nn.h 84.7 KB
Newer Older
1 2 3 4
/**
 * \file dnn/include/megdnn/oprs/nn.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24
 */
#pragma once
#include "megdnn/internal/opr_header_prologue.h"

namespace megdnn {

class SeparableConvBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(SeparableConvBase, OperatorBase);
    DEF_OPR_PARAM(SeparableConv);

public:
    using Mode = Param::Mode;

protected:
M
Megvii Engine Team 已提交
25 26 27 28 29 30
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, const TensorLayout& dst);
31 32 33 34 35 36
};

class SeparableConvForward : public SeparableConvBase {
    DEF_OPR_IMPL(SeparableConvForward, SeparableConvBase, 3, 1);

public:
M
Megvii Engine Team 已提交
37 38 39 40 41 42 43 44 45 46
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter_x,
            _megdnn_tensor_in filter_y, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, const TensorLayout& dst) = 0;
47 48

protected:
M
Megvii Engine Team 已提交
49 50 51 52
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter_x,
            const TensorLayout& filter_y, const TensorLayout& dst,
            size_t workspace_in_bytes);
53 54 55
};
using SeparableConv = SeparableConvForward;

56 57 58 59 60 61 62 63 64
namespace detail {

struct PreprocessedFilter {
    //! user data; its lifetime should be bound to MegDNN Convolution
    //! operator
    void* algorithm_id;
    TensorNDArray tensors;
};

65
}  // namespace detail
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/**
 * \brief base class for convolution operation
 *
 * This operator is supposed to perform convolution on arbitrary input
 * dimensions. The input/output format is N, C, dims..., and kernel format can
 * take two forms:
 *  1. OC, IC, dims..., for conventional dense convolution
 *  2. GROUP, OC_PER_GRP, IC_PER_GRP, dims... for sparse group convolution
 *
 * Currently, only 2D images are supported.
 */
template <typename Parameter>
class ConvolutionBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ConvolutionBase, OperatorBase);
    using Param = Parameter;

public:
    Param& param() { return m_param; }
    const Param& param() const { return m_param; }

protected:
    Param m_param;

public:
    static constexpr size_t MAX_SPATIAL_DIM = 2;
    using Mode = typename Param::Mode;
    struct CanonizedFilterMeta {
        DType dtype;
        typename Param::Format format;

        uint32_t
                //! whether filter should be flipped (i.e. is CONVOLUTION)
                should_flip,
                group,  //!< number of groups
                icpg,   //!< input channels per group
                ocpg,   //!< output channels per group
                spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
                //! spatial dim
                spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
                //! spatial dim with dilation applied
                dilated_spatial[MAX_SPATIAL_DIM];

        //! T should be a ConvolutionBase<Z>::CanonizedFilterMeta
        template <typename T>
        void copy_from(const T& b) {
            dtype = b.dtype;
            format = b.format;
            should_flip = b.should_flip;
            group = b.group;
            icpg = b.icpg;
            ocpg = b.ocpg;
            spatial_ndim = b.spatial_ndim;
            memcpy(stride, b.stride, sizeof(stride));
            memcpy(padding, b.padding, sizeof(padding));
            memcpy(spatial, b.spatial, sizeof(spatial));
            memcpy(dilation, b.dilation, sizeof(dilation));
            memcpy(dilated_spatial, b.dilated_spatial, sizeof(dilated_spatial));
        }

        bool operator==(const CanonizedFilterMeta& b) const {
            bool flag = true;
            flag = flag && (format == b.format);
            flag = flag && (dtype == b.dtype);
            flag = flag && (should_flip == b.should_flip);
            flag = flag && (group == b.group);
            flag = flag && (icpg == b.icpg);
            flag = flag && (ocpg == b.ocpg);
            flag = flag && (spatial_ndim == b.spatial_ndim);
            if (flag) {
                for (uint32_t i = 0; i < spatial_ndim; ++i) {
                    flag = flag && (stride[i] == b.stride[i]);
                    flag = flag && (padding[i] == b.padding[i]);
                    flag = flag && (spatial[i] == b.spatial[i]);
                    flag = flag && (dilation[i] == b.dilation[i]);
                    flag = flag && (dilated_spatial[i] == b.dilated_spatial[i]);
                }
            }
            return flag;
        }
    };
147
    using PreprocessedFilter = detail::PreprocessedFilter;
148

149 150 151
protected:
    // Check or deduce output DType
    void check_or_deduce_dtype_fwd(DType src, DType filter, DType& dst) const;
M
Megvii Engine Team 已提交
152 153 154 155 156 157
    CanonizedFilterMeta deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            TensorLayout& dst) const;
    CanonizedFilterMeta check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) const;
158 159 160 161 162 163 164 165 166 167

    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter) const;
};

class MaskPropagate : public OperatorBase {
    DEF_OPR_IMPL(MaskPropagate, OperatorBase, 1, 1);
    DEF_OPR_PARAM(MaskPropagate);

public:
M
Megvii Engine Team 已提交
168 169 170 171 172
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
173 174 175 176 177 178 179 180 181 182 183

    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
};

/**
 * \brief ConvolutionForward Operator with 0/1 Mask matrix
 */
class MaskConvForward : public ConvolutionBase<param::Convolution> {
    DEF_OPR_IMPL(MaskConvForward, ConvolutionBase, 3, 1);

public:
M
Megvii Engine Team 已提交
184 185 186 187 188 189
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in mask,
            _megdnn_tensor_out dst, _megdnn_workspace worksapce) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& dst) = 0;
190 191

    void deduce_dtype(DType src, DType filter, DType mask, DType& dst);
M
Megvii Engine Team 已提交
192 193 194
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, TensorLayout& dst);
195 196

protected:
M
Megvii Engine Team 已提交
197 198 199 200
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& dst,
            size_t workspace_in_bytes);
201 202 203 204 205 206 207 208 209 210 211 212 213 214
};
using MaskConvolution = MaskConvForward;

/**
 * \brief ConvolutionForward operator.
 */
class ConvolutionForward : public ConvolutionBase<param::Convolution>,
                           public detail::MultiAlgoOpr<ConvolutionForward, 3> {
    DEF_OPR_IMPL(ConvolutionForward, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] filter (oc, ic, fh, fw)
215 216 217 218 219 220 221
     * \param[in] preprocessed_filter if weight no preprocessed it will be
     * nullptr, else the preprocessed weights store in the tensors of
     * preprocessed_filter.
     * \param[in] workspace if weight no preprocessed
     * (preprocessed_filter == nullptr), The size of the workspace satisfies the
     * situation that weights is not processed, other wise the size of workspace
     * satisfies the situation that weights is preprocessed
222 223
     * \param[out] dst (n, oc, oh, ow)
     */
M
Megvii Engine Team 已提交
224 225 226 227
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            const PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
228
    /**
M
Megvii Engine Team 已提交
229 230
     * \brief execute weight preprocessing, read weights form filter and write
     * to preprocessed_filter after preprocessed.
231 232 233
     *
     * \praram[in] workspace the needed tmp workspace when exec_preprocess
     */
M
Megvii Engine Team 已提交
234 235 236 237
    virtual void exec_preprocess(
            const TensorLayout& src_layout, _megdnn_tensor_in filter,
            const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
238
    void deduce_dtype(DType src, DType filter, DType& dst);
239

M
Megvii Engine Team 已提交
240 241
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
242 243 244 245 246 247 248 249 250

    /**
     * \brief query the workspace needed when executing the opr, if the weights
     * are preprocessed the preprocessed_filter will not be nullptr, else it
     * will be nullptr, the workspace size maybe different whether weights are
     * preprocessed
     *
     * \return the size of workspace needed when executing
     */
251 252
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
253
            const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter) = 0;
254

255 256 257 258 259 260 261 262
    /**
     * \brief deduce the preprocessed filter layouts according to the src,
     * filter and dst layout, the result may contain multi layouts when the
     * weights is not one
     *
     * \return SmallVector<TensorLayout> Derive the layouts of weight
     * preprocessing, return empty if preprocessing is not needed.
     */
263 264 265
    virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
266

267 268 269 270 271 272 273
    /**
     * \brief query the workspace needed when preprocessing the weights,
     * according to the return size, a _megdnn_workspace will be created and
     * passed through exec_preprocess
     *
     * \return the size of workspace needed when preprocessing
     */
274 275 276
    virtual size_t get_preprocess_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
277

278 279 280 281
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION_FORWARD;
    }

282
protected:
283 284 285 286
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes,
            const PreprocessedFilter* preprocessed_filter);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
};
using Convolution = ConvolutionForward;

/**
 * \brief ConvolutionBackwardData operator.
 *
 * Calculating the gradient wrt. convolution input data.
 */
class ConvolutionBackwardData
        : public ConvolutionBase<param::Convolution>,
          public detail::MultiAlgoOpr<ConvolutionBackwardData, 3> {
    DEF_OPR_IMPL(ConvolutionBackwardData, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
306 307 308 309 310 311
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
312 313

    void deduce_dtype(DType filter, DType diff, DType& grad);
M
Megvii Engine Team 已提交
314 315
    void deduce_layout(
            const TensorLayout& filter, const TensorLayout& diff, TensorLayout& grad);
316

317 318 319 320
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION_BACKWARD_DATA;
    }

321
protected:
M
Megvii Engine Team 已提交
322 323 324
    CanonizedFilterMeta check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
};

/**
 * \brief ConvolutionBackwardFilter operator.
 *
 * Calculating the gradient wrt. convolution filter.
 */
class ConvolutionBackwardFilter
        : public ConvolutionBase<param::Convolution>,
          public detail::MultiAlgoOpr<ConvolutionBackwardFilter, 3> {
    DEF_OPR_IMPL(ConvolutionBackwardFilter, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (oc, ic, fh, fw)
     */
M
Megvii Engine Team 已提交
343 344 345 346 347 348
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
349

350 351 352 353
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION_BACKWARD_FILTER;
    }

354
protected:
M
Megvii Engine Team 已提交
355 356 357
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
358 359 360 361 362 363 364 365 366 367 368 369 370
};

/**
 * \brief ConvolutionBias operator
 */
class ConvBiasForward : public ConvolutionBase<param::ConvBias>,
                        public detail::MultiAlgoOpr<ConvBiasForward, 5> {
    DEF_OPR_IMPL(ConvBiasForward, ConvolutionBase, 4, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw) or (n, ih, iw, ic)
     * \param[in] filter (oc, ic, fh, fw) or (oc, fh, fw, ic) or (oc/4, fh, fw,
371 372 373
     * 4 * ic)
     * \param[in] bias (1, oc, 1, 1)
     * \param[in] z same as dst
374 375 376 377 378 379 380
     * \param[in] preprocessed_filter if weight no preprocessed it will be
     * nullptr, else the preprocessed weights store in the tensors of
     * preprocessed_filter.
     * \param[in] workspace if weight no preprocessed
     * (preprocessed_filter == nullptr), The size of the workspace satisfies the
     * situation that weights is not processed, other wise the size of workspace
     * satisfies the situation that weights is preprocessed
381
     * \param[out] dst (n, oc, oh, ow) or (n, oh, ow, oc)
382 383 384 385
     *
     * \note if the format is NCHW_WINOGRAD, the filter layout is (alphah,
     * alphaw, oc, ic)
     */
M
Megvii Engine Team 已提交
386 387 388 389 390
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
            _megdnn_tensor_in z, _megdnn_tensor_out dst,
            const PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
391 392

    /**
393 394
     * \brief execute weight preprocessing, read weights form filter and bias,
     * write to preprocessed_filter after preprocessed.
395 396 397 398
     *
     * \praram[in] workspace the needed tmp workspace when exec_preprocess
     * running, the size is got by get_preprocess_workspace_in_bytes
     */
M
Megvii Engine Team 已提交
399 400 401 402 403
    virtual void exec_preprocess(
            const TensorLayout& src_layout, _megdnn_tensor_in filter,
            _megdnn_tensor_in bias, const TensorLayout& z_layout,
            const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter,
            _megdnn_workspace workspace) = 0;
404
    void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
M
Megvii Engine Team 已提交
405 406 407
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z, TensorLayout& dst);
408

409 410 411 412 413 414 415 416
    /**
     * \brief query the workspace needed when executing the opr, if the weights
     * are preprocessed the preprocessed_filter will not be nullptr, else it
     * will be nullptr, the workspace size maybe different whether weights are
     * preprocessed
     *
     * \return the size of workspace needed when executing
     */
417 418
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
419
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
420
            const PreprocessedFilter* preprocessed_filter) = 0;
421 422 423 424 425 426 427 428

    /**
     * \brief query the workspace needed when pre-processing the weights,
     * according to the return size, a _megdnn_workspace will be created and
     * passed through exec_preprocess
     *
     * \return the size of workspace needed when pre-processing
     */
429 430 431 432
    virtual size_t get_preprocess_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;
433 434 435 436 437 438 439 440 441

    /**
     * \brief deduce the pre-processed filter layouts according to the src,
     * filter and dst layout, which may contain multi layouts when the weights
     * is not one
     *
     * \return SmallVector<TensorLayout> Derive the layouts of weight
     * preprocessing, return empty if preprocessing is not needed.
     */
442 443 444 445 446
    virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    enum class BiasMode : uint32_t {
        NO_BIAS = 0,             //!< no bias
        BROADCAST_CHANNEL_BIAS,  //!< broadcast channel bias, [1, c, 1, 1]
        BIAS                     //!< [N, C, H, W]
    };

    //! param for winograd algos.
    struct WinogradParam {
        uint32_t channel_block_size;
        uint32_t output_block_size;
        uint32_t tile_size;
        bool operator==(const WinogradParam& rhs) const {
            return channel_block_size == rhs.channel_block_size &&
                   output_block_size == rhs.output_block_size &&
                   tile_size == rhs.tile_size;
        }

        std::string to_string() const;
    };
    static constexpr WinogradParam INVALID_WINOGRAD_PARAM = {0, 0, 0};

    struct DirectParam {
        std::string to_string() const { return ""; }
    };

    struct MatmulParam {
        std::string to_string() const { return ""; }
    };

    struct DefaultParam {
        std::string to_string() const { return ""; }
    };

    //! get algo name, the format is ParamTrait<T>::category:base:p.to_string()
    //! \warning: base must not contain :.
    template <typename T>
483 484 485
    static std::string algo_name(
            const std::string& base, const T& p,
            param::ConvBias::Format format = param::ConvBias::Format::NCHW);
486 487 488 489 490 491 492 493 494 495 496
    /*!
     * \brief parse algo_name and get WinogradParam from algo name.
     *
     * \param algo name string
     * \return WinogradParam parsed from algo name, use pattern
     * winograd:base:m:tile_size.
     *
     * \warning: INVALID_WINOGRAD_PARAM returns if the algo_name is not matched.
     */
    static WinogradParam parse_winograd_name(const std::string& algo_name);

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    /**
     * @brief find if there is nchw_nchwxx conv kernel optimized for argment,
     * nchw44 used for arm, nchw88 used for x86
     *
     * @param src_dtype  conv feature map data type
     * @param filter_dtype  conv filter or weight data type
     * @param dst_dtype output data type
     * @param fm filter meta param
     * @param bias_mode bias mode, no_bias or broadcast or bias
     * @param nonline_mode identity or relu or h_swish or sigmoid
     * @return true, found a kernel
     * @return false, can`t found any kernel
     */
    static bool is_nchw_nchwxx_optimized(
            const DTypeEnum src_dtype, const DTypeEnum filter_dtype,
            const DTypeEnum dst_dtype,
            const ConvolutionBase<param::Convolution>::CanonizedFilterMeta& fm,
            const ConvBiasForward::BiasMode bias_mode,
            const param::ConvBias::NonlineMode nonline_mode);

517 518 519 520
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVBIAS_FORWARD;
    }

521
protected:
522 523
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
524 525
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
            size_t workspace_in_bytes, const PreprocessedFilter* preprocessed_filter);
526 527 528

    CanonizedFilterMeta check_exec_allow_noncontiguous(
            const TensorLayout& src, const TensorLayout& filter,
M
Megvii Engine Team 已提交
529 530
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
            size_t workspace_in_bytes, const PreprocessedFilter* preprocessed_filter);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
};
using ConvBias = ConvBiasForward;

/**
 * \brief base class for Conv - Nonline - Pooling
 */
class ConvPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ConvPoolingBase, OperatorBase);

    /**
     *  \ Param::Method: Two methods to fetch the input data.
     *  Default methods is WITH_TEXTURE_OBJ.
     *  If you want to use WITH_SHARED_MEM mode,
     *  please make sure that the size of
     *   [ all of the fliter kernels + a channel
     *  of input data + a channel of output data]
     *  should be no large than 38KB.
     *  And the pooling mode should not be "MAX".
     */
    DEF_OPR_PARAM(ConvPooling);

protected:
M
Megvii Engine Team 已提交
553 554 555 556 557 558 559
    virtual void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst) = 0;
    virtual void check_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst,
            size_t workspace_limit_in_bytes) = 0;
560 561 562 563 564 565 566 567 568 569
};

class ConvPoolingForward : public ConvPoolingBase {
    DEF_OPR_IMPL(ConvPoolingForward, ConvPoolingBase, 2, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
M
Megvii Engine Team 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    virtual void exec(
            const _megdnn_in TensorND src, const _megdnn_in TensorND filter,
            const _megdnn_in TensorND bias, _megdnn_out TensorND dst,
            _megdnn_out Workspace workspace) = 0;
    virtual void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& dst) = 0;

protected:
    virtual void check_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, TensorLayout& dst,
            size_t workspace_limit_in_bytes) = 0;
586 587 588 589 590 591 592 593 594 595 596
};
using ConvPooling = ConvPoolingForward;

class GroupLocalBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(GroupLocalBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    using Mode = Param::Mode;

protected:
M
Megvii Engine Team 已提交
597 598 599 600 601
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst);
602 603 604 605 606 607 608 609 610 611 612
};

class GroupLocalForward : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalForward, GroupLocalBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] filter (G, OH, OW, IC/G, FH, FW, OC/G)
     * \param[out] dst (N, OC, OH, OW)
     **/
M
Megvii Engine Team 已提交
613 614 615 616 617
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst) {
618 619
        deduce_layout_fwd(src, filter, dst);
    }
M
Megvii Engine Team 已提交
620 621 622
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
623 624

protected:
M
Megvii Engine Team 已提交
625 626 627
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
628 629 630 631 632 633 634
};
using GroupLocal = GroupLocalForward;

class GroupLocalBackwardData : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalBackwardData, GroupLocalBase, 2, 1);

public:
M
Megvii Engine Team 已提交
635 636 637 638 639 640
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
641 642

protected:
M
Megvii Engine Team 已提交
643 644 645
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
646 647 648 649 650 651
};

class GroupLocalBackwardFilter : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalBackwardFilter, GroupLocalBase, 2, 1);

public:
M
Megvii Engine Team 已提交
652 653 654 655 656 657
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
658 659

protected:
M
Megvii Engine Team 已提交
660 661 662
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
};

class Images2NeibsBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(Images2NeibsBase, OperatorBase);
    DEF_OPR_PARAM(Images2Neibs);

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& filter, const TensorLayout& dst);
};

class Images2NeibsForward : public Images2NeibsBase {
    DEF_OPR_IMPL(Images2NeibsForward, Images2NeibsBase, 1, 1);

public:
    /**
     * \param[in] src (N, C, IH, IW)
     * \param[out] dst (N, C, OH, OW, window_h, window_w)
     *
     * \see
     * http://deeplearning.net/software/theano/library/tensor/nnet/neighbours.html
     *
     * \f$ dst_{n, c, oh, ow, wh, ww} = src_{n, c, ih+wh, iw+fw}\f$,
686 687
     * where \f$ ih=-pad_h+oh*stride_h+(wh-1)*(dilation_h-1),
     * iw=-pad_w+ow*stride_w+(ww-1)*(dilation_w-1)\f$.
688
     */
M
Megvii Engine Team 已提交
689 690 691 692 693
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
694 695 696
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);

protected:
M
Megvii Engine Team 已提交
697 698 699
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
700 701 702 703 704 705 706 707 708 709 710
};
using Images2Neibs = Images2NeibsForward;

class Images2NeibsBackward : public Images2NeibsBase {
    DEF_OPR_IMPL(Images2NeibsBackward, Images2NeibsBase, 1, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
711 712 713 714 715
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& grad) = 0;
716

717
protected:
M
Megvii Engine Team 已提交
718 719 720
    void check_exec(
            const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
721 722 723 724 725 726 727 728 729 730 731 732
};

class SlidingWindowTransposeBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(SlidingWindowTransposeBase, OperatorBase);
    DEF_OPR_PARAM(SlidingWindowTranspose);

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& filter, const TensorLayout& dst);
};

class SlidingWindowTransposeForward : public SlidingWindowTransposeBase {
M
Megvii Engine Team 已提交
733
    DEF_OPR_IMPL(SlidingWindowTransposeForward, SlidingWindowTransposeBase, 1, 1);
734 735 736 737 738 739

public:
    /**
     * \param[in] src (N, C, IH, IW, window_h, window_w)
     * \param[out] dst (N, C, OH, OW)
     */
M
Megvii Engine Team 已提交
740 741 742 743 744
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
745 746 747
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);

protected:
M
Megvii Engine Team 已提交
748 749 750
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
751 752 753 754
};
using SlidingWindowTranspose = SlidingWindowTransposeForward;

class SlidingWindowTransposeBackward : public SlidingWindowTransposeBase {
M
Megvii Engine Team 已提交
755
    DEF_OPR_IMPL(SlidingWindowTransposeBackward, SlidingWindowTransposeBase, 1, 1);
756 757 758 759 760 761

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
762 763 764 765 766
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& grad) = 0;
767

768
protected:
M
Megvii Engine Team 已提交
769 770 771
    void check_exec(
            const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
};

/**
 * \brief base class for Pooling
 */
class PoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(PoolingBase, OperatorBase);
    DEF_OPR_PARAM(Pooling);

public:
    using Mode = Param::Mode;

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& dst);
};

789 790
class PoolingForward : public PoolingBase,
                       public detail::MultiAlgoOpr<PoolingForward, 2> {
791 792 793 794 795 796 797
    DEF_OPR_IMPL(PoolingForward, PoolingBase, 1, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
M
Megvii Engine Team 已提交
798 799 800
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
801
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
M
Megvii Engine Team 已提交
802 803
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
804

805 806 807 808
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::POOLING_FORWARD;
    }

809
protected:
M
Megvii Engine Team 已提交
810 811 812
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
813 814 815 816
};

using Pooling = PoolingForward;

817 818
class PoolingBackward : public PoolingBase,
                        public detail::MultiAlgoOpr<PoolingBackward, 4> {
819 820 821 822 823 824 825 826 827
    DEF_OPR_IMPL(PoolingBackward, PoolingBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in PoolingForward::exec
     * \param[in] dst the `dst' parameter in PoolingForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
828 829 830 831 832 833
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_tensor_in diff,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
834

835 836 837 838
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::POOLING_BACKWARD;
    }

839
protected:
M
Megvii Engine Team 已提交
840 841 842
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
843 844
};

845 846 847 848 849 850 851 852
/**
 * \brief base class for AdaptivePooling
 */
class AdaptivePoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(AdaptivePoolingBase, OperatorBase);
    DEF_OPR_PARAM(AdaptivePooling);

protected:
M
Megvii Engine Team 已提交
853 854
    param::Pooling deduce_pooling_param(
            const TensorLayout& src, const TensorLayout& dst);
855 856 857 858 859 860 861 862 863 864
};

class AdaptivePoolingForward : public AdaptivePoolingBase {
    DEF_OPR_IMPL(AdaptivePoolingForward, AdaptivePoolingBase, 1, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
M
Megvii Engine Team 已提交
865 866 867 868 869
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
870 871 872 873 874 875 876 877 878 879 880 881 882 883
};

using AdaptivePooling = AdaptivePoolingForward;

class AdaptivePoolingBackward : public AdaptivePoolingBase {
    DEF_OPR_IMPL(AdaptivePoolingBackward, AdaptivePoolingBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in AdaptivePoolingForward::exec
     * \param[in] dst the `dst' parameter in AdaptivePoolingForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
884 885 886 887 888 889
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_tensor_in diff,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
890 891
};

892 893 894 895 896 897 898 899 900 901 902
/**
 * \brief base class for Local
 */
class LocalBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LocalBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    using Mode = Param::Mode;

protected:
M
Megvii Engine Team 已提交
903 904 905 906 907
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst);
908 909 910 911 912 913 914 915 916 917 918
};

class LocalForward : public LocalBase {
    DEF_OPR_IMPL(LocalForward, LocalBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] filter (oh, ow, ic, fh, fw, oc)
     * \param[out] dst (n, oc, oh, ow)
     */
M
Megvii Engine Team 已提交
919 920 921
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
922 923 924 925 926 927
    /**
     * \brief Deducing output tensor layouts from input tensor layouts.
     *
     * Be aware that the first and second dimension of `filter' are ignored
     * when deducing `dst' layout.
     */
M
Megvii Engine Team 已提交
928 929 930 931 932
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
933 934

protected:
M
Megvii Engine Team 已提交
935 936 937
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
938 939 940 941 942 943 944 945 946 947 948 949
};
using Local = LocalForward;

class LocalBackwardData : public LocalBase {
    DEF_OPR_IMPL(LocalBackwardData, LocalBase, 2, 1);

public:
    /**
     * \param[in] filter (oh, ow, ic, fh, fw, oc)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
950 951 952
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
953

M
Megvii Engine Team 已提交
954 955 956
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
957 958

protected:
M
Megvii Engine Team 已提交
959 960 961
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
962 963 964 965 966 967 968 969 970 971 972
};

class LocalBackwardFilter : public LocalBase {
    DEF_OPR_IMPL(LocalBackwardFilter, LocalBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (oh, ow, ic, fh, fw, oc)
     */
M
Megvii Engine Team 已提交
973 974 975
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
976

M
Megvii Engine Team 已提交
977 978 979
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
980 981

protected:
M
Megvii Engine Team 已提交
982 983 984
    void check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
985 986 987 988 989 990 991 992 993 994 995
};

class BNBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(BNBase, OperatorBase);
    DEF_OPR_PARAM(BN);

protected:
    void check_param();
};

class BNForward : public BNBase {
996
    DEF_OPR_IMPL(BNForward, BNBase, 6, 6);
997 998 999 1000 1001 1002 1003 1004 1005 1006

public:
    /**
     * \dst[i] = gemma
     * *(x[i]-estimatedMean[k])/sqrt(epsilon+estimatedVariance[k]) + beta \where
     * epsilon is a very small value to avoid a "divide by zero" error.
     * \param[in] src (n, c, h, w)
     * \param[out] dst (n, c, h, w)
     * \param[out] mean (see m_param.ParamDim) Global mean.
     * \param[out] variance (see m_param.ParamDim) Global variance.
1007
     * \param[out] batch_mean (see m_param.ParamDim)
1008
     *   Optionally cached intermediate mean from forward pass
1009
     * \param[out] batch_inv_variance (see m_param.ParamDim)
1010
     *   Optionally cached intermediate variance from forward pass
1011
     * \param[out] reserve (see cudnnBatchNormalizationForwardTrainingEx)
1012 1013 1014
     * src and dst must have the same shape.
     * src and dst must be contiguous.
     */
M
Megvii Engine Team 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in bn_scale,
            _megdnn_tensor_in bn_bias, _megdnn_tensor_inout mean,
            _megdnn_tensor_inout variance, _megdnn_tensor_out batch_mean,
            _megdnn_tensor_out batch_inv_variance, _megdnn_tensor_out reserve,
            _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& bn_scale,
            const TensorLayout& bn_bias, TensorLayout& mean, TensorLayout& variance,
            TensorLayout& batch_mean, TensorLayout& batch_inv_variance,
            TensorLayout& reserve, TensorLayout& dst);
1026 1027 1028 1029
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& bn_scale,
            const TensorLayout& bn_bias, const TensorLayout& mean,
            const TensorLayout& variance, const TensorLayout& batch_mean,
1030
            const TensorLayout& batch_inv_variance, const TensorLayout& reserve,
1031
            const TensorLayout& dst) = 0;
1032
    virtual size_t get_reserve_in_bytes(const TensorLayout& src) = 0;
1033 1034

protected:
M
Megvii Engine Team 已提交
1035 1036 1037 1038 1039 1040
    void check_exec(
            const TensorLayout& src, const TensorLayout& bn_scale,
            const TensorLayout& bn_bias, const TensorLayout& mean,
            const TensorLayout& variance, const TensorLayout& batch_mean,
            const TensorLayout& batch_inv_variance, const TensorLayout& dst,
            size_t workspace_in_bytes, size_t reserve_in_bytes = 0);
1041 1042 1043 1044
};
using BN = BNForward;

class BNBackward : public BNBase {
1045
    DEF_OPR_IMPL(BNBackward, BNBase, 6, 3);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

public:
    /**
     * \param[in] input data of forwarding propagate.
     * \param[in] dy the backpropagated gradient of y.
     * \param[out] dx the backpropagated gradient of x.
     * \param[out] d_bn_scale, the backpropagated gradient of bn_scale.
     * \param[out] d_bn_bias, the backpropagated gradient of bn_bias.
     * Optionally cached intermediate results from forward pass
     * \param[in] saved_batch_mean mean of the input batch.
        Calculated in the forwardpropagation.
     * \param[in] saved_batch_variance of the input batch.
        Calculated in the forwardpropagation.
1059
     * \param[in] reserve (see cudnnBatchNormalizationBackwardEx)
1060
     */
M
Megvii Engine Team 已提交
1061 1062 1063 1064 1065 1066
    virtual void exec(
            _megdnn_tensor_in x, _megdnn_tensor_in dy,
            _megdnn_tensor_in saved_batch_mean, _megdnn_tensor_in saved_batch_variance,
            _megdnn_tensor_in bn_scale, _megdnn_tensor_in reserve,
            _megdnn_tensor_out d_bn_scale, _megdnn_tensor_out d_bn_bias,
            _megdnn_tensor_out dx, _megdnn_workspace workspace) = 0;
1067 1068 1069
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& x, const TensorLayout& dy,
            const TensorLayout& saved_batch_mean,
M
Megvii Engine Team 已提交
1070 1071 1072
            const TensorLayout& saved_batch_variance, const TensorLayout& bn_scale,
            const TensorLayout& reserve, const TensorLayout& d_bn_scale,
            const TensorLayout& d_bn_bias, const TensorLayout& dx) = 0;
1073
    virtual size_t get_reserve_in_bytes(const TensorLayout& src) = 0;
1074 1075

protected:
M
Megvii Engine Team 已提交
1076 1077 1078 1079 1080 1081 1082
    void check_exec(
            const TensorLayout& x, const TensorLayout& dy,
            const TensorLayout& saved_batch_mean,
            const TensorLayout& saved_batch_variance, const TensorLayout& bn_scale,
            const TensorLayout& d_bn_scale, const TensorLayout& d_bn_bias,
            const TensorLayout& dx, size_t workspace_in_bytes,
            size_t reserve_in_bytes = 0);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
};

class LRNBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LRNBase, OperatorBase);
    DEF_OPR_PARAM(LRN);

protected:
    void check_param();
};

class LRNForward : public LRNBase {
    DEF_OPR_IMPL(LRNForward, LRNBase, 1, 1);

public:
    /**
     * \see ImageNet Classification with Deep Convolutional Neural Networks
     * \param[in] src (n, c, h, w)
     * \param[out] dst (n, c, h, w)
     *
     * src and dst must have the same shape.
     * src and dst must be contiguous.
     */
M
Megvii Engine Team 已提交
1105 1106 1107
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
1108
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
M
Megvii Engine Team 已提交
1109 1110
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst) = 0;
1111 1112

protected:
M
Megvii Engine Team 已提交
1113 1114 1115
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst,
            size_t workspace_in_bytes);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
};
using LRN = LRNForward;

class LRNBackward : public LRNBase {
    DEF_OPR_IMPL(LRNBackward, LRNBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in LRNForward::exec
     * \param[in] dst the `dst' parameter in LRNForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     *
     * All tensors should be contiguous and of the same shape.
     */
M
Megvii Engine Team 已提交
1131 1132 1133 1134 1135 1136
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_tensor_in diff,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1137 1138

protected:
M
Megvii Engine Team 已提交
1139 1140 1141
    void check_exec(
            const TensorLayout& src, const TensorLayout& dst, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
1142 1143 1144 1145 1146 1147 1148
};

class ROIPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ROIPoolingBase, OperatorBase);
    DEF_OPR_PARAM(ROIPooling);

protected:
M
Megvii Engine Team 已提交
1149 1150 1151
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
};

class ROIPoolingForward : public ROIPoolingBase {
    DEF_OPR_IMPL(ROIPoolingForward, ROIPoolingBase, 2, 2);

public:
    /**
     * \param[in] src (n, c, ih, iw)
     * \param[in] rois (m, 5)
     * \param[out] dst (m, c, oh, ow)
     * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
     *
     * The internal implementation is akin to
     * https://github.com/rbgirshick/caffe-fast-rcnn .d
     * Note that rois(, 0) denotes the input image index. We store it as
     * a float, but it should be an integer instead.
     *
     * index is a temporary tensor to facilitate its backward operator.
     * It is used to store argmax indicex in MAX mode, and it is not used
     * in AVERAGE mode.
     */
M
Megvii Engine Team 已提交
1173 1174 1175 1176 1177 1178
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in rois, _megdnn_tensor_out dst,
            _megdnn_tensor_out index, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index) = 0;
1179 1180

protected:
M
Megvii Engine Team 已提交
1181 1182 1183
    void check_exec(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index, size_t workspace_in_bytes);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
};
using ROIPooling = ROIPoolingForward;

class ROIPoolingBackward : public ROIPoolingBase {
    DEF_OPR_IMPL(ROIPoolingBackward, ROIPoolingBase, 4, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[in] src the `src' parameter in ROIPoolingForward::exec
     * \param[in] rois the `rois' parameter in ROIPoolingForward::exec
     * \param[in] index the `index' parameter in ROIPoolingForward::exec
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
1198 1199 1200 1201 1202 1203 1204
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in src, _megdnn_tensor_in rois,
            _megdnn_tensor_in index, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& src, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad) = 0;
1205 1206

protected:
M
Megvii Engine Team 已提交
1207 1208 1209 1210
    void check_exec(
            const TensorLayout& diff, const TensorLayout& src, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad,
            size_t workspace_in_bytes);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
};

class Convolution3DBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(Convolution3DBase, OperatorBase);
    DEF_OPR_PARAM(Convolution3D);

public:
    static constexpr size_t MAX_SPATIAL_DIM = 3;
    using Mode = Param::Mode;
    struct CanonizedFilterMeta {
        DTypeEnum dtype_enum;
        Param::Format format;
        uint32_t
                //! whether filter should be flipped (i.e. is CONVOLUTION)
                should_flip,
                group,  //!< number of groups
                icpg,   //!< input channels per group
                ocpg,   //!< output channels per group
                spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
                //! spatial dim
                spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
                //! spatial dim with dilation applied
                dilated_spatial[MAX_SPATIAL_DIM];
    } MEGDNN_PACKED;

protected:
M
Megvii Engine Team 已提交
1237 1238 1239 1240 1241 1242
    CanonizedFilterMeta deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            TensorLayout& dst) const;
    CanonizedFilterMeta check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) const;
1243 1244 1245 1246 1247

    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter) const;
};

M
Megvii Engine Team 已提交
1248 1249
class Convolution3DForward : public Convolution3DBase,
                             public detail::MultiAlgoOpr<Convolution3DForward, 3> {
1250 1251 1252 1253 1254 1255 1256 1257
    DEF_OPR_IMPL(Convolution3DForward, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, id, ih, iw)
     * \param[in] filter (oc, ic, fd, fh, fw)
     * \param[out] dst (n, oc, od, oh, ow)
     */
M
Megvii Engine Team 已提交
1258 1259 1260 1261 1262 1263 1264 1265
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
1266

1267 1268 1269 1270
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION3D_FORWARD;
    }

1271
protected:
M
Megvii Engine Team 已提交
1272 1273 1274
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
};
using Convolution3D = Convolution3DForward;

class Convolution3DBackwardData
        : public Convolution3DBase,
          public detail::MultiAlgoOpr<Convolution3DBackwardData, 3> {
    DEF_OPR_IMPL(Convolution3DBackwardData, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] filter (oc, ic, fd, fh, fw)
     * \param[in] diff (n, oc, od, oh, ow)
     * \param[out] grad (n, ic, id, ih, iw)
     */
M
Megvii Engine Team 已提交
1289 1290 1291 1292 1293 1294
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1295

M
Megvii Engine Team 已提交
1296 1297
    void deduce_layout(
            const TensorLayout& filter, const TensorLayout& diff, TensorLayout& grad);
1298

1299 1300 1301 1302
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION3D_BACKWARD_DATA;
    }

1303
protected:
M
Megvii Engine Team 已提交
1304 1305 1306
    CanonizedFilterMeta check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
};

class Convolution3DBackwardFilter
        : public Convolution3DBase,
          public detail::MultiAlgoOpr<Convolution3DBackwardFilter, 3> {
    DEF_OPR_IMPL(Convolution3DBackwardFilter, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, id, ih, iw)
     * \param[in] diff (n, oc, od, oh, ow)
     * \param[out] grad (oc, ic, fd, fh, fw)
     */
M
Megvii Engine Team 已提交
1320 1321 1322 1323 1324 1325
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1326

1327 1328 1329 1330
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::CONVOLUTION3D_BACKWARD_FILTER;
    }

1331
protected:
M
Megvii Engine Team 已提交
1332 1333 1334
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
1335 1336 1337 1338 1339 1340 1341
};

class LocalShareBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LocalShareBase, OperatorBase);
    DEF_OPR_PARAM(LocalShare);

protected:
M
Megvii Engine Team 已提交
1342 1343 1344 1345 1346
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
};

class LocalShareForward : public LocalShareBase,
                          public detail::MultiAlgoOpr<LocalShareForward, 3> {
    DEF_OPR_IMPL(LocalShareForward, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     * \param[out] dst (N, OC, OH, OW)
     */
M
Megvii Engine Team 已提交
1360 1361 1362
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
1363 1364 1365
    /**
     * \brief deduce layout of the ouput tensor
     */
M
Megvii Engine Team 已提交
1366 1367 1368 1369 1370
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
1371

1372 1373 1374 1375
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::LOCAL_SHARE_FORWARD;
    }

1376
protected:
M
Megvii Engine Team 已提交
1377 1378 1379
    void check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst, size_t workspace_in_bytes);
1380 1381 1382
};
using LocalShare = LocalShareForward;

M
Megvii Engine Team 已提交
1383 1384
class LocalShareBackwardData : public LocalShareBase,
                               public detail::MultiAlgoOpr<LocalShareBackwardData, 3> {
1385 1386 1387 1388 1389 1390 1391 1392 1393
    DEF_OPR_IMPL(LocalShareBackwardData, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     * \param[in] diff (N, OC, OH, OW)
     * \param[out] grad (N, IC, IH, IW)
     */
M
Megvii Engine Team 已提交
1394 1395 1396 1397 1398 1399 1400 1401
    virtual void exec(
            _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
    void deduce_layout(
            const TensorLayout& filter, const TensorLayout& diff, TensorLayout& grad);
1402

1403 1404 1405 1406
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::LOCAL_SHARE_BACKWARD_DATA;
    }

1407
protected:
M
Megvii Engine Team 已提交
1408 1409 1410
    void check_exec(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad, size_t workspace_in_bytes);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
};

class LocalShareBackwardFilter
        : public LocalShareBase,
          public detail::MultiAlgoOpr<LocalShareBackwardFilter, 3> {
    DEF_OPR_IMPL(LocalShareBackwardFilter, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] diff (N, OC, OH, OW)
     * \param[out] grad (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     */
M
Megvii Engine Team 已提交
1425 1426 1427
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
1428

M
Megvii Engine Team 已提交
1429 1430 1431
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& diff,
            const TensorLayout& grad) = 0;
1432

1433 1434 1435 1436
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::LOCAL_SHARE_BACKWARD_FILTER;
    }

1437
protected:
M
Megvii Engine Team 已提交
1438 1439 1440
    void check_exec(
            const TensorLayout& src, const TensorLayout& diff, const TensorLayout& grad,
            size_t workspace_in_bytes);
1441 1442 1443 1444 1445 1446 1447
};

class ROIAlignBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ROIAlignBase, OperatorBase);
    DEF_OPR_PARAM(ROIAlign);

protected:
M
Megvii Engine Team 已提交
1448 1449 1450 1451 1452 1453
    void deduce_layout_fwd(
            const TensorLayout& src, const TensorLayout& rois, TensorLayout& dst,
            TensorLayout& index);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
};

class ROIAlignForward : public ROIAlignBase {
    DEF_OPR_IMPL(ROIAlignForward, ROIAlignBase, 2, 2);

public:
    /**
     * \param[in] src (n, c, ih, iw)
     * \param[in] rois (m, 5)
     * \param[out] dst (m, c, oh, ow)
     * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
     *
     * Note that rois(, 0) denotes the input image index. We store it as
     * a float, but it should be an integer instead.
     *
     * index is a temporary tensor to facilitate its backward operator.
     * It is used to store argmax indicex in MAX mode, and it is not used
     * in AVERAGE mode.
     */
M
Megvii Engine Team 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in rois, _megdnn_tensor_out dst,
            _megdnn_tensor_out index, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& rois, TensorLayout& dst,
            TensorLayout& index);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index) = 0;
1482 1483

protected:
M
Megvii Engine Team 已提交
1484 1485 1486
    void check_exec(
            const TensorLayout& src, const TensorLayout& rois, const TensorLayout& dst,
            const TensorLayout& index, size_t workspace_in_bytes);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
};
using ROIAlign = ROIAlignForward;

class ROIAlignBackward : public ROIAlignBase {
    DEF_OPR_IMPL(ROIAlignBackward, ROIAlignBase, 3, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[in] rois the `rois' parameter in ROIAlignForward::exec
     * \param[in] index the `index' parameter in ROIAlignForward::exec
     * \param[out] grad the backpropagated gradient wrt. src
     */
M
Megvii Engine Team 已提交
1500 1501 1502 1503 1504 1505
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in rois, _megdnn_tensor_in index,
            _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad) = 0;
1506 1507

protected:
M
Megvii Engine Team 已提交
1508 1509 1510 1511
    void check_exec(
            const TensorLayout& diff, const TensorLayout& rois,
            const TensorLayout& index, const TensorLayout& grad,
            size_t workspace_in_bytes);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
};

class DeformableConvBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DeformableConvBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    static constexpr size_t MAX_SPATIAL_DIM = 2;
    struct CanonizedFilterMeta : Convolution::CanonizedFilterMeta {
        uint32_t deformable_group;
    };

protected:
    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter,
            const TensorLayout& offset) const;
M
Megvii Engine Team 已提交
1528 1529 1530 1531 1532 1533 1534
    void deduce_layout_fwd(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& offset, TensorLayout& dst);
    void check_layout_fwd(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& mask, const TensorLayout& offset,
            const TensorLayout& dst);
1535 1536
};

M
Megvii Engine Team 已提交
1537 1538
class DeformableConvForward : public DeformableConvBase,
                              public detail::MultiAlgoOpr<DeformableConvForward, 5> {
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
    DEF_OPR_IMPL(DeformableConvForward, DeformableConvBase, 4, 1);

public:
    /**
     * \param[in] im (n, ic, ih, iw)
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[out] dst (n, oc, oh, ow)
     */
M
Megvii Engine Team 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    virtual void exec(
            _megdnn_tensor_in im, _megdnn_tensor_in filter, _megdnn_tensor_in offset,
            _megdnn_tensor_in mask, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& dst) = 0;
1560

1561 1562 1563 1564
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::DEFORMABLE_CONV_FORWARD;
    }

1565
protected:
M
Megvii Engine Team 已提交
1566 1567 1568 1569
    CanonizedFilterMeta check_exec(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& dst, size_t workspace_in_bytes);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
};
using DeformableConv = DeformableConvForward;

/**
 * \brief DeformableConvBackwardFilter operator.
 *
 * Calculating the gradient wrt. convolution filter.
 */
class DeformableConvBackwardFilter
        : public DeformableConvBase,
          public detail::MultiAlgoOpr<DeformableConvBackwardFilter, 5> {
    DEF_OPR_IMPL(DeformableConvBackwardFilter, DeformableConvBase, 4, 1);

public:
    /**
     * \param[in] im (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[in] out_grad (n, oc, oh, ow)
     * \param[out] filter_grad (oc, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
    virtual void exec(
            _megdnn_tensor_in im, _megdnn_tensor_in offset, _megdnn_tensor_in mask,
            _megdnn_tensor_in out_grad, _megdnn_tensor_out filter_grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& im, const TensorLayout& offset,
            const TensorLayout& mask, const TensorLayout& out_grad,
            const TensorLayout& filter_grad) = 0;
    void deduce_layout(
            const TensorLayout& im, const TensorLayout& offset,
            const TensorLayout& mask, const TensorLayout& out_grad,
            TensorLayout& filter_grad);
1603

1604 1605 1606 1607
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::DEFORMABLE_CONV_BACKWARD_FILTER;
    }

1608
protected:
M
Megvii Engine Team 已提交
1609 1610 1611 1612
    CanonizedFilterMeta check_exec(
            const TensorLayout& im, const TensorLayout& offset,
            const TensorLayout& mask, const TensorLayout& out_grad,
            const TensorLayout& filter_grad, size_t workspace_in_bytes);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
};

/**
 * \brief DeformableConvBackwardData operator.
 *
 * Calculating the gradient wrt. convolution input data, offset and mask.
 */
class DeformableConvBackwardData
        : public DeformableConvBase,
          public detail::MultiAlgoOpr<DeformableConvBackwardData, 8> {
    DEF_OPR_IMPL(DeformableConvBackwardData, DeformableConvBase, 5, 3);

public:
    /**
     * \param[in] im (oc, ic, fh, fw)
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[in] out_grad (n, oc, oh, ow)
     * \param[out] im_grad (n, ic, ih, iw)
     * \param[out] offset_grad (dg, 2, fh, fw, oh, ow)
     * \param[out] mask_grad (dg, fh, fw, oh, ow)
     */
M
Megvii Engine Team 已提交
1636 1637 1638 1639 1640
    virtual void exec(
            _megdnn_tensor_in im, _megdnn_tensor_in filter, _megdnn_tensor_in offset,
            _megdnn_tensor_in mask, _megdnn_tensor_in out_grad,
            _megdnn_tensor_out im_grad, _megdnn_tensor_out offset_grad,
            _megdnn_tensor_out mask_grad, _megdnn_workspace workspace) = 0;
1641 1642 1643 1644 1645
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, const TensorLayout& im_grad,
            const TensorLayout& offset_grad, const TensorLayout& mask_grad) = 0;
M
Megvii Engine Team 已提交
1646 1647 1648 1649 1650
    void deduce_layout(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, TensorLayout& im_grad,
            TensorLayout& offset_grad, TensorLayout& mask_grad);
1651

1652 1653 1654 1655
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::DEFORMABLE_CONV_BACKWARD_DATA;
    }

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
protected:
    CanonizedFilterMeta check_exec(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, const TensorLayout& im_grad,
            const TensorLayout& offset_grad, const TensorLayout& mask_grad,
            size_t workspace_in_bytes);
};

class DeformablePSROIPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DeformablePSROIPoolingBase, OperatorBase);
    DEF_OPR_PARAM(DeformablePSROIPooling);

protected:
M
Megvii Engine Team 已提交
1670 1671 1672
    void deduce_layout_fwd(
            const TensorLayout& data, const TensorLayout& trans,
            const TensorLayout& rois, TensorLayout& out_data, TensorLayout& out_count);
1673

M
Megvii Engine Team 已提交
1674 1675 1676 1677
    void check_layout_fwd(
            const TensorLayout& data, const TensorLayout& trans,
            const TensorLayout& rois, const TensorLayout& out_data,
            const TensorLayout& out_count, size_t workspace_in_bytes);
1678 1679 1680
};

class DeformablePSROIPoolingForward : public DeformablePSROIPoolingBase {
M
Megvii Engine Team 已提交
1681
    DEF_OPR_IMPL(DeformablePSROIPoolingForward, DeformablePSROIPoolingBase, 3, 2);
1682 1683 1684 1685 1686 1687 1688 1689 1690

public:
    /**
     * \param[in]  data       (oc, ic, ih, iw)
     * \param[in]  rois       (xx, xx, xx, xx)
     * \param[in]  trans      (oc, ic, fh, fw)
     * \param[out] out_data   ( n, ic, ih, iw)
     * \param[out] out_count  ( n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_data,
            const TensorLayout& out_count) = 0;
    virtual void exec(
            _megdnn_tensor_in data, _megdnn_tensor_in rois, _megdnn_tensor_in trans,
            _megdnn_tensor_out out_data, _megdnn_tensor_out out_count,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, TensorLayout& out_data, TensorLayout& out_count);
    void check_exec(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_data,
            const TensorLayout& out_count, size_t workspace_in_bytes);
1706 1707 1708 1709 1710
};

using DeformablePSROIPooling = DeformablePSROIPoolingForward;

class DeformablePSROIPoolingBackward : public DeformablePSROIPoolingBase {
M
Megvii Engine Team 已提交
1711
    DEF_OPR_IMPL(DeformablePSROIPoolingBackward, DeformablePSROIPoolingBase, 5, 2);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

public:
    /**
     * \param[in]  data        (oc, ic, ih, iw)
     * \param[in]  rois        (xx, xx, xx, xx)
     * \param[in]  trans       (oc, ic, fh, fw)
     * \param[in]  out_diff    (xx, xx, xx, xx)
     * \param[in]  out_count   (xx, xx, xx, xx)
     * \param[out] data_diff   ( n, ic, ih, iw)
     * \param[out] trans_diff  ( n, ic, ih, iw)
     */
M
Megvii Engine Team 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    virtual void exec(
            _megdnn_tensor_in data, _megdnn_tensor_in rois, _megdnn_tensor_in trans,
            _megdnn_tensor_in out_diff, _megdnn_tensor_in out_count,
            _megdnn_tensor_out data_diff, _megdnn_tensor_out trans_diff,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_diff,
            const TensorLayout& out_count, const TensorLayout& data_diff,
            const TensorLayout& trans_diff) = 0;

    void check_exec(
            const TensorLayout& data, const TensorLayout& rois,
            const TensorLayout& trans, const TensorLayout& out_diff,
            const TensorLayout& out_count, const TensorLayout& data_diff,
            const TensorLayout& trans_diff, size_t workspace_in_bytes);
};

class BatchConvBiasForward : public ConvolutionBase<param::BatchConvBias>,
                             public detail::MultiAlgoOpr<BatchConvBiasForward, 5> {
1743 1744 1745
    DEF_OPR_IMPL(BatchConvBiasForward, ConvolutionBase, 4, 1);

public:
M
Megvii Engine Team 已提交
1746 1747 1748 1749
    virtual void exec(
            _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
            _megdnn_tensor_in z, _megdnn_tensor_out dst,
            _megdnn_workspace workspace) = 0;
1750 1751

    void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
M
Megvii Engine Team 已提交
1752 1753 1754
    void deduce_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z, TensorLayout& dst);
1755

M
Megvii Engine Team 已提交
1756 1757 1758 1759
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;
1760

1761 1762 1763 1764
    static Algorithm::OprType get_opr_type() {
        return Algorithm::OprType::BATCH_CONV_FORWARD;
    }

1765
protected:
M
Megvii Engine Team 已提交
1766 1767 1768 1769
    CanonizedFilterMeta check_exec(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
            size_t workspace_in_bytes);
1770 1771 1772
};
using BatchConvBias = BatchConvBiasForward;

1773 1774 1775 1776 1777 1778
class FakeQuantBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(FakeQuantBase, OperatorBase);
    DEF_OPR_PARAM(FakeQuant);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
M
Megvii Engine Team 已提交
1779 1780 1781
    void check_layout_fwd(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& output);
1782 1783 1784 1785 1786 1787
};

class FakeQuantForward : public FakeQuantBase {
    DEF_OPR_IMPL(FakeQuantForward, FakeQuantBase, 3, 1);

public:
M
Megvii Engine Team 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_out output,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& output) = 0;
1798 1799

protected:
M
Megvii Engine Team 已提交
1800 1801 1802 1803
    void check_exec(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& output,
            size_t workspace_in_bytes);
1804 1805 1806 1807 1808 1809 1810 1811
};

using FakeQuant = FakeQuantForward;

class FakeQuantBackward : public FakeQuantBase {
    DEF_OPR_IMPL(FakeQuantBackward, FakeQuantBase, 4, 1);

public:
M
Megvii Engine Team 已提交
1812 1813 1814 1815 1816 1817 1818 1819
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_out grad,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad) = 0;
1820 1821

protected:
M
Megvii Engine Team 已提交
1822 1823 1824 1825
    void check_exec(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad, size_t workspace_in_bytes);
1826 1827
};

M
Megvii Engine Team 已提交
1828 1829 1830 1831 1832 1833
class TQTBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(TQTBase, OperatorBase);
    DEF_OPR_PARAM(TQT);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
M
Megvii Engine Team 已提交
1834 1835 1836
    void check_layout_fwd(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& output);
M
Megvii Engine Team 已提交
1837 1838 1839 1840 1841 1842
};

class TQTForward : public TQTBase {
    DEF_OPR_IMPL(TQTForward, TQTBase, 2, 1);

public:
M
Megvii Engine Team 已提交
1843 1844 1845 1846 1847 1848 1849 1850
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in scale, _megdnn_tensor_out output,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& scale, TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& output) = 0;
M
Megvii Engine Team 已提交
1851 1852

protected:
M
Megvii Engine Team 已提交
1853 1854 1855
    void check_exec(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& output, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1856 1857 1858 1859 1860 1861 1862
};
using TQT = TQTForward;

class TQTBackward : public TQTBase {
    DEF_OPR_IMPL(TQTBackward, TQTBase, 3, 2);

public:
M
Megvii Engine Team 已提交
1863 1864 1865 1866 1867 1868 1869 1870
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_out grad_x, _megdnn_tensor_out grad_s,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s) = 0;
M
Megvii Engine Team 已提交
1871 1872

protected:
M
Megvii Engine Team 已提交
1873 1874 1875 1876
    void check_exec(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1877 1878
};

M
Megvii Engine Team 已提交
1879 1880 1881 1882 1883 1884
class LSQBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LSQBase, OperatorBase);
    DEF_OPR_PARAM(LSQ);

protected:
    void deduce_layout_fwd(const TensorLayout& input, TensorLayout& output);
M
Megvii Engine Team 已提交
1885 1886 1887 1888
    void check_layout_fwd(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            const TensorLayout& output);
M
Megvii Engine Team 已提交
1889 1890 1891 1892 1893 1894
};

class LSQForward : public LSQBase {
    DEF_OPR_IMPL(LSQForward, LSQBase, 4, 1);

public:
M
Megvii Engine Team 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_in grad_scale,
            _megdnn_tensor_out output, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            TensorLayout& output);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            const TensorLayout& output) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& scale,
            const TensorLayout& zero_point, const TensorLayout& grad_scale,
            const TensorLayout& output, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1913 1914 1915 1916 1917 1918 1919
};
using LSQ = LSQForward;

class LSQBackward : public LSQBase {
    DEF_OPR_IMPL(LSQBackward, LSQBase, 5, 2);

public:
M
Megvii Engine Team 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in input, _megdnn_tensor_in scale,
            _megdnn_tensor_in zero_point, _megdnn_tensor_in grad_scale,
            _megdnn_tensor_out grad_x, _megdnn_tensor_out grad_s,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad_scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s) = 0;

protected:
    void check_exec(
            const TensorLayout& diff, const TensorLayout& input,
            const TensorLayout& scale, const TensorLayout& zero_point,
            const TensorLayout& grad_scale, const TensorLayout& grad_x,
            const TensorLayout& grad_s, size_t workspace_in_bytes);
M
Megvii Engine Team 已提交
1937 1938
};

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
class LayerNormBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LayerNormBase, OperatorBase);
    DEF_OPR_PARAM(LayerNorm);

protected:
    void deduce_layout_fwd(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, TensorLayout& dst, TensorLayout& mean,
            TensorLayout& rstd);
    void check_layout_fwd(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, const TensorLayout& dst, const TensorLayout& mean,
            const TensorLayout& rstd);
};

class LayerNormForward : public LayerNormBase {
    DEF_OPR_IMPL(LayerNormForward, LayerNormBase, 3, 3);

public:
    virtual void exec(
            _megdnn_tensor_in data, _megdnn_tensor_in weight, _megdnn_tensor_in bias,
            _megdnn_tensor_out dst, _megdnn_tensor_out mean, _megdnn_tensor_out rstd,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, TensorLayout& dst, TensorLayout& mean,
            TensorLayout& rstd);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, const TensorLayout& dst, const TensorLayout& mean,
            const TensorLayout& rstd) = 0;

protected:
    void check_exec(
            const TensorLayout& data, const TensorLayout& weight,
            const TensorLayout& bias, const TensorLayout& dst, const TensorLayout& mean,
            const TensorLayout& rstd, size_t workspace_in_bytes);
};
using LayerNorm = LayerNormForward;

class LayerNormBackward : public LayerNormBase {
    DEF_OPR_IMPL(LayerNormBackward, LayerNormBase, 5, 3);

public:
    virtual void exec(
            _megdnn_tensor_in diff, _megdnn_tensor_in data, _megdnn_tensor_in weight,
            _megdnn_tensor_in mean, _megdnn_tensor_in rstd, _megdnn_tensor_out ddata,
            _megdnn_tensor_out dweight, _megdnn_tensor_out dbias,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& diff, const TensorLayout& data,
            const TensorLayout& weight, const TensorLayout& mean,
            const TensorLayout& rstd, TensorLayout& ddata, TensorLayout& dweight,
            TensorLayout& dbias);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& diff, const TensorLayout& data,
            const TensorLayout& weight, const TensorLayout& mean,
            const TensorLayout& rstd, const TensorLayout& ddata,
            const TensorLayout& dweight, const TensorLayout& dbias) = 0;

protected:
    void check_exec(
            const TensorLayout& diff, const TensorLayout& data,
            const TensorLayout& weight, const TensorLayout& mean,
            const TensorLayout& rstd, const TensorLayout& ddata,
            const TensorLayout& dweight, const TensorLayout& dbias,
            size_t workspace_in_bytes);
};

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
class DropoutBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DropoutBase, OperatorBase);
    DEF_OPR_PARAM(Dropout);
};

class DropoutForward : public DropoutBase {
    DEF_OPR_IMPL(DropoutForward, DropoutBase, 1, 2);

public:
    void deduce_layout(const TensorLayout& inp, TensorLayout& oup, TensorLayout& mask);
    virtual void exec(
            _megdnn_tensor_in inp, _megdnn_tensor_out oup, _megdnn_tensor_out mask,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& inp, const TensorLayout& oup,
            const TensorLayout& mask) = 0;
    virtual size_t get_mask_size_in_bytes(const TensorLayout& inp) = 0;

protected:
    void check_exec(
            const TensorLayout& inp, const TensorLayout& oup, const TensorLayout& mask,
            size_t workspace_in_bytes);
};
using Dropout = DropoutForward;

class DropoutBackward : public DropoutBase {
    DEF_OPR_IMPL(DropoutBackward, DropoutBase, 2, 1);

public:
    void deduce_layout(
            const TensorLayout& doup, const TensorLayout& mask, TensorLayout& dinp);
    virtual void exec(
            _megdnn_tensor_in doup, _megdnn_tensor_in mask, _megdnn_tensor_out dinp,
            _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& doup, const TensorLayout& mask,
            const TensorLayout& dinp) = 0;

protected:
    void check_exec(
            const TensorLayout& doup, const TensorLayout& mask,
            const TensorLayout& dinp, size_t workspace_in_bytes);
};

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
class RNNCellForward : public OperatorBase {
    DEF_OPR_PARAM(RNNCell);
    DEF_OPR_IMPL(RNNCellForward, OperatorBase, 6, 1);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in weight_ih,
            _megdnn_tensor_in bias_ih, _megdnn_tensor_in hx,
            _megdnn_tensor_in weight_hh, _megdnn_tensor_in bias_hh,
            _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
    static void deduce_layout(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& dst) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& dst, size_t workspace_in_bytes);
};
using RNNCell = RNNCellForward;

class LSTMCellForward : public OperatorBase {
    // DEF_OPR_PARAM(LSTMCell);
    DEF_OPR_PARAM(Empty);
    DEF_OPR_IMPL(LSTMCellForward, OperatorBase, 7, 3);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in weight_ih,
            _megdnn_tensor_in bias_ih, _megdnn_tensor_in hx,
            _megdnn_tensor_in weight_hh, _megdnn_tensor_in bias_hh,
            _megdnn_tensor_in cx, _megdnn_tensor_out h_new, _megdnn_tensor_out c_new,
            _megdnn_tensor_out gates, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& cx, TensorLayout& h_new, TensorLayout& c_new,
            TensorLayout& gates);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& cx, const TensorLayout& h_new,
            const TensorLayout& c_new, const TensorLayout& gates) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& weight_ih,
            const TensorLayout& bias_ih, const TensorLayout& hx,
            const TensorLayout& weight_hh, const TensorLayout& bias_hh,
            const TensorLayout& cx, const TensorLayout& h_new,
            const TensorLayout& c_new, const TensorLayout& gates,
            size_t workspace_in_bytes);
};
using LSTMCell = LSTMCellForward;

class RNNForward : public OperatorBase {
    DEF_OPR_PARAM(RNN);
    DEF_OPR_IMPL(RNNForward, OperatorBase, 3, 3);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in hx,
            _megdnn_tensor_in flatten_weights, _megdnn_tensor_out output,
            _megdnn_tensor_out hy, _megdnn_tensor_out reserve_space,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& hx,
            const TensorLayout& flatten_weights, TensorLayout& output, TensorLayout& hy,
            TensorLayout& reserve_space);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& hx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& reserve_space) = 0;
    virtual size_t get_reserve_size_in_bytes(const TensorLayout& input) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& hx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& reserve_space,
            size_t workspace_in_bytes);
};
using RNN = RNNForward;

class RNNBackward : public OperatorBase {
    DEF_OPR_PARAM(RNN);
    DEF_OPR_IMPL(RNNBackward, OperatorBase, 7, 3);

public:
    virtual void exec(
            _megdnn_tensor_in x, _megdnn_tensor_in y, _megdnn_tensor_in hx,
            _megdnn_tensor_in dy, _megdnn_tensor_in dhy,
            _megdnn_tensor_in flatten_weights, _megdnn_tensor_in reserve_space,
            _megdnn_tensor_out dx, _megdnn_tensor_out dhx, _megdnn_tensor_out dw,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& flatten_weights, const TensorLayout& reserve_space,
            TensorLayout& dx, TensorLayout& dhx, TensorLayout& dw);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& flatten_weights, const TensorLayout& reserve_space,
            const TensorLayout& dx, const TensorLayout& dhx,
            const TensorLayout& dw) = 0;

protected:
    void check_exec(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& flatten_weights, const TensorLayout& reserve_space,
            const TensorLayout& dx, const TensorLayout& dhx, const TensorLayout& dw,
            size_t workspace_in_bytes);
};

class LSTMForward : public OperatorBase {
    DEF_OPR_PARAM(LSTM);
    DEF_OPR_IMPL(LSTMForward, OperatorBase, 4, 4);

public:
    virtual void exec(
            _megdnn_tensor_in input, _megdnn_tensor_in hx, _megdnn_tensor_in cx,
            _megdnn_tensor_in flatten_weights, _megdnn_tensor_out output,
            _megdnn_tensor_out hy, _megdnn_tensor_out cy,
            _megdnn_tensor_out reserve_space, _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& input, const TensorLayout& hx, const TensorLayout& cx,
            const TensorLayout& flatten_weights, TensorLayout& output, TensorLayout& hy,
            TensorLayout& cy, TensorLayout& reserve_space);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& input, const TensorLayout& hx, const TensorLayout& cx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& cy,
            const TensorLayout& reserve_space) = 0;
    virtual size_t get_reserve_size_in_bytes(const TensorLayout& input) = 0;

protected:
    void check_exec(
            const TensorLayout& input, const TensorLayout& hx, const TensorLayout& cx,
            const TensorLayout& flatten_weights, const TensorLayout& output,
            const TensorLayout& hy, const TensorLayout& cy,
            const TensorLayout& reserve_space, size_t workspace_in_bytes);
};
using LSTM = LSTMForward;

class LSTMBackward : public OperatorBase {
    DEF_OPR_PARAM(LSTM);
    DEF_OPR_IMPL(LSTMBackward, OperatorBase, 9, 4);

public:
    virtual void exec(
            _megdnn_tensor_in x, _megdnn_tensor_in y, _megdnn_tensor_in hx,
            _megdnn_tensor_in cx, _megdnn_tensor_in dy, _megdnn_tensor_in dhy,
            _megdnn_tensor_in dcy, _megdnn_tensor_in flatten_weights,
            _megdnn_tensor_in reserve_space, _megdnn_tensor_out dx,
            _megdnn_tensor_out dhx, _megdnn_tensor_out dcx, _megdnn_tensor_out dw,
            _megdnn_workspace workspace) = 0;
    void deduce_layout(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& cx, const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& dcy, const TensorLayout& flatten_weights,
            const TensorLayout& reserve_space, TensorLayout& dx, TensorLayout& dhx,
            TensorLayout& dcx, TensorLayout& dw);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& cx, const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& dcy, const TensorLayout& flatten_weights,
            const TensorLayout& reserve_space, const TensorLayout& dx,
            const TensorLayout& dhx, const TensorLayout& dcx,
            const TensorLayout& dw) = 0;

protected:
    void check_exec(
            const TensorLayout& x, const TensorLayout& y, const TensorLayout& hx,
            const TensorLayout& cx, const TensorLayout& dy, const TensorLayout& dhy,
            const TensorLayout& dcy, const TensorLayout& flatten_weights,
            const TensorLayout& reserve_space, const TensorLayout& dx,
            const TensorLayout& dhx, const TensorLayout& dcx, const TensorLayout& dw,
            size_t workspace_in_bytes);
};
2244 2245 2246 2247
}  // namespace megdnn
#include "megdnn/internal/opr_header_epilogue.h"

// vim: syntax=cpp.doxygen