nn.h 59.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/**
 * \file dnn/include/megdnn/oprs/nn.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#pragma once
#include "megdnn/internal/opr_header_prologue.h"

namespace megdnn {

class SeparableConvBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(SeparableConvBase, OperatorBase);
    DEF_OPR_PARAM(SeparableConv);

public:
    using Mode = Param::Mode;

protected:
    void deduce_layout_fwd(const TensorLayout& src,
                           const TensorLayout& filter_x,
                           const TensorLayout& filter_y, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter_x,
                          const TensorLayout& filter_y,
                          const TensorLayout& dst);
};

class SeparableConvForward : public SeparableConvBase {
    DEF_OPR_IMPL(SeparableConvForward, SeparableConvBase, 3, 1);

public:
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter_x,
                      _megdnn_tensor_in filter_y, _megdnn_tensor_out dst,
                      _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& src, const TensorLayout& filter_x,
                       const TensorLayout& filter_y, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& filter_x,
                                          const TensorLayout& filter_y,
                                          const TensorLayout& dst) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& filter_x,
                    const TensorLayout& filter_y, const TensorLayout& dst,
                    size_t workspace_in_bytes);
};
using SeparableConv = SeparableConvForward;

/**
 * \brief base class for convolution operation
 *
 * This operator is supposed to perform convolution on arbitrary input
 * dimensions. The input/output format is N, C, dims..., and kernel format can
 * take two forms:
 *  1. OC, IC, dims..., for conventional dense convolution
 *  2. GROUP, OC_PER_GRP, IC_PER_GRP, dims... for sparse group convolution
 *
 * Currently, only 2D images are supported.
 */
template <typename Parameter>
class ConvolutionBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ConvolutionBase, OperatorBase);
    using Param = Parameter;

public:
    Param& param() { return m_param; }
    const Param& param() const { return m_param; }

protected:
    Param m_param;

public:
    static constexpr size_t MAX_SPATIAL_DIM = 2;
    using Mode = typename Param::Mode;
    struct CanonizedFilterMeta {
        DType dtype;
        typename Param::Format format;

        uint32_t
                //! whether filter should be flipped (i.e. is CONVOLUTION)
                should_flip,
                group,  //!< number of groups
                icpg,   //!< input channels per group
                ocpg,   //!< output channels per group
                spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
                //! spatial dim
                spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
                //! spatial dim with dilation applied
                dilated_spatial[MAX_SPATIAL_DIM];

        //! T should be a ConvolutionBase<Z>::CanonizedFilterMeta
        template <typename T>
        void copy_from(const T& b) {
            dtype = b.dtype;
            format = b.format;
            should_flip = b.should_flip;
            group = b.group;
            icpg = b.icpg;
            ocpg = b.ocpg;
            spatial_ndim = b.spatial_ndim;
            memcpy(stride, b.stride, sizeof(stride));
            memcpy(padding, b.padding, sizeof(padding));
            memcpy(spatial, b.spatial, sizeof(spatial));
            memcpy(dilation, b.dilation, sizeof(dilation));
            memcpy(dilated_spatial, b.dilated_spatial, sizeof(dilated_spatial));
        }

        bool operator==(const CanonizedFilterMeta& b) const {
            bool flag = true;
            flag = flag && (format == b.format);
            flag = flag && (dtype == b.dtype);
            flag = flag && (should_flip == b.should_flip);
            flag = flag && (group == b.group);
            flag = flag && (icpg == b.icpg);
            flag = flag && (ocpg == b.ocpg);
            flag = flag && (spatial_ndim == b.spatial_ndim);
            if (flag) {
                for (uint32_t i = 0; i < spatial_ndim; ++i) {
                    flag = flag && (stride[i] == b.stride[i]);
                    flag = flag && (padding[i] == b.padding[i]);
                    flag = flag && (spatial[i] == b.spatial[i]);
                    flag = flag && (dilation[i] == b.dilation[i]);
                    flag = flag && (dilated_spatial[i] == b.dilated_spatial[i]);
                }
            }
            return flag;
        }
    };

134 135 136 137 138 139 140
    struct PreprocessedFilter {
        //! user data; its lifetime should be bound to MegDNN Convolution
        //! operator
        void* algorithm_id;
        TensorNDArray tensors;
    };

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
protected:
    // Check or deduce output DType
    void check_or_deduce_dtype_fwd(DType src, DType filter, DType& dst) const;
    CanonizedFilterMeta deduce_layout_fwd(const TensorLayout& src,
                                          const TensorLayout& filter,
                                          TensorLayout& dst) const;
    CanonizedFilterMeta check_layout_fwd(const TensorLayout& src,
                                         const TensorLayout& filter,
                                         const TensorLayout& dst) const;

    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter) const;
};

class MaskPropagate : public OperatorBase {
    DEF_OPR_IMPL(MaskPropagate, OperatorBase, 1, 1);
    DEF_OPR_PARAM(MaskPropagate);

public:
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& dst) = 0;

    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
};

/**
 * \brief ConvolutionForward Operator with 0/1 Mask matrix
 */
class MaskConvForward : public ConvolutionBase<param::Convolution> {
    DEF_OPR_IMPL(MaskConvForward, ConvolutionBase, 3, 1);

public:
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                      _megdnn_tensor_in mask, _megdnn_tensor_out dst,
                      _megdnn_workspace worksapce) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& filter,
                                          const TensorLayout& mask,
                                          const TensorLayout& dst) = 0;

    void deduce_dtype(DType src, DType filter, DType mask, DType& dst);
    void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
                       const TensorLayout& mask, TensorLayout& dst);

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& src,
                                   const TensorLayout& filter,
                                   const TensorLayout& mask,
                                   const TensorLayout& dst,
                                   size_t workspace_in_bytes);
};
using MaskConvolution = MaskConvForward;

/**
 * \brief ConvolutionForward operator.
 */
class ConvolutionForward : public ConvolutionBase<param::Convolution>,
                           public detail::MultiAlgoOpr<ConvolutionForward, 3> {
    DEF_OPR_IMPL(ConvolutionForward, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] filter (oc, ic, fh, fw)
     * \param[out] dst (n, oc, oh, ow)
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
210 211 212
                      _megdnn_tensor_out dst,
                      const PreprocessedFilter* preprocessed_filter,
                      _megdnn_workspace workspace) = 0;
213

214 215 216 217 218
    virtual void exec_preprocess(const TensorLayout& src_layout,
                                 _megdnn_tensor_in filter,
                                 const TensorLayout& dst_layout,
                                 PreprocessedFilter* preprocessed_filter,
                                 _megdnn_workspace workspace) = 0;
219
    void deduce_dtype(DType src, DType filter, DType& dst);
220

221 222
    void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
                       TensorLayout& dst);
223 224 225
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst,
226 227
            const PreprocessedFilter* preprocessed_filter) = 0;

228 229 230
    virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
231

232 233 234
    virtual size_t get_preprocess_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) = 0;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& src,
                                   const TensorLayout& filter,
                                   const TensorLayout& dst,
                                   size_t workspace_in_bytes);
};
using Convolution = ConvolutionForward;

/**
 * \brief ConvolutionBackwardData operator.
 *
 * Calculating the gradient wrt. convolution input data.
 */
class ConvolutionBackwardData
        : public ConvolutionBase<param::Convolution>,
          public detail::MultiAlgoOpr<ConvolutionBackwardData, 3> {
    DEF_OPR_IMPL(ConvolutionBackwardData, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (n, ic, ih, iw)
     */
    virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

    void deduce_dtype(DType filter, DType diff, DType& grad);
    void deduce_layout(const TensorLayout& filter, const TensorLayout& diff,
                       TensorLayout& grad);

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& filter,
                                   const TensorLayout& diff,
                                   const TensorLayout& grad,
                                   size_t workspace_in_bytes);
};

/**
 * \brief ConvolutionBackwardFilter operator.
 *
 * Calculating the gradient wrt. convolution filter.
 */
class ConvolutionBackwardFilter
        : public ConvolutionBase<param::Convolution>,
          public detail::MultiAlgoOpr<ConvolutionBackwardFilter, 3> {
    DEF_OPR_IMPL(ConvolutionBackwardFilter, ConvolutionBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (oc, ic, fh, fw)
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& src,
                                   const TensorLayout& diff,
                                   const TensorLayout& grad,
                                   size_t workspace_in_bytes);
};

/**
 * \brief ConvolutionBias operator
 */
class ConvBiasForward : public ConvolutionBase<param::ConvBias>,
                        public detail::MultiAlgoOpr<ConvBiasForward, 5> {
    DEF_OPR_IMPL(ConvBiasForward, ConvolutionBase, 4, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw) or (n, ih, iw, ic)
     * \param[in] filter (oc, ic, fh, fw) or (oc, fh, fw, ic) or (oc/4, fh, fw,
     * 4*ic) \param[in] bias (1, oc, 1, 1) \param[in] z same as dst \param[out]
     * dst (n, oc, oh, ow) or (n, oh, ow, oc)
     *
     * \note if the format is NCHW_WINOGRAD, the filter layout is (alphah,
     * alphaw, oc, ic)
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                      _megdnn_tensor_in bias, _megdnn_tensor_in z,
325 326 327 328 329 330 331 332 333 334
                      _megdnn_tensor_out dst,
                      const PreprocessedFilter* preprocessed_filter,
                      _megdnn_workspace workspace) = 0;
    virtual void exec_preprocess(const TensorLayout& src_layout,
                                 _megdnn_tensor_in filter,
                                 const TensorLayout& bias_layout,
                                 const TensorLayout& z_layout,
                                 const TensorLayout& dst_layout,
                                 PreprocessedFilter* preprocessed_filter,
                                 _megdnn_workspace workspace) = 0;
335 336 337 338 339
    void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
    void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
                       const TensorLayout& bias, const TensorLayout& z,
                       TensorLayout& dst);

340 341 342 343
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst,
344
            const PreprocessedFilter* preprocessed_filter) = 0;
345 346 347 348 349 350 351 352 353
    virtual size_t get_preprocess_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;
    virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& bias, const TensorLayout& z,
            const TensorLayout& dst) = 0;

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    enum class BiasMode : uint32_t {
        NO_BIAS = 0,             //!< no bias
        BROADCAST_CHANNEL_BIAS,  //!< broadcast channel bias, [1, c, 1, 1]
        BIAS                     //!< [N, C, H, W]
    };

    //! param for winograd algos.
    struct WinogradParam {
        uint32_t channel_block_size;
        uint32_t output_block_size;
        uint32_t tile_size;
        bool operator==(const WinogradParam& rhs) const {
            return channel_block_size == rhs.channel_block_size &&
                   output_block_size == rhs.output_block_size &&
                   tile_size == rhs.tile_size;
        }

        std::string to_string() const;
    };
    static constexpr WinogradParam INVALID_WINOGRAD_PARAM = {0, 0, 0};

    struct DirectParam {
        std::string to_string() const { return ""; }
    };

    struct MatmulParam {
        std::string to_string() const { return ""; }
    };

    struct DefaultParam {
        std::string to_string() const { return ""; }
    };

    //! get algo name, the format is ParamTrait<T>::category:base:p.to_string()
    //! \warning: base must not contain :.
    template <typename T>
    static std::string algo_name(const std::string& base, const T& p);
    /*!
     * \brief parse algo_name and get WinogradParam from algo name.
     *
     * \param algo name string
     * \return WinogradParam parsed from algo name, use pattern
     * winograd:base:m:tile_size.
     *
     * \warning: INVALID_WINOGRAD_PARAM returns if the algo_name is not matched.
     */
    static WinogradParam parse_winograd_name(const std::string& algo_name);

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& src,
                                   const TensorLayout& filter,
                                   const TensorLayout& bias,
                                   const TensorLayout& z,
                                   const TensorLayout& dst,
                                   size_t workspace_in_bytes);
};
using ConvBias = ConvBiasForward;

/**
 * \brief base class for Conv - Nonline - Pooling
 */
class ConvPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ConvPoolingBase, OperatorBase);

    /**
     *  \ Param::Method: Two methods to fetch the input data.
     *  Default methods is WITH_TEXTURE_OBJ.
     *  If you want to use WITH_SHARED_MEM mode,
     *  please make sure that the size of
     *   [ all of the fliter kernels + a channel
     *  of input data + a channel of output data]
     *  should be no large than 38KB.
     *  And the pooling mode should not be "MAX".
     */
    DEF_OPR_PARAM(ConvPooling);

protected:
    virtual void deduce_layout(const TensorLayout& src,
                               const TensorLayout& filter,
                               const TensorLayout& bias, TensorLayout& dst) = 0;
    virtual void check_layout(const TensorLayout& src,
                              const TensorLayout& filter,
                              const TensorLayout& bias, TensorLayout& dst,
                              size_t workspace_limit_in_bytes) = 0;
};

class ConvPoolingForward : public ConvPoolingBase {
    DEF_OPR_IMPL(ConvPoolingForward, ConvPoolingBase, 2, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
    virtual void exec(const _megdnn_in TensorND src,
                      const _megdnn_in TensorND filter,
                      const _megdnn_in TensorND bias, _megdnn_out TensorND dst,
                      _megdnn_out Workspace workspace) = 0;
    virtual void deduce_layout(const TensorLayout& src,
                               const TensorLayout& filter,
                               const TensorLayout& bias, TensorLayout& dst) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& filter,
                                          const TensorLayout& bias,
                                          const TensorLayout& dst) = 0;

protected:
    virtual void check_layout(const TensorLayout& src,
                              const TensorLayout& filter,
                              const TensorLayout& bias, TensorLayout& dst,
                              size_t workspace_limit_in_bytes) = 0;
};
using ConvPooling = ConvPoolingForward;

class GroupLocalBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(GroupLocalBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    using Mode = Param::Mode;

protected:
    void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
                           TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
                          const TensorLayout& dst);
};

class GroupLocalForward : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalForward, GroupLocalBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] filter (G, OH, OW, IC/G, FH, FW, OC/G)
     * \param[out] dst (N, OC, OH, OW)
     **/
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                      _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
                       TensorLayout& dst) {
        deduce_layout_fwd(src, filter, dst);
    }
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& filter,
                                          const TensorLayout& dst) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& filter,
                    const TensorLayout& dst, size_t workspace_in_bytes);
};
using GroupLocal = GroupLocalForward;

class GroupLocalBackwardData : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalBackwardData, GroupLocalBase, 2, 1);

public:
    virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

protected:
    void check_exec(const TensorLayout& filter, const TensorLayout& diff,
                    const TensorLayout& grad, size_t workspace_in_bytes);
};

class GroupLocalBackwardFilter : public GroupLocalBase {
    DEF_OPR_IMPL(GroupLocalBackwardFilter, GroupLocalBase, 2, 1);

public:
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

protected:
    void check_exec(const TensorLayout& filter, const TensorLayout& diff,
                    const TensorLayout& grad, size_t workspace_in_bytes);
};

class Images2NeibsBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(Images2NeibsBase, OperatorBase);
    DEF_OPR_PARAM(Images2Neibs);

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& filter, const TensorLayout& dst);
};

class Images2NeibsForward : public Images2NeibsBase {
    DEF_OPR_IMPL(Images2NeibsForward, Images2NeibsBase, 1, 1);

public:
    /**
     * \param[in] src (N, C, IH, IW)
     * \param[out] dst (N, C, OH, OW, window_h, window_w)
     *
     * \see
     * http://deeplearning.net/software/theano/library/tensor/nnet/neighbours.html
     *
     * \f$ dst_{n, c, oh, ow, wh, ww} = src_{n, c, ih+wh, iw+fw}\f$,
     * where \f$ ih=-pad_h+oh*stride_h, iw=-pad_w+ow*stride_w\f$.
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& dst) = 0;
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& dst,
                    size_t workspace_in_bytes);
};
using Images2Neibs = Images2NeibsForward;

class Images2NeibsBackward : public Images2NeibsBase {
    DEF_OPR_IMPL(Images2NeibsBackward, Images2NeibsBase, 1, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
    virtual void exec(_megdnn_tensor_in diff, _megdnn_tensor_out grad,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

protected:
    void check_exec(const TensorLayout& diff, const TensorLayout& grad,
                    size_t workspace_in_bytes);
};

/**
 * \brief base class for Pooling
 */
class PoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(PoolingBase, OperatorBase);
    DEF_OPR_PARAM(Pooling);

public:
    using Mode = Param::Mode;

protected:
    void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& dst);
};

class PoolingForward : public PoolingBase {
    DEF_OPR_IMPL(PoolingForward, PoolingBase, 1, 1);

public:
    /**
     * \param[in] src input tensor
     * \param[out] dst output tensor
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
                      _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& dst) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& dst,
                    size_t workspace_in_bytes);
};

using Pooling = PoolingForward;

class PoolingBackward : public PoolingBase {
    DEF_OPR_IMPL(PoolingBackward, PoolingBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in PoolingForward::exec
     * \param[in] dst the `dst' parameter in PoolingForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in dst,
                      _megdnn_tensor_in diff, _megdnn_tensor_out grad,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& dst,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& dst,
                    const TensorLayout& diff, const TensorLayout& grad,
                    size_t workspace_in_bytes);
};

/**
 * \brief base class for Local
 */
class LocalBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LocalBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    using Mode = Param::Mode;

protected:
    void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
                           TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
                          const TensorLayout& dst);
};

class LocalForward : public LocalBase {
    DEF_OPR_IMPL(LocalForward, LocalBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] filter (oh, ow, ic, fh, fw, oc)
     * \param[out] dst (n, oc, oh, ow)
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                      _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
    /**
     * \brief Deducing output tensor layouts from input tensor layouts.
     *
     * Be aware that the first and second dimension of `filter' are ignored
     * when deducing `dst' layout.
     */
    void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
                       TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& filter,
                                          const TensorLayout& dst) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& filter,
                    const TensorLayout& dst, size_t workspace_in_bytes);
};
using Local = LocalForward;

class LocalBackwardData : public LocalBase {
    DEF_OPR_IMPL(LocalBackwardData, LocalBase, 2, 1);

public:
    /**
     * \param[in] filter (oh, ow, ic, fh, fw, oc)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (n, ic, ih, iw)
     */
    virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;

    virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

protected:
    void check_exec(const TensorLayout& filter, const TensorLayout& diff,
                    const TensorLayout& grad, size_t workspace_in_bytes);
};

class LocalBackwardFilter : public LocalBase {
    DEF_OPR_IMPL(LocalBackwardFilter, LocalBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, ih, iw)
     * \param[in] diff (n, oc, oh, ow)
     * \param[out] grad (oh, ow, ic, fh, fw, oc)
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;

    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& diff,
                    const TensorLayout& grad, size_t workspace_in_bytes);
};

class BNBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(BNBase, OperatorBase);
    DEF_OPR_PARAM(BN);

protected:
    void check_param();
};

class BNForward : public BNBase {
    DEF_OPR_IMPL(BNForward, BNBase, 6, 5);

public:
    /**
     * \dst[i] = gemma
     * *(x[i]-estimatedMean[k])/sqrt(epsilon+estimatedVariance[k]) + beta \where
     * epsilon is a very small value to avoid a "divide by zero" error.
     * \param[in] src (n, c, h, w)
     * \param[out] dst (n, c, h, w)
     * \param[out] mean (see m_param.ParamDim) Global mean.
     * \param[out] variance (see m_param.ParamDim) Global variance.
     * \Param[out] batch_mean (see m_param.ParamDim)
     *   Optionally cached intermediate mean from forward pass
     * \Param[out] batch_inv_variance (see m_param.ParamDim)
     *   Optionally cached intermediate variance from forward pass
     * src and dst must have the same shape.
     * src and dst must be contiguous.
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in bn_scale,
                      _megdnn_tensor_in bn_bias, _megdnn_tensor_inout mean,
                      _megdnn_tensor_inout variance,
                      _megdnn_tensor_out batch_mean,
                      _megdnn_tensor_out batch_inv_variance,
                      _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& src, TensorLayout& bn_scale,
                       TensorLayout& bn_bias, TensorLayout& mean,
                       TensorLayout& variance, TensorLayout& batch_mean,
                       TensorLayout& batch_inv_variance, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& src, const TensorLayout& bn_scale,
            const TensorLayout& bn_bias, const TensorLayout& mean,
            const TensorLayout& variance, const TensorLayout& batch_mean,
            const TensorLayout& batch_inv_variance,
            const TensorLayout& dst) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& bn_scale,
                    const TensorLayout& bn_bias, const TensorLayout& mean,
                    const TensorLayout& variance,
                    const TensorLayout& batch_mean,
                    const TensorLayout& batch_inv_variance,
                    const TensorLayout& dst, size_t workspace_in_bytes);
};
using BN = BNForward;

class BNBackward : public BNBase {
    DEF_OPR_IMPL(BNBackward, BNBase, 5, 3);

public:
    /**
     * \param[in] input data of forwarding propagate.
     * \param[in] dy the backpropagated gradient of y.
     * \param[out] dx the backpropagated gradient of x.
     * \param[out] d_bn_scale, the backpropagated gradient of bn_scale.
     * \param[out] d_bn_bias, the backpropagated gradient of bn_bias.
     * Optionally cached intermediate results from forward pass
     * \param[in] saved_batch_mean mean of the input batch.
        Calculated in the forwardpropagation.
     * \param[in] saved_batch_variance of the input batch.
        Calculated in the forwardpropagation.
     */
    virtual void exec(_megdnn_tensor_in x, _megdnn_tensor_in dy,
                      _megdnn_tensor_in saved_batch_mean,
                      _megdnn_tensor_in saved_batch_variance,
                      _megdnn_tensor_in bn_scale, _megdnn_tensor_out d_bn_scale,
                      _megdnn_tensor_out d_bn_bias, _megdnn_tensor_out dx,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& x, const TensorLayout& dy,
            const TensorLayout& saved_batch_mean,
            const TensorLayout& saved_batch_variance,
            const TensorLayout& bn_scale, const TensorLayout& d_bn_scale,
            const TensorLayout& d_bn_bias, const TensorLayout& dx) = 0;

protected:
    void check_exec(const TensorLayout& x, const TensorLayout& dy,
                    const TensorLayout& saved_batch_mean,
                    const TensorLayout& saved_batch_variance,
                    const TensorLayout& bn_scale,
                    const TensorLayout& d_bn_scale,
                    const TensorLayout& d_bn_bias, const TensorLayout& dx,
                    size_t workspace_in_bytes);
};

class LRNBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LRNBase, OperatorBase);
    DEF_OPR_PARAM(LRN);

protected:
    void check_param();
};

class LRNForward : public LRNBase {
    DEF_OPR_IMPL(LRNForward, LRNBase, 1, 1);

public:
    /**
     * \see ImageNet Classification with Deep Convolutional Neural Networks
     * \param[in] src (n, c, h, w)
     * \param[out] dst (n, c, h, w)
     *
     * src and dst must have the same shape.
     * src and dst must be contiguous.
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
                      _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& src, TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& dst) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& dst,
                    size_t workspace_in_bytes);
};
using LRN = LRNForward;

class LRNBackward : public LRNBase {
    DEF_OPR_IMPL(LRNBackward, LRNBase, 3, 1);

public:
    /**
     * \param[in] src the `src' parameter in LRNForward::exec
     * \param[in] dst the `dst' parameter in LRNForward::exec
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[out] grad the backpropagated gradient wrt. src
     *
     * All tensors should be contiguous and of the same shape.
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in dst,
                      _megdnn_tensor_in diff, _megdnn_tensor_out grad,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& dst,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& dst,
                    const TensorLayout& diff, const TensorLayout& grad,
                    size_t workspace_in_bytes);
};

class ROIPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ROIPoolingBase, OperatorBase);
    DEF_OPR_PARAM(ROIPooling);

protected:
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& rois,
                          const TensorLayout& dst, const TensorLayout& index);
};

class ROIPoolingForward : public ROIPoolingBase {
    DEF_OPR_IMPL(ROIPoolingForward, ROIPoolingBase, 2, 2);

public:
    /**
     * \param[in] src (n, c, ih, iw)
     * \param[in] rois (m, 5)
     * \param[out] dst (m, c, oh, ow)
     * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
     *
     * The internal implementation is akin to
     * https://github.com/rbgirshick/caffe-fast-rcnn .d
     * Note that rois(, 0) denotes the input image index. We store it as
     * a float, but it should be an integer instead.
     *
     * index is a temporary tensor to facilitate its backward operator.
     * It is used to store argmax indicex in MAX mode, and it is not used
     * in AVERAGE mode.
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in rois,
                      _megdnn_tensor_out dst, _megdnn_tensor_out index,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& rois,
                                          const TensorLayout& dst,
                                          const TensorLayout& index) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& rois,
                    const TensorLayout& dst, const TensorLayout& index,
                    size_t workspace_in_bytes);
};
using ROIPooling = ROIPoolingForward;

class ROIPoolingBackward : public ROIPoolingBase {
    DEF_OPR_IMPL(ROIPoolingBackward, ROIPoolingBase, 4, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[in] src the `src' parameter in ROIPoolingForward::exec
     * \param[in] rois the `rois' parameter in ROIPoolingForward::exec
     * \param[in] index the `index' parameter in ROIPoolingForward::exec
     * \param[out] grad the backpropagated gradient wrt. src
     */
    virtual void exec(_megdnn_tensor_in diff, _megdnn_tensor_in src,
                      _megdnn_tensor_in rois, _megdnn_tensor_in index,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& diff,
                                          const TensorLayout& src,
                                          const TensorLayout& rois,
                                          const TensorLayout& index,
                                          const TensorLayout& grad) = 0;

protected:
    void check_exec(const TensorLayout& diff, const TensorLayout& src,
                    const TensorLayout& rois, const TensorLayout& index,
                    const TensorLayout& grad, size_t workspace_in_bytes);
};

class Convolution3DBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(Convolution3DBase, OperatorBase);
    DEF_OPR_PARAM(Convolution3D);

public:
    static constexpr size_t MAX_SPATIAL_DIM = 3;
    using Mode = Param::Mode;
    struct CanonizedFilterMeta {
        DTypeEnum dtype_enum;
        Param::Format format;
        uint32_t
                //! whether filter should be flipped (i.e. is CONVOLUTION)
                should_flip,
                group,  //!< number of groups
                icpg,   //!< input channels per group
                ocpg,   //!< output channels per group
                spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
                //! spatial dim
                spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
                //! spatial dim with dilation applied
                dilated_spatial[MAX_SPATIAL_DIM];
    } MEGDNN_PACKED;

protected:
    CanonizedFilterMeta deduce_layout_fwd(const TensorLayout& src,
                                          const TensorLayout& filter,
                                          TensorLayout& dst) const;
    CanonizedFilterMeta check_layout_fwd(const TensorLayout& src,
                                         const TensorLayout& filter,
                                         const TensorLayout& dst) const;

    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter) const;
};

class Convolution3DForward
        : public Convolution3DBase,
          public detail::MultiAlgoOpr<Convolution3DForward, 3> {
    DEF_OPR_IMPL(Convolution3DForward, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, id, ih, iw)
     * \param[in] filter (oc, ic, fd, fh, fw)
     * \param[out] dst (n, oc, od, oh, ow)
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                      _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
                       TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& filter,
                                          const TensorLayout& dst) = 0;

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& src,
                                   const TensorLayout& filter,
                                   const TensorLayout& dst,
                                   size_t workspace_in_bytes);
};
using Convolution3D = Convolution3DForward;

class Convolution3DBackwardData
        : public Convolution3DBase,
          public detail::MultiAlgoOpr<Convolution3DBackwardData, 3> {
    DEF_OPR_IMPL(Convolution3DBackwardData, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] filter (oc, ic, fd, fh, fw)
     * \param[in] diff (n, oc, od, oh, ow)
     * \param[out] grad (n, ic, id, ih, iw)
     */
    virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

    void deduce_layout(const TensorLayout& filter, const TensorLayout& diff,
                       TensorLayout& grad);

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& filter,
                                   const TensorLayout& diff,
                                   const TensorLayout& grad,
                                   size_t workspace_in_bytes);
};

class Convolution3DBackwardFilter
        : public Convolution3DBase,
          public detail::MultiAlgoOpr<Convolution3DBackwardFilter, 3> {
    DEF_OPR_IMPL(Convolution3DBackwardFilter, Convolution3DBase, 2, 1);

public:
    /**
     * \param[in] src (n, ic, id, ih, iw)
     * \param[in] diff (n, oc, od, oh, ow)
     * \param[out] grad (oc, ic, fd, fh, fw)
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& src,
                                   const TensorLayout& diff,
                                   const TensorLayout& grad,
                                   size_t workspace_in_bytes);
};

class LocalShareBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(LocalShareBase, OperatorBase);
    DEF_OPR_PARAM(LocalShare);

protected:
    void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
                           TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
                          const TensorLayout& dst);
};

class LocalShareForward : public LocalShareBase,
                          public detail::MultiAlgoOpr<LocalShareForward, 3> {
    DEF_OPR_IMPL(LocalShareForward, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     * \param[out] dst (N, OC, OH, OW)
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                      _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
    /**
     * \brief deduce layout of the ouput tensor
     */
    void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
                       TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& filter,
                                          const TensorLayout& dst) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& filter,
                    const TensorLayout& dst, size_t workspace_in_bytes);
};
using LocalShare = LocalShareForward;

class LocalShareBackwardData
        : public LocalShareBase,
          public detail::MultiAlgoOpr<LocalShareBackwardData, 3> {
    DEF_OPR_IMPL(LocalShareBackwardData, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     * \param[in] diff (N, OC, OH, OW)
     * \param[out] grad (N, IC, IH, IW)
     */
    virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;
    void deduce_layout(const TensorLayout& filter, const TensorLayout& diff,
                       TensorLayout& grad);

protected:
    void check_exec(const TensorLayout& filter, const TensorLayout& diff,
                    const TensorLayout& grad, size_t workspace_in_bytes);
};

class LocalShareBackwardFilter
        : public LocalShareBase,
          public detail::MultiAlgoOpr<LocalShareBackwardFilter, 3> {
    DEF_OPR_IMPL(LocalShareBackwardFilter, LocalShareBase, 2, 1);

public:
    /**
     * \param[in] src (N, IC, IH, IW)
     * \param[in] diff (N, OC, OH, OW)
     * \param[out] grad (G, spatial_groups_h, spatial_groups_w, IC / G,
     * FH, FW, OC / G)
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
                      _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;

    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& diff,
                                          const TensorLayout& grad) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& diff,
                    const TensorLayout& grad, size_t workspace_in_bytes);
};

class ROIAlignBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(ROIAlignBase, OperatorBase);
    DEF_OPR_PARAM(ROIAlign);

protected:
    void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& rois,
                           TensorLayout& dst, TensorLayout& index);
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& rois,
                          const TensorLayout& dst, const TensorLayout& index);
};

class ROIAlignForward : public ROIAlignBase {
    DEF_OPR_IMPL(ROIAlignForward, ROIAlignBase, 2, 2);

public:
    /**
     * \param[in] src (n, c, ih, iw)
     * \param[in] rois (m, 5)
     * \param[out] dst (m, c, oh, ow)
     * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
     *
     * Note that rois(, 0) denotes the input image index. We store it as
     * a float, but it should be an integer instead.
     *
     * index is a temporary tensor to facilitate its backward operator.
     * It is used to store argmax indicex in MAX mode, and it is not used
     * in AVERAGE mode.
     */
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in rois,
                      _megdnn_tensor_out dst, _megdnn_tensor_out index,
                      _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& src, const TensorLayout& rois,
                       TensorLayout& dst, TensorLayout& index);
    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& rois,
                                          const TensorLayout& dst,
                                          const TensorLayout& index) = 0;

protected:
    void check_exec(const TensorLayout& src, const TensorLayout& rois,
                    const TensorLayout& dst, const TensorLayout& index,
                    size_t workspace_in_bytes);
};
using ROIAlign = ROIAlignForward;

class ROIAlignBackward : public ROIAlignBase {
    DEF_OPR_IMPL(ROIAlignBackward, ROIAlignBase, 3, 1);

public:
    /**
     * \param[in] diff the backpropagated gradient wrt. dst
     * \param[in] rois the `rois' parameter in ROIAlignForward::exec
     * \param[in] index the `index' parameter in ROIAlignForward::exec
     * \param[out] grad the backpropagated gradient wrt. src
     */
    virtual void exec(_megdnn_tensor_in diff, _megdnn_tensor_in rois,
                      _megdnn_tensor_in index, _megdnn_tensor_out grad,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& diff,
                                          const TensorLayout& rois,
                                          const TensorLayout& index,
                                          const TensorLayout& grad) = 0;

protected:
    void check_exec(const TensorLayout& diff, const TensorLayout& rois,
                    const TensorLayout& index, const TensorLayout& grad,
                    size_t workspace_in_bytes);
};

class DeformableConvBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DeformableConvBase, OperatorBase);
    DEF_OPR_PARAM(Convolution);

public:
    static constexpr size_t MAX_SPATIAL_DIM = 2;
    struct CanonizedFilterMeta : Convolution::CanonizedFilterMeta {
        uint32_t deformable_group;
    };

protected:
    CanonizedFilterMeta make_canonized_filter_meta(
            size_t src_ndim, const TensorLayout& filter,
            const TensorLayout& offset) const;
    void deduce_layout_fwd(const TensorLayout& im, const TensorLayout& filter,
                           const TensorLayout& mask, const TensorLayout& offset,
                           TensorLayout& dst);
    void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
                          const TensorLayout& mask, const TensorLayout& offset,
                          const TensorLayout& dst);
};

class DeformableConvForward
        : public DeformableConvBase,
          public detail::MultiAlgoOpr<DeformableConvForward, 5> {
    DEF_OPR_IMPL(DeformableConvForward, DeformableConvBase, 4, 1);

public:
    /**
     * \param[in] im (n, ic, ih, iw)
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[out] dst (n, oc, oh, ow)
     */
    virtual void exec(_megdnn_tensor_in im, _megdnn_tensor_in filter,
                      _megdnn_tensor_in offset, _megdnn_tensor_in mask,
                      _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& im, const TensorLayout& filter,
                       const TensorLayout& offset, const TensorLayout& mask,
                       TensorLayout& dst);
    virtual size_t get_workspace_in_bytes(const TensorLayout& im,
                                          const TensorLayout& filter,
                                          const TensorLayout& offset,
                                          const TensorLayout& mask,
                                          const TensorLayout& dst) = 0;

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& im,
                                   const TensorLayout& filter,
                                   const TensorLayout& offset,
                                   const TensorLayout& mask,
                                   const TensorLayout& dst,
                                   size_t workspace_in_bytes);
};
using DeformableConv = DeformableConvForward;

/**
 * \brief DeformableConvBackwardFilter operator.
 *
 * Calculating the gradient wrt. convolution filter.
 */
class DeformableConvBackwardFilter
        : public DeformableConvBase,
          public detail::MultiAlgoOpr<DeformableConvBackwardFilter, 5> {
    DEF_OPR_IMPL(DeformableConvBackwardFilter, DeformableConvBase, 4, 1);

public:
    /**
     * \param[in] im (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[in] out_grad (n, oc, oh, ow)
     * \param[out] filter_grad (oc, ic, ih, iw)
     */
    virtual void exec(_megdnn_tensor_in im, _megdnn_tensor_in offset,
                      _megdnn_tensor_in mask, _megdnn_tensor_in out_grad,
                      _megdnn_tensor_out filter_grad,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& im,
                                          const TensorLayout& offset,
                                          const TensorLayout& mask,
                                          const TensorLayout& out_grad,
                                          const TensorLayout& filter_grad) = 0;
    void deduce_layout(const TensorLayout& im, const TensorLayout& offset,
                       const TensorLayout& mask, const TensorLayout& out_grad,
                       TensorLayout& filter_grad);

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& im,
                                   const TensorLayout& offset,
                                   const TensorLayout& mask,
                                   const TensorLayout& out_grad,
                                   const TensorLayout& filter_grad,
                                   size_t workspace_in_bytes);
};

/**
 * \brief DeformableConvBackwardData operator.
 *
 * Calculating the gradient wrt. convolution input data, offset and mask.
 */
class DeformableConvBackwardData
        : public DeformableConvBase,
          public detail::MultiAlgoOpr<DeformableConvBackwardData, 8> {
    DEF_OPR_IMPL(DeformableConvBackwardData, DeformableConvBase, 5, 3);

public:
    /**
     * \param[in] im (oc, ic, fh, fw)
     * \param[in] filter (oc, ic, fh, fw)
     * \param[in] offset (dg, 2, fh, fw, oh, ow)
     * \param[in] mask (dg, fh, fw, oh, ow)
     * \param[in] out_grad (n, oc, oh, ow)
     * \param[out] im_grad (n, ic, ih, iw)
     * \param[out] offset_grad (dg, 2, fh, fw, oh, ow)
     * \param[out] mask_grad (dg, fh, fw, oh, ow)
     */
    virtual void exec(_megdnn_tensor_in im, _megdnn_tensor_in filter,
                      _megdnn_tensor_in offset, _megdnn_tensor_in mask,
                      _megdnn_tensor_in out_grad, _megdnn_tensor_out im_grad,
                      _megdnn_tensor_out offset_grad,
                      _megdnn_tensor_out mask_grad,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, const TensorLayout& im_grad,
            const TensorLayout& offset_grad, const TensorLayout& mask_grad) = 0;
    void deduce_layout(const TensorLayout& im, const TensorLayout& filter,
                       const TensorLayout& offset, const TensorLayout& mask,
                       const TensorLayout& out_grad, TensorLayout& im_grad,
                       TensorLayout& offset_grad, TensorLayout& mask_grad);

protected:
    CanonizedFilterMeta check_exec(
            const TensorLayout& im, const TensorLayout& filter,
            const TensorLayout& offset, const TensorLayout& mask,
            const TensorLayout& out_grad, const TensorLayout& im_grad,
            const TensorLayout& offset_grad, const TensorLayout& mask_grad,
            size_t workspace_in_bytes);
};

class DeformablePSROIPoolingBase : public OperatorBase {
    DEF_OPR_IMPL_CTOR(DeformablePSROIPoolingBase, OperatorBase);
    DEF_OPR_PARAM(DeformablePSROIPooling);

protected:
    void deduce_layout_fwd(const TensorLayout& data, const TensorLayout& trans,
                           const TensorLayout& rois, TensorLayout& out_data,
                           TensorLayout& out_count);

    void check_layout_fwd(const TensorLayout& data, const TensorLayout& trans,
                          const TensorLayout& rois,
                          const TensorLayout& out_data,
                          const TensorLayout& out_count,
                          size_t workspace_in_bytes);
};

class DeformablePSROIPoolingForward : public DeformablePSROIPoolingBase {
    DEF_OPR_IMPL(DeformablePSROIPoolingForward, DeformablePSROIPoolingBase, 3,
                 2);

public:
    /**
     * \param[in]  data       (oc, ic, ih, iw)
     * \param[in]  rois       (xx, xx, xx, xx)
     * \param[in]  trans      (oc, ic, fh, fw)
     * \param[out] out_data   ( n, ic, ih, iw)
     * \param[out] out_count  ( n, ic, ih, iw)
     */
    virtual size_t get_workspace_in_bytes(const TensorLayout& data,
                                          const TensorLayout& rois,
                                          const TensorLayout& trans,
                                          const TensorLayout& out_data,
                                          const TensorLayout& out_count) = 0;
    virtual void exec(_megdnn_tensor_in data, _megdnn_tensor_in rois,
                      _megdnn_tensor_in trans, _megdnn_tensor_out out_data,
                      _megdnn_tensor_out out_count,
                      _megdnn_workspace workspace) = 0;
    void deduce_layout(const TensorLayout& data, const TensorLayout& rois,
                       const TensorLayout& trans, TensorLayout& out_data,
                       TensorLayout& out_count);
    void check_exec(const TensorLayout& data, const TensorLayout& rois,
                    const TensorLayout& trans, const TensorLayout& out_data,
                    const TensorLayout& out_count, size_t workspace_in_bytes);
};

using DeformablePSROIPooling = DeformablePSROIPoolingForward;

class DeformablePSROIPoolingBackward : public DeformablePSROIPoolingBase {
    DEF_OPR_IMPL(DeformablePSROIPoolingBackward, DeformablePSROIPoolingBase, 5,
                 2);

public:
    /**
     * \param[in]  data        (oc, ic, ih, iw)
     * \param[in]  rois        (xx, xx, xx, xx)
     * \param[in]  trans       (oc, ic, fh, fw)
     * \param[in]  out_diff    (xx, xx, xx, xx)
     * \param[in]  out_count   (xx, xx, xx, xx)
     * \param[out] data_diff   ( n, ic, ih, iw)
     * \param[out] trans_diff  ( n, ic, ih, iw)
     */
    virtual void exec(_megdnn_tensor_in data, _megdnn_tensor_in rois,
                      _megdnn_tensor_in trans, _megdnn_tensor_in out_diff,
                      _megdnn_tensor_in out_count, _megdnn_tensor_out data_diff,
                      _megdnn_tensor_out trans_diff,
                      _megdnn_workspace workspace) = 0;
    virtual size_t get_workspace_in_bytes(const TensorLayout& data,
                                          const TensorLayout& rois,
                                          const TensorLayout& trans,
                                          const TensorLayout& out_diff,
                                          const TensorLayout& out_count,
                                          const TensorLayout& data_diff,
                                          const TensorLayout& trans_diff) = 0;

    void check_exec(const TensorLayout& data, const TensorLayout& rois,
                    const TensorLayout& trans, const TensorLayout& out_diff,
                    const TensorLayout& out_count,
                    const TensorLayout& data_diff,
                    const TensorLayout& trans_diff, size_t workspace_in_bytes);
};

class BatchConvBiasForward
        : public ConvolutionBase<param::BatchConvBias>,
          public detail::MultiAlgoOpr<BatchConvBiasForward, 5> {
    DEF_OPR_IMPL(BatchConvBiasForward, ConvolutionBase, 4, 1);

public:
    virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                      _megdnn_tensor_in bias, _megdnn_tensor_in z,
                      _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;

    void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
    void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
                       const TensorLayout& bias, const TensorLayout& z,
                       TensorLayout& dst);

    virtual size_t get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& filter,
                                          const TensorLayout& bias,
                                          const TensorLayout& z,
                                          const TensorLayout& dst) = 0;

protected:
    CanonizedFilterMeta check_exec(const TensorLayout& src,
                                   const TensorLayout& filter,
                                   const TensorLayout& bias,
                                   const TensorLayout& z,
                                   const TensorLayout& dst,
                                   size_t workspace_in_bytes);
};
using BatchConvBias = BatchConvBiasForward;

}  // namespace megdnn
#include "megdnn/internal/opr_header_epilogue.h"

// vim: syntax=cpp.doxygen