
    using Mode = Param::Mode;

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& dst);
776 777 778 779

public:
    MGE_WIN_DECLSPEC_FUC static void deduce_layout_impl(
            const TensorLayout& src, const Param& param, TensorLayout& dst);
780 781
};

782 783
class PoolingForward : public PoolingBase,
                       public detail::MultiAlgoOpr<PoolingForward, 2> {
784 785 786 787 788 789 790
    DEF_OPR_IMPL(PoolingForward, PoolingBase, 1, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
M
Megvii Engine Team 已提交
791 792 793
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
794
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
M
Megvii Engine Team 已提交
795 796
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
797

798 799 800 801
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::POOLING_FORWARD;
    }

802
protected:
M
Megvii Engine Team 已提交
803 804 805
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
806 807 808 809
};

using Pooling = PoolingForward;

810 811
class PoolingBackward : public PoolingBase,
                        public detail::MultiAlgoOpr<PoolingBackward, 4> {
812 813 814 815 816 817 818 819 820
    DEF_OPR_IMPL(PoolingBackward, PoolingBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in PoolingForward::exec
     * \param[in] dst the `dst' parameter in PoolingForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
821 822 823 824 825 826
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_tensor_in diff,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
827

828 829 830 831
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::POOLING_BACKWARD;
    }

832
protected:
M
Megvii Engine Team 已提交
833 834 835
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
836 837
};

838 839 840 841 842 843 844 845
/**
 * \brief base class for AdaptivePooling
 */
class AdaptivePoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(AdaptivePoolingBase, OperatorBase);
    DEF_OPR_PARAM(AdaptivePooling);

protected:
M
Megvii Engine Team 已提交
846 847
    param::Pooling deduce_pooling_param(
            const TensorLayout& src, const TensorLayout& dst);
848 849 850 851 852 853 854 855 856 857
};

class AdaptivePoolingForward : public AdaptivePoolingBase {
    DEF_OPR_IMPL(AdaptivePoolingForward, AdaptivePoolingBase, 1, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
M
Megvii Engine Team 已提交
858 859 860 861 862
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
863 864 865 866 867 868 869 870 871 872 873 874 875 876
};

using AdaptivePooling = AdaptivePoolingForward;

class AdaptivePoolingBackward : public AdaptivePoolingBase {
    DEF_OPR_IMPL(AdaptivePoolingBackward, AdaptivePoolingBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in AdaptivePoolingForward::exec
     * \param[in] dst the `dst' parameter in AdaptivePoolingForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
877 878 879 880 881 882
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_tensor_in diff,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
883 884
};

885 886 887 888 889 890 891 892 893 894 895
/**
 * \brief base class for Local
 */
class LocalBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LocalBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    using Mode = Param::Mode;

protected:
M
Megvii Engine Team 已提交
896 897 898 899 900
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst);
901 902 903 904 905 906 907 908 909 910 911
};

class LocalForward : public LocalBase {
    DEF_OPR_IMPL(LocalForward, LocalBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] filter (oh, ow, ic, fh, fw, oc)
     * \param[out] dst (n, oc, oh, ow)
     */
M
Megvii Engine Team 已提交
912 913 914
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
915 916 917 918 919 920
    /**
     * \brief Deducing output tensor layouts from input tensor layouts.
     *
     * Be aware that the first and second dimension of `filter' are ignored
     * when deducing `dst' layout.
     */
M
Megvii Engine Team 已提交
921 922 923 924 925
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
926 927

protected:
M
Megvii Engine Team 已提交
928 929 930
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
931 932 933 934 935 936 937 938 939 940 941 942
};
using Local = LocalForward;

class LocalBackwardData : public LocalBase {
    DEF_OPR_IMPL(LocalBackwardData, LocalBase, 2, 1);

public:
    /**
     * \param[in] filter (oh, ow, ic, fh, fw, oc)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
943 944 945
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
946

M
Megvii Engine Team 已提交
947 948 949
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
950 951

protected:
M
Megvii Engine Team 已提交
952 953 954
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
955 956 957 958 959 960 961 962 963 964 965
};

class LocalBackwardFilter : public LocalBase {
    DEF_OPR_IMPL(LocalBackwardFilter, LocalBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (oh, ow, ic, fh, fw, oc)
     */
M
Megvii Engine Team 已提交
966 967 968
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
969

M
Megvii Engine Team 已提交
970 971 972
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
973 974

protected:
M
Megvii Engine Team 已提交
975 976 977
    void check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
978 979 980 981 982 983 984 985 986 987 988
};

class BNBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(BNBase, OperatorBase);
    DEF_OPR_PARAM(BN);

protected:
    void check_param();
};

class BNForward : public BNBase {
989
    DEF_OPR_IMPL(BNForward, BNBase, 6, 6);
990 991 992 993 994 995 996 997 998 999

public:
    /**
     * \dst[i] = gemma
     * *(x[i]-estimatedMean[k])/sqrt(epsilon+estimatedVariance[k]) + beta \where
     * epsilon is a very small value to avoid a "divide by zero" error.
     * \param[in] src (n, c, h, w)
     * \param[out] dst (n, c, h, w)
     * \param[out] mean (see m_param.ParamDim) Global mean.
     * \param[out] variance (see m_param.ParamDim) Global variance.
1000
     * \param[out] batch_mean (see m_param.ParamDim)
1001
     *   Optionally cached intermediate mean from forward pass
1002
     * \param[out] batch_inv_variance (see m_param.ParamDim)
1003
     *   Optionally cached intermediate variance from forward pass
1004
     * \param[out] reserve (see cudnnBatchNormalizationForwardTrainingEx)
1005 1006 1007
     * src and dst must have the same shape.
     * src and dst must be contiguous.
     */
M
Megvii Engine Team 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in bn_scale,
            _megdnn_tensor_in bn_bias, _megdnn_tensor_inout mean,
            _megdnn_tensor_inout variance, _megdnn_tensor_out batch_mean,
            _megdnn_tensor_out batch_inv_variance, _megdnn_tensor_out reserve,
            _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& bn_scale,
            const TensorLayout& bn_bias, TensorLayout& mean, TensorLayout& variance,
            TensorLayout& batch_mean, TensorLayout& batch_inv_variance,
            TensorLayout& reserve, TensorLayout& dst);
1019 1020 1021 1022
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& bn_scale,
            const TensorLayout& bn_bias, const TensorLayout& mean,
            const TensorLayout& variance, const TensorLayout& batch_mean,
1023
            const TensorLayout& batch_inv_variance, const TensorLayout& reserve,
1024
            const TensorLayout& dst) = 0;
1025
    virtual size_t get_reserve_in_bytes(const TensorLayout& src) = 0;
1026 1027

protected:
M
Megvii Engine Team 已提交
1028 1029 1030 1031 1032 1033
    void check_exec(
            const TensorLayout& src, const TensorLayout& bn_scale,
            const TensorLayout& bn_bias, const TensorLayout& mean,
            const TensorLayout& variance, const TensorLayout& batch_mean,
            const TensorLayout& batch_inv_variance, const TensorLayout& dst,
            size_t workspace_in_bytes, size_t reserve_in_bytes = 0);
1034 1035 1036 1037
};
using BN = BNForward;

class BNBackward : public BNBase {
1038
    DEF_OPR_IMPL(BNBackward, BNBase, 6, 3);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

public:
    /**
     * \param[in] input data of forwarding propagate.
     * \param[in] dy the backpropagated gradient of y.
     * \param[out] dx the backpropagated gradient of x.
     * \param[out] d_bn_scale, the backpropagated gradient of bn_scale.
     * \param[out] d_bn_bias, the backpropagated gradient of bn_bias.
     * Optionally cached intermediate results from forward pass
     * \param[in] saved_batch_mean mean of the input batch.
        Calculated in the forwardpropagation.
     * \param[in] saved_batch_variance of the input batch.
        Calculated in the forwardpropagation.
1052
     * \param[in] reserve (see cudnnBatchNormalizationBackwardEx)
1053
     */
M
Megvii Engine Team 已提交
1054 1055 1056 1057 1058 1059
    virtual void exec(
            _megdnn_tensor_in x, _megdnn_tensor_in dy,
            _megdnn_tensor_in saved_batch_mean, _megdnn_tensor_in saved_batch_variance,
            _megdnn_tensor_in bn_scale, _megdnn_tensor_in reserve,
            _megdnn_tensor_out d_bn_scale, _megdnn_tensor_out d_bn_bias,
            _megdnn_tensor_out dx, _megdnn_workspace workspace) = 0;
1060 1061 1062
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& x, const TensorLayout& dy,
            const TensorLayout& saved_batch_mean,
M
Megvii Engine Team 已提交
1063 1064 1065
            const TensorLayout& saved_batch_variance, const TensorLayout& bn_scale,
            const TensorLayout& reserve, const TensorLayout& d_bn_scale,
            const TensorLayout& d_bn_bias, const TensorLayout& dx) = 0;
1066
    virtual size_t get_reserve_in_bytes(const TensorLayout& src) = 0;
1067 1068

protected:
M
Megvii Engine Team 已提交
1069 1070 1071 1072 1073 1074 1075
    void check_exec(
            const TensorLayout& x, const TensorLayout& dy,
            const TensorLayout& saved_batch_mean,
            const TensorLayout& saved_batch_variance, const TensorLayout& bn_scale,
            const TensorLayout& d_bn_scale, const TensorLayout& d_bn_bias,
            const TensorLayout& dx, size_t workspace_in_bytes,
            size_t reserve_in_bytes = 0);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
};

class LRNBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LRNBase, OperatorBase);
    DEF_OPR_PARAM(LRN);

protected:
    void check_param();
};

class LRNForward : public LRNBase {
    DEF_OPR_IMPL(LRNForward, LRNBase, 1, 1);

public:
    /**
     * \see ImageNet Classification with Deep Convolutional Neural Networks
     * \param[in] src (n, c, h, w)
     * \param[out] dst (n, c, h, w)
     *
     * src and dst must have the same shape.
     * src and dst must be contiguous.
     */
M
Megvii Engine Team 已提交
1098 1099 1100
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
1101
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
M
Megvii Engine Team 已提交
1102 1103
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
1104 1105

protected:
M
Megvii Engine Team 已提交
1106 1107 1108
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
};
using LRN = LRNForward;

class LRNBackward : public LRNBase {
    DEF_OPR_IMPL(LRNBackward, LRNBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in LRNForward::exec
     * \param[in] dst the `dst' parameter in LRNForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     *
     * All tensors should be contiguous and of the same shape.
     */
M
Megvii Engine Team 已提交
1124 1125 1126 1127 1128 1129
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_tensor_in diff,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1130 1131

protected:
M
Megvii Engine Team 已提交
1132 1133 1134
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
1135 1136 1137 1138 1139 1140 1141
};

class ROIPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ROIPoolingBase, OperatorBase);
    DEF_OPR_PARAM(ROIPooling);

protected:
M
Megvii Engine Team 已提交
1142 1143 1144
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
};

class ROIPoolingForward : public ROIPoolingBase {
    DEF_OPR_IMPL(ROIPoolingForward, ROIPoolingBase, 2, 2);

public:
    /**
     * \param[in] src (n, c, ih, iw)
     * \param[in] rois (m, 5)
     * \param[out] dst (m, c, oh, ow)
     * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
     *
     * The internal implementation is akin to
     * https://github.com/rbgirshick/caffe-fast-rcnn .d
     * Note that rois(, 0) denotes the input image index. We store it as
     * a float, but it should be an integer instead.
     *
     * index is a temporary tensor to facilitate its backward operator.
     * It is used to store argmax indicex in MAX mode, and it is not used
     * in AVERAGE mode.
     */
M
Megvii Engine Team 已提交
1166 1167 1168 1169 1170 1171
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in rois, _megdnn_tensor_out dst,
            _megdnn_tensor_out index, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index) = 0;
1172 1173

protected:
M
Megvii Engine Team 已提交
1174 1175 1176
    void check_exec(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index, size_t workspace_in_bytes);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
};
using ROIPooling = ROIPoolingForward;

class ROIPoolingBackward : public ROIPoolingBase {
    DEF_OPR_IMPL(ROIPoolingBackward, ROIPoolingBase, 4, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[in] src the `src' parameter in ROIPoolingForward::exec
     * \param[in] rois the `rois' parameter in ROIPoolingForward::exec
     * \param[in] index the `index' parameter in ROIPoolingForward::exec
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
1191 1192 1193 1194 1195 1196 1197
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in src, _megdnn_tensor_in rois,
            _megdnn_tensor_in index, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& src, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad) = 0;
1198 1199

protected:
M
Megvii Engine Team 已提交
1200 1201 1202 1203
    void check_exec(
            const TensorLayout& diff, const TensorLayout& src, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad,
            size_t workspace_in_bytes);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
};

class Convolution3DBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(Convolution3DBase, OperatorBase);
    DEF_OPR_PARAM(Convolution3D);

public:
    static constexpr size_t MAX_SPATIAL_DIM = 3;
    using Mode = Param::Mode;
    struct CanonizedFilterMeta {
        DTypeEnum dtype_enum;
        Param::Format format;
        uint32_t
                //! whether filter should be flipped (i.e. is CONVOLUTION)
                should_flip,
                group,  //!< number of groups
                icpg,   //!< input channels per group
                ocpg,   //!< output channels per group
                spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
                //! spatial dim
                spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
                //! spatial dim with dilation applied
                dilated_spatial[MAX_SPATIAL_DIM];
    } MEGDNN_PACKED;

protected:
M
Megvii Engine Team 已提交
1230 1231 1232 1233 1234 1235
    CanonizedFilterMeta deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            TensorLayout& dst) const;
    CanonizedFilterMeta check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) const;
1236

1237 1238
    static CanonizedFilterMeta make_canonized_filter_meta_impl(
            size_t src_ndim, const TensorLayout& filter, const Param& param);
1239 1240 1241 1242
    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter) const;
};

M
Megvii Engine Team 已提交
1243 1244
class Convolution3DForward : public Convolution3DBase,
                             public detail::MultiAlgoOpr<Convolution3DForward, 3> {
1245 1246 1247 1248 1249 1250 1251 1252
    DEF_OPR_IMPL(Convolution3DForward, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, id, ih, iw)
     * \param[in] filter (oc, ic, fd, fh, fw)
     * \param[out] dst (n, oc, od, oh, ow)
     */
M
Megvii Engine Team 已提交
1253 1254 1255 1256 1257 1258 1259 1260
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
1261

1262 1263 1264 1265
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION3D_FORWARD;
    }

1266
protected:
M
Megvii Engine Team 已提交
1267 1268 1269
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
};
using Convolution3D = Convolution3DForward;

class Convolution3DBackwardData
        : public Convolution3DBase,
          public detail::MultiAlgoOpr<Convolution3DBackwardData, 3> {
    DEF_OPR_IMPL(Convolution3DBackwardData, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] filter (oc, ic, fd, fh, fw)
     * \param[in] diff (n, oc, od, oh, ow)
     * \param[out] grad (n, ic, id, ih, iw)
     */
1284 1285 1286 1287
    MGE_WIN_DECLSPEC_FUC static void deduce_layout_impl(
            const TensorLayout& filter, const TensorLayout& diff, const Param& param,
            TensorLayout& grad);

M
Megvii Engine Team 已提交
1288 1289 1290 1291 1292 1293
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1294

M
Megvii Engine Team 已提交
1295 1296
    void deduce_layout(
            const TensorLayout& filter, const TensorLayout& diff, TensorLayout& grad);
1297

1298 1299 1300 1301
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION3D_BACKWARD_DATA;
    }

1302
protected:
M
Megvii Engine Team 已提交
1303 1304 1305
    CanonizedFilterMeta check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
};

class Convolution3DBackwardFilter
        : public Convolution3DBase,
          public detail::MultiAlgoOpr<Convolution3DBackwardFilter, 3> {
    DEF_OPR_IMPL(Convolution3DBackwardFilter, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, id, ih, iw)
     * \param[in] diff (n, oc, od, oh, ow)
     * \param[out] grad (oc, ic, fd, fh, fw)
     */
M
Megvii Engine Team 已提交
1319 1320 1321 1322 1323 1324
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1325

1326 1327 1328 1329
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION3D_BACKWARD_FILTER;
    }

1330
protected:
M
Megvii Engine Team 已提交
1331 1332 1333
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
1334 1335 1336 1337 1338 1339 1340
};

class LocalShareBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LocalShareBase, OperatorBase);
    DEF_OPR_PARAM(LocalShare);

protected:
M
Megvii Engine Team 已提交
1341 1342 1343 1344 1345
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
};

class LocalShareForward : public LocalShareBase,
                          public detail::MultiAlgoOpr<LocalShareForward, 3> {
    DEF_OPR_IMPL(LocalShareForward, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     * \param[out] dst (N, OC, OH, OW)
     */
M
Megvii Engine Team 已提交
1359 1360 1361
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
1362 1363 1364
    /**
     * \brief deduce layout of the ouput tensor
     */
M
Megvii Engine Team 已提交
1365 1366 1367 1368 1369
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
1370

1371 1372 1373 1374
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::LOCAL_SHARE_FORWARD;
    }

1375
protected:
M
Megvii Engine Team 已提交
1376 1377 1378
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
1379 1380 1381
};
using LocalShare = LocalShareForward;

M
Megvii Engine Team 已提交
1382 1383
class LocalShareBackwardData : public LocalShareBase,
                               public detail::MultiAlgoOpr<LocalShareBackwardData, 3> {
1384 1385 1386 1387 1388 1389 1390 1391 1392
    DEF_OPR_IMPL(LocalShareBackwardData, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     * \param[in] diff (N, OC, OH, OW)
     * \param[out] grad (N, IC, IH, IW)
     */
M
Megvii Engine Team 已提交
1393 1394 1395 1396 1397 1398 1399 1400
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
    void deduce_layout(
            const TensorLayout& filter, const TensorLayout& diff, TensorLayout& grad);
1401

1402 1403 1404 1405
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::LOCAL_SHARE_BACKWARD_DATA;
    }

1406
protected:
M
Megvii Engine Team 已提交
1407 1408 1409
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
};

class LocalShareBackwardFilter
        : public LocalShareBase,
          public detail::MultiAlgoOpr<LocalShareBackwardFilter, 3> {
    DEF_OPR_IMPL(LocalShareBackwardFilter, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] diff (N, OC, OH, OW)
     * \param[out] grad (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     */
M
Megvii Engine Team 已提交
1424 1425 1426
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
1427

M
Megvii Engine Team 已提交
1428 1429 1430
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1431

1432 1433 1434 1435
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::LOCAL_SHARE_BACKWARD_FILTER;
    }

1436
protected:
M
Megvii Engine Team 已提交
1437 1438 1439
    void check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
1440 1441 1442 1443 1444 1445 1446
};

class ROIAlignBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ROIAlignBase, OperatorBase);
    DEF_OPR_PARAM(ROIAlign);

protected:
M
Megvii Engine Team 已提交
1447 1448 1449 1450 1451 1452
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& rois, TensorLayout& dst,
            TensorLayout& index);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
};

class ROIAlignForward : public ROIAlignBase {
    DEF_OPR_IMPL(ROIAlignForward, ROIAlignBase, 2, 2);

public:
    /**
     * \param[in] src (n, c, ih, iw)
     * \param[in] rois (m, 5)
     * \param[out] dst (m, c, oh, ow)
     * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
     *
     * Note that rois(, 0) denotes the input image index. We store it as
     * a float, but it should be an integer instead.
     *
     * index is a temporary tensor to facilitate its backward operator.
     * It is used to store argmax indicex in MAX mode, and it is not used
     * in AVERAGE mode.
     */
M
Megvii Engine Team 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in rois, _megdnn_tensor_out dst,
            _megdnn_tensor_out index, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& rois, TensorLayout& dst,
            TensorLayout& index);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index) = 0;
1481 1482

protected:
M
Megvii Engine Team 已提交
1483 1484 1485
    void check_exec(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index, size_t workspace_in_bytes);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
};
using ROIAlign = ROIAlignForward;

class ROIAlignBackward : public ROIAlignBase {
    DEF_OPR_IMPL(ROIAlignBackward, ROIAlignBase, 3, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[in] rois the `rois' parameter in ROIAlignForward::exec
     * \param[in] index the `index' parameter in ROIAlignForward::exec
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
1499 1500 1501 1502 1503 1504
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in rois, _megdnn_tensor_in index,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad) = 0;
1505 1506

protected:
M
Megvii Engine Team 已提交
1507 1508 1509 1510
    void check_exec(
            const TensorLayout& diff, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad,
            size_t workspace_in_bytes);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
};

class DeformableConvBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DeformableConvBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    static constexpr size_t MAX_SPATIAL_DIM = 2;
    struct CanonizedFilterMeta : Convolution::CanonizedFilterMeta {
        uint32_t deformable_group;
    };

protected:
    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter,
            const TensorLayout& offset) const;
M
Megvii Engine Team 已提交
1527 1528 1529 1530 1531 1532 1533
    void deduce_layout_fwd(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& offset, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& offset,
            const TensorLayout& dst);
1534 1535
};

M
Megvii Engine Team 已提交
1536 1537
class DeformableConvForward : public DeformableConvBase,
                              public detail::MultiAlgoOpr<DeformableConvForward, 5> {
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    DEF_OPR_IMPL(DeformableConvForward, DeformableConvBase, 4, 1);

public:
    /**
     * \param[in] im (n, ic, ih, iw)
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[out] dst (n, oc, oh, ow)
     */
M
Megvii Engine Team 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
    virtual void exec(
            _megdnn_tensor_in im, _megdnn_tensor_in filter, _megdnn_tensor_in offset,
            _megdnn_tensor_in mask, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& dst) = 0;
1559

1560 1561 1562 1563
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::DEFORMABLE_CONV_FORWARD;
    }

1564
protected:
M
Megvii Engine Team 已提交
1565 1566 1567 1568
    CanonizedFilterMeta check_exec(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& dst, size_t workspace_in_bytes);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
};
using DeformableConv = DeformableConvForward;

/**
 * \brief DeformableConvBackwardFilter operator.
 *
 * Calculating the gradient wrt. convolution filter.
 */
class DeformableConvBackwardFilter
        : public DeformableConvBase,
          public detail::MultiAlgoOpr<DeformableConvBackwardFilter, 5> {
    DEF_OPR_IMPL(DeformableConvBackwardFilter, DeformableConvBase, 4, 1);

public:
    /**
     * \param[in] im (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[in] out_grad (n, oc, oh, ow)
     * \param[out] filter_grad (oc, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    virtual void exec(
            _megdnn_tensor_in im, _megdnn_tensor_in offset, _megdnn_tensor_in mask,
            _megdnn_tensor_in out_grad, _megdnn_tensor_out filter_grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& im, const TensorLayout& offset,
            const TensorLayout& mask, const TensorLayout& out_grad,
            const TensorLayout& filter_grad) = 0;
    void deduce_layout(
            const TensorLayout& im, const TensorLayout& offset,
            const TensorLayout& mask, const TensorLayout& out_grad,
            TensorLayout& filter_grad);
1602

1603 1604 1605 1606
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::DEFORMABLE_CONV_BACKWARD_FILTER;
    }

1607
protected:
M
Megvii Engine Team 已提交
1608 1609 1610 1611
    CanonizedFilterMeta check_exec(
            const TensorLayout& im, const TensorLayout& offset,
            const TensorLayout& mask, const TensorLayout& out_grad,
            const TensorLayout& filter_grad, size_t workspace_in_bytes);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
};

/**
 * \brief DeformableConvBackwardData operator.
 *
 * Calculating the gradient wrt. convolution input data, offset and mask.
 */
class DeformableConvBackwardData
        : public DeformableConvBase,
          public detail::MultiAlgoOpr<DeformableConvBackwardData, 8> {
    DEF_OPR_IMPL(DeformableConvBackwardData, DeformableConvBase, 5, 3);

public:
    /**
     * \param[in] im (oc, ic, fh, fw)
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[in] out_grad (n, oc, oh, ow)
     * \param[out] im_grad (n, ic, ih, iw)
     * \param[out] offset_grad (dg, 2, fh, fw, oh, ow)
     * \param[out] mask_grad (dg, fh, fw, oh, ow)
     */
M
Megvii Engine Team 已提交
1635 1636 1637 1638 1639
    virtual void exec(
            _megdnn_tensor_in im, _megdnn_tensor_in filter, _megdnn_tensor_in offset,
            _megdnn_tensor_in mask, _megdnn_tensor_in out_grad,
            _megdnn_tensor_out im_grad, _megdnn_tensor_out offset_grad,
            _megdnn_tensor_out mask_grad, _megdnn_workspace workspace) = 0;
1640 1641 1642 1643 1644
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, const TensorLayout& im_grad,
            const TensorLayout& offset_grad, const TensorLayout& mask_grad) = 0;
M
Megvii Engine Team 已提交
1645 1646 1647 1648 1649
    void deduce_layout(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, TensorLayout& im_grad,
            TensorLayout& offset_grad, TensorLayout& mask_grad);
1650

1651 1652 1653 1654
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::DEFORMABLE_CONV_BACKWARD_DATA;
    }

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
protected:
    CanonizedFilterMeta check_exec(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, const TensorLayout& im_grad,
            const TensorLayout& offset_grad, const TensorLayout& mask_grad,
            size_t workspace_in_bytes);
};

class DeformablePSROIPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DeformablePSROIPoolingBase, OperatorBase);
    DEF_OPR_PARAM(DeformablePSROIPooling);

protected:
M
Megvii Engine Team 已提交
1669 1670 1671
    void deduce_layout_fwd(
            const TensorLayout& data, const TensorLayout& trans,
            const TensorLayout& rois, TensorLayout& out_data, TensorLayout& out_count);
1672

M
Megvii Engine Team 已提交
1673 1674 1675 1676
    void check_layout_fwd(
            const TensorLayout& data, const TensorLayout& trans,
            const TensorLayout& rois, const TensorLayout& out_data,
            const TensorLayout& out_count, size_t workspace_in_bytes);
1677 1678 1679
};

class DeformablePSROIPoolingForward : public DeformablePSROIPoolingBase {
M
Megvii Engine Team 已提交
1680
    DEF_OPR_IMPL(DeformablePSROIPoolingForward, DeformablePSROIPoolingBase, 3, 2);
1681 1682 1683 1684 1685 1686 1687 1688 1689

public:
    /**
     * \param[in]  data       (oc, ic, ih, iw)
     * \param[in]  rois       (xx, xx, xx, xx)
     * \param[in]  trans      (oc, ic, fh, fw)
     * \param[out] out_data   ( n, ic, ih, iw)
     * \param[out] out_count  ( n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_data,
            const TensorLayout& out_count) = 0;
    virtual void exec(
            _megdnn_tensor_in data, _megdnn_tensor_in rois, _megdnn_tensor_in trans,
            _megdnn_tensor_out out_data, _megdnn_tensor_out out_count,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, TensorLayout& out_data, TensorLayout& out_count);
    void check_exec(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_data,
            const TensorLayout& out_count, size_t workspace_in_bytes);
1705 1706 1707 1708 1709
};

using DeformablePSROIPooling = DeformablePSROIPoolingForward;

class DeformablePSROIPoolingBackward : public DeformablePSROIPoolingBase {
M
Megvii Engine Team 已提交
1710
    DEF_OPR_IMPL(DeformablePSROIPoolingBackward, DeformablePSROIPoolingBase, 5, 2);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

public:
    /**
     * \param[in]  data        (oc, ic, ih, iw)
     * \param[in]  rois        (xx, xx, xx, xx)
     * \param[in]  trans       (oc, ic, fh, fw)
     * \param[in]  out_diff    (xx, xx, xx, xx)
     * \param[in]  out_count   (xx, xx, xx, xx)
     * \param[out] data_diff   ( n, ic, ih, iw)
     * \param[out] trans_diff  ( n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    virtual void exec(
            _megdnn_tensor_in data, _megdnn_tensor_in rois, _megdnn_tensor_in trans,
            _megdnn_tensor_in out_diff, _megdnn_tensor_in out_count,
            _megdnn_tensor_out data_diff, _megdnn_tensor_out trans_diff,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_diff,
            const TensorLayout& out_count, const TensorLayout& data_diff,
            const TensorLayout& trans_diff) = 0;

    void check_exec(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_diff,
            const TensorLayout& out_count, const TensorLayout& data_diff,
            const TensorLayout& trans_diff, size_t workspace_in_bytes);
};

class BatchConvBiasForward : public ConvolutionBase<param::BatchConvBias>,
                             public detail::MultiAlgoOpr<BatchConvBiasForward, 5> {
1742 1743 1744
    DEF_OPR_IMPL(BatchConvBiasForward, ConvolutionBase, 4, 1);

public:
M
Megvii Engine Team 已提交
1745 1746 1747 1748
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
            _megdnn_tensor_in z, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
1749 1750

    void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
M
Megvii Engine Team 已提交
1751 1752 1753
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z, TensorLayout& dst);
1754

M
Megvii Engine Team 已提交
1755 1756 1757 1758
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;
1759

1760 1761 1762 1763
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::BATCH_CONV_FORWARD;
    }

1764
protected:
M
Megvii Engine Team 已提交
1765 1766 1767 1768
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
            size_t workspace_in_bytes);
1769 1770 1771
};
using BatchConvBias = BatchConvBiasForward;

1772 1773 1774 1775 1776 1777
class FakeQuantBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(FakeQuantBase, OperatorBase);
    DEF_OPR_PARAM(FakeQuant);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
M
Megvii Engine Team 已提交
1778 1779 1780
    void check_layout_fwd(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& output);
1781 1782 1783 1784 1785 1786
};

class FakeQuantForward : public FakeQuantBase {
    DEF_OPR_IMPL(FakeQuantForward, FakeQuantBase, 3, 1);

public:
M
Megvii Engine Team 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_out output,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& output) = 0;
1797 1798

protected:
M
Megvii Engine Team 已提交
1799 1800 1801 1802
    void check_exec(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& output,
            size_t workspace_in_bytes);
1803 1804 1805 1806 1807 1808 1809 1810
};

using FakeQuant = FakeQuantForward;

class FakeQuantBackward : public FakeQuantBase {
    DEF_OPR_IMPL(FakeQuantBackward, FakeQuantBase, 4, 1);

public:
M
Megvii Engine Team 已提交
1811 1812 1813 1814 1815 1816 1817 1818
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad) = 0;
1819 1820

protected:
M
Megvii Engine Team 已提交
1821 1822 1823 1824
    void check_exec(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad, size_t workspace_in_bytes);
1825 1826
};

M
Megvii Engine Team 已提交
1827 1828 1829 1830 1831 1832
class TQTBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(TQTBase, OperatorBase);
    DEF_OPR_PARAM(TQT);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
M
Megvii Engine Team 已提交
1833 1834 1835
    void check_layout_fwd(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& output);
M
Megvii Engine Team 已提交
1836 1837 1838 1839 1840 1841
};

class TQTForward : public TQTBase {
    DEF_OPR_IMPL(TQTForward, TQTBase, 2, 1);

public:
M
Megvii Engine Team 已提交
1842 1843 1844 1845 1846 1847 1848 1849
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in scale, _megdnn_tensor_out output,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& scale, TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& output) = 0;
M
Megvii Engine Team 已提交
1850 1851

protected:
M
Megvii Engine Team 已提交
1852 1853 1854
    void check_exec(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& output, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1855 1856 1857 1858 1859 1860 1861
};
using TQT = TQTForward;

class TQTBackward : public TQTBase {
    DEF_OPR_IMPL(TQTBackward, TQTBase, 3, 2);

public:
M
Megvii Engine Team 已提交
1862 1863 1864 1865 1866 1867 1868 1869
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_out grad_x, _megdnn_tensor_out grad_s,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s) = 0;
M
Megvii Engine Team 已提交
1870 1871

protected:
M
Megvii Engine Team 已提交
1872 1873 1874 1875
    void check_exec(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1876 1877
};

M
Megvii Engine Team 已提交
1878 1879 1880 1881 1882 1883
class LSQBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LSQBase, OperatorBase);
    DEF_OPR_PARAM(LSQ);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
M
Megvii Engine Team 已提交
1884 1885 1886 1887
    void check_layout_fwd(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            const TensorLayout& output);
M
Megvii Engine Team 已提交
1888 1889 1890 1891 1892 1893
};

class LSQForward : public LSQBase {
    DEF_OPR_IMPL(LSQForward, LSQBase, 4, 1);

public:
M
Megvii Engine Team 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_in grad_scale,
            _megdnn_tensor_out output, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            const TensorLayout& output) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            const TensorLayout& output, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1912 1913 1914 1915 1916 1917 1918
};
using LSQ = LSQForward;

class LSQBackward : public LSQBase {
    DEF_OPR_IMPL(LSQBackward, LSQBase, 5, 2);

public:
M
Megvii Engine Team 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_in grad_scale,
            _megdnn_tensor_out grad_x, _megdnn_tensor_out grad_s,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad_scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s) = 0;

protected:
    void check_exec(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad_scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1936 1937
};

1938 1939 1940 1941
class LayerNormBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LayerNormBase, OperatorBase);
    DEF_OPR_PARAM(LayerNorm);

1942 1943 1944 1945 1946
public:
    MGE_WIN_DECLSPEC_FUC static void deduce_layout_fwd_impl(
            const TensorLayout& data, const Param& p, TensorLayout& dst,
            TensorLayout& mean, TensorLayout& rstd);

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
protected:
    void deduce_layout_fwd(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, TensorLayout& dst, TensorLayout& mean,
            TensorLayout& rstd);
    void check_layout_fwd(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, const TensorLayout& dst, const TensorLayout& mean,
            const TensorLayout& rstd);
};

class LayerNormForward : public LayerNormBase {
    DEF_OPR_IMPL(LayerNormForward, LayerNormBase, 3, 3);

public:
    virtual void exec(
            _megdnn_tensor_in data, _megdnn_tensor_in weight, _megdnn_tensor_in bias,
            _megdnn_tensor_out dst, _megdnn_tensor_out mean, _megdnn_tensor_out rstd,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, TensorLayout& dst, TensorLayout& mean,
            TensorLayout& rstd);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, const TensorLayout& dst, const TensorLayout& mean,
            const TensorLayout& rstd) = 0;

protected:
    void check_exec(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, const TensorLayout& dst, const TensorLayout& mean,
            const TensorLayout& rstd, size_t workspace_in_bytes);
};
using LayerNorm = LayerNormForward;

class LayerNormBackward : public LayerNormBase {
    DEF_OPR_IMPL(LayerNormBackward, LayerNormBase, 5, 3);

public:
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in data, _megdnn_tensor_in weight,
            _megdnn_tensor_in mean, _megdnn_tensor_in rstd, _megdnn_tensor_out ddata,
            _megdnn_tensor_out dweight, _megdnn_tensor_out dbias,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& diff, const TensorLayout& data,
            const TensorLayout& weight, const TensorLayout& mean,
            const TensorLayout& rstd, TensorLayout& ddata, TensorLayout& dweight,
            TensorLayout& dbias);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& data,
            const TensorLayout& weight, const TensorLayout& mean,
            const TensorLayout& rstd, const TensorLayout& ddata,
            const TensorLayout& dweight, const TensorLayout& dbias) = 0;

protected:
    void check_exec(
            const TensorLayout& diff, const TensorLayout& data,
            const TensorLayout& weight, const TensorLayout& mean,
            const TensorLayout& rstd, const TensorLayout& ddata,
            const TensorLayout& dweight, const TensorLayout& dbias,
            size_t workspace_in_bytes);
};

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
class DropoutBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DropoutBase, OperatorBase);
    DEF_OPR_PARAM(Dropout);
};

class DropoutForward : public DropoutBase {
    DEF_OPR_IMPL(DropoutForward, DropoutBase, 1, 2);

public:
    void deduce_layout(const TensorLayout& inp, TensorLayout& oup, TensorLayout& mask);
    virtual void exec(
            _megdnn_tensor_in inp, _megdnn_tensor_out oup, _megdnn_tensor_out mask,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& inp, const TensorLayout& oup,
            const TensorLayout& mask) = 0;
    virtual size_t get_mask_size_in_bytes(const TensorLayout& inp) = 0;

protected:
    void check_exec(
            const TensorLayout& inp, const TensorLayout& oup, const TensorLayout& mask,
            size_t workspace_in_bytes);
};
using Dropout = DropoutForward;

class DropoutBackward : public DropoutBase {
    DEF_OPR_IMPL(DropoutBackward, DropoutBase, 2, 1);

public:
    void deduce_layout(
            const TensorLayout& doup, const TensorLayout& mask, TensorLayout& dinp);
    virtual void exec(
            _megdnn_tensor_in doup, _megdnn_tensor_in mask, _megdnn_tensor_out dinp,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& doup, const TensorLayout& mask,
            const TensorLayout& dinp) = 0;

protected:
    void check_exec(
            const TensorLayout& doup, const TensorLayout& mask,
            const TensorLayout& dinp, size_t workspace_in_bytes);
};
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
class SoftmaxBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(SoftmaxBase, OperatorBase);
    DEF_OPR_PARAM(Softmax);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
    void check_layout_fwd(const TensorLayout& input, const TensorLayout& output);
};

class SoftmaxForward : public SoftmaxBase {
    DEF_OPR_IMPL(SoftmaxForward, SoftmaxBase, 1, 1);

public:
    /**
     * \param[in] input input tensor
     * \param[out] output output tensor
     */
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_out output,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& input, TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& output) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& output,
            size_t workspace_in_bytes);
};
using Softmax = SoftmaxForward;

class SoftmaxBackward : public SoftmaxBase {
    DEF_OPR_IMPL(SoftmaxBackward, SoftmaxBase, 2, 1);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in diff, _megdnn_tensor_out grad_x,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& diff,
            const TensorLayout& grad_x) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& diff,
            const TensorLayout& grad_x, size_t workspace_in_bytes);
};
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
class RNNCellForward : public OperatorBase {
    DEF_OPR_PARAM(RNNCell);
    DEF_OPR_IMPL(RNNCellForward, OperatorBase, 6, 1);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in weight_ih,
            _megdnn_tensor_in bias_ih, _megdnn_tensor_in hx,
            _megdnn_tensor_in weight_hh, _megdnn_tensor_in bias_hh,
            _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
2113
    void deduce_layout(
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& dst) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& dst, size_t workspace_in_bytes);
};
using RNNCell = RNNCellForward;

class LSTMCellForward : public OperatorBase {
    // DEF_OPR_PARAM(LSTMCell);
    DEF_OPR_PARAM(Empty);
    DEF_OPR_IMPL(LSTMCellForward, OperatorBase, 7, 3);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in weight_ih,
            _megdnn_tensor_in bias_ih, _megdnn_tensor_in hx,
            _megdnn_tensor_in weight_hh, _megdnn_tensor_in bias_hh,
            _megdnn_tensor_in cx, _megdnn_tensor_out h_new, _megdnn_tensor_out c_new,
            _megdnn_tensor_out gates, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& cx, TensorLayout& h_new, TensorLayout& c_new,
            TensorLayout& gates);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& cx, const TensorLayout& h_new,
            const TensorLayout& c_new, const TensorLayout& gates) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& cx, const TensorLayout& h_new,
            const TensorLayout& c_new, const TensorLayout& gates,
            size_t workspace_in_bytes);
};
using LSTMCell = LSTMCellForward;

class RNNForward : public OperatorBase {
    DEF_OPR_PARAM(RNN);
    DEF_OPR_IMPL(RNNForward, OperatorBase, 3, 3);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in hx,
            _megdnn_tensor_in flatten_weights, _megdnn_tensor_out output,
            _megdnn_tensor_out hy, _megdnn_tensor_out reserve_space,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& hx,
            const TensorLayout& flatten_weights, TensorLayout& output, TensorLayout& hy,
            TensorLayout& reserve_space);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& hx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& reserve_space) = 0;
    virtual size_t get_reserve_size_in_bytes(const TensorLayout& input) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& hx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& reserve_space,
            size_t workspace_in_bytes);
};
using RNN = RNNForward;

class RNNBackward : public OperatorBase {
    DEF_OPR_PARAM(RNN);
    DEF_OPR_IMPL(RNNBackward, OperatorBase, 7, 3);

public:
    virtual void exec(
            _megdnn_tensor_in x, _megdnn_tensor_in y, _megdnn_tensor_in hx,
            _megdnn_tensor_in dy, _megdnn_tensor_in dhy,
            _megdnn_tensor_in flatten_weights, _megdnn_tensor_in reserve_space,
            _megdnn_tensor_out dx, _megdnn_tensor_out dhx, _megdnn_tensor_out dw,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& flatten_weights, const TensorLayout& reserve_space,
            TensorLayout& dx, TensorLayout& dhx, TensorLayout& dw);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& flatten_weights, const TensorLayout& reserve_space,
            const TensorLayout& dx, const TensorLayout& dhx,
            const TensorLayout& dw) = 0;

protected:
    void check_exec(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& flatten_weights, const TensorLayout& reserve_space,
            const TensorLayout& dx, const TensorLayout& dhx, const TensorLayout& dw,
            size_t workspace_in_bytes);
};

class LSTMForward : public OperatorBase {
    DEF_OPR_PARAM(LSTM);
    DEF_OPR_IMPL(LSTMForward, OperatorBase, 4, 4);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in hx, _megdnn_tensor_in cx,
            _megdnn_tensor_in flatten_weights, _megdnn_tensor_out output,
            _megdnn_tensor_out hy, _megdnn_tensor_out cy,
            _megdnn_tensor_out reserve_space, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& hx, const TensorLayout& cx,
            const TensorLayout& flatten_weights, TensorLayout& output, TensorLayout& hy,
            TensorLayout& cy, TensorLayout& reserve_space);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& hx, const TensorLayout& cx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& cy,
            const TensorLayout& reserve_space) = 0;
    virtual size_t get_reserve_size_in_bytes(const TensorLayout& input) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& hx, const TensorLayout& cx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& cy,
            const TensorLayout& reserve_space, size_t workspace_in_bytes);
};
using LSTM = LSTMForward;

class LSTMBackward : public OperatorBase {
    DEF_OPR_PARAM(LSTM);
    DEF_OPR_IMPL(LSTMBackward, OperatorBase, 9, 4);

public:
    virtual void exec(
            _megdnn_tensor_in x, _megdnn_tensor_in y, _megdnn_tensor_in hx,
            _megdnn_tensor_in cx, _megdnn_tensor_in dy, _megdnn_tensor_in dhy,
            _megdnn_tensor_in dcy, _megdnn_tensor_in flatten_weights,
            _megdnn_tensor_in reserve_space, _megdnn_tensor_out dx,
            _megdnn_tensor_out dhx, _megdnn_tensor_out dcx, _megdnn_tensor_out dw,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& cx, const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& dcy, const TensorLayout& flatten_weights,
            const TensorLayout& reserve_space, TensorLayout& dx, TensorLayout& dhx,
            TensorLayout& dcx, TensorLayout& dw);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& cx, const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& dcy, const TensorLayout& flatten_weights,
            const TensorLayout& reserve_space, const TensorLayout& dx,
            const TensorLayout& dhx, const TensorLayout& dcx,
            const TensorLayout& dw) = 0;

protected:
    void check_exec(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& cx, const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& dcy, const TensorLayout& flatten_weights,
            const TensorLayout& reserve_space, const TensorLayout& dx,
            const TensorLayout& dhx, const TensorLayout& dcx, const TensorLayout& dw,
            size_t workspace_in_bytes);
};
2295 2296 2297 2298
}  // namespace megdnn
#include "megdnn/internal/opr_header_epilogue.h"

// vim: syntax=cpp.doxygen