graph_rt.cpp 31.0 KB
Newer Older
M
Megvii Engine Team 已提交
1 2 3 4
/**
 * \file imperative/python/src/graph_rt.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
M
Megvii Engine Team 已提交
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "./graph_rt.h"

M
Megvii Engine Team 已提交
14 15 16 17
#include "./common.h"
#include "./helper.h"
#include "./ops.h"
#include "megbrain/gopt/inference.h"
18
#include "megbrain/graph/cg.h"
M
Megvii Engine Team 已提交
19
#include "megbrain/imperative.h"
20
#include "megbrain/imperative/opr_utility.h"
M
Megvii Engine Team 已提交
21 22
#include "megbrain/imperative/profiler_plugin.h"
#include "megbrain/opr/basic_arith.h"
M
Megvii Engine Team 已提交
23
#include "megbrain/opr/io.h"
24
#include "megbrain/opr/utility.h"
25
#include "megbrain/plugin/profiler.h"
M
Megvii Engine Team 已提交
26
#include "megbrain/serialization/serializer.h"
27 28 29 30 31

namespace py = pybind11;

using namespace mgb;
using namespace imperative;
32
namespace ser = mgb::serialization;
33

34 35
using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
36
using _AlgoStrategy = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
37
using _SerializationMetadata = mgb::serialization::Metadata;
38

39 40 41 42 43
namespace {
class _CompGraphProfilerImpl {
    std::shared_ptr<ComputingGraph> m_comp_graph;
    GraphProfiler m_profiler;

M
Megvii Engine Team 已提交
44 45 46 47 48 49 50 51
public:
    _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg)
            : m_comp_graph{cg}, m_profiler{m_comp_graph.get()} {}

    std::string _get_result() {
        auto json = m_profiler.to_json_full(m_comp_graph->current_comp_seq());
        return json->to_string();
    }
52
};
53

M
Megvii Engine Team 已提交
54 55
struct WeakRendezvousArray : public std::vector<std::weak_ptr<RendezvousBase>>,
                             public UserDataContainer::UserData {
56 57 58
    MGB_TYPEINFO_OBJ_DECL;
};
MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
M
Megvii Engine Team 已提交
59
}  // namespace
60 61
#define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)

M
Megvii Engine Team 已提交
62
template <typename T>
63 64
auto def_rendezvous(py::object m, const char* name) {
    return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
M
Megvii Engine Team 已提交
65 66 67 68 69 70 71 72 73 74 75
            .def(py::init([]() { return Rendezvous<T>::make(); }))
            .def("set", [](Rendezvous<T>& r, T v) { r.set(std::move(v)); })
            .def(
                    "get", [](Rendezvous<T>& r) { return r.get(); },
                    py::call_guard<py::gil_scoped_release>())
            .def("drop", &Rendezvous<T>::drop)
            .def("reset", &Rendezvous<T>::reset)
            .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
                r.set_exception(std::make_exception_ptr(
                        std::runtime_error(std::move(message))));
            });
76 77 78
}

using TensorAttr = LogicalTensorDesc;
M
Megvii Engine Team 已提交
79
using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
80

M
Megvii Engine Team 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93
std::vector<mgb::cg::VarNode*> _replace_vars(
        const std::vector<mgb::cg::VarNode*>& repl_src,
        const std::vector<mgb::cg::VarNode*>& repl_dst,
        const std::vector<mgb::cg::VarNode*>& vars) {
    mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
    for (size_t i = 0; i < repl_src.size(); ++i) {
        varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
    }
    SymbolVarArray symvars(vars.begin(), vars.end());
    auto sym_result = mgb::cg::replace_vars(symvars, varmap);
    std::vector<mgb::cg::VarNode*> result;
    for (auto symvar : sym_result) {
        result.push_back(symvar.node());
94
    }
M
Megvii Engine Team 已提交
95 96
    return result;
}
97 98

typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
M
Megvii Engine Team 已提交
99 100 101 102 103 104
std::vector<mgb::cg::VarNode*> _replace_oprs(
        const OperatorArray& repl_src, const OperatorArray& repl_dst,
        const std::vector<mgb::cg::VarNode*>& vars) {
    mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*> oprmap;
    for (size_t i = 0; i < repl_src.size(); ++i) {
        oprmap[repl_src[i]] = repl_dst[i];
105
    }
M
Megvii Engine Team 已提交
106 107 108 109 110 111 112 113
    const SymbolVarArray symvars(vars.begin(), vars.end());
    auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
    std::vector<mgb::cg::VarNode*> result;
    for (auto symvar : sym_result) {
        result.push_back(symvar.node());
    }
    return result;
}
114 115

void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
M
Megvii Engine Team 已提交
116 117 118
    auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
        if (opr->node_prop().attribute().priority == 0) {
            opr->node_prop().attribute().priority = opr->id();
119
        }
M
Megvii Engine Team 已提交
120 121 122 123 124
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (const auto& var : dest_vars) {
        dep_iter.add(SymbolVar(var));
    }
125 126
}

127
void init_graph_rt(py::module m) {
M
Megvii Engine Team 已提交
128 129
    static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{
            std::make_unique<mgb::OprFootprint>()};
130

131 132
    def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");

M
Megvii Engine Team 已提交
133 134
    def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");

135 136 137
    def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");

    py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
M
Megvii Engine Team 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
            .def_property_readonly(
                    "owner", [](cg::VarNode* v) { return v->owner_opr(); })
            .def_property_readonly(
                    "graph", [](cg::VarNode* v) { return v->owner_graph(); })
            .def_property(
                    "name", py::overload_cast<>(&VarNode::name, py::const_),
                    py::overload_cast<std::string>(&VarNode::name))
            .def_property_readonly("dtype", [](cg::VarNode* v) { return v->dtype(); })
            .def_property_readonly(
                    "comp_node", [](cg::VarNode* v) { return v->comp_node(); })
            .def_property_readonly(
                    "shape",
                    [](cg::VarNode* v) -> const TensorShape* {
                        auto&& mgr = v->owner_graph()->static_infer_manager();
                        return mgr.infer_shape_fallible(v);
                    })
            .def_property_readonly(
                    "value",
                    [](cg::VarNode* v) -> py::object {
                        auto&& mgr = v->owner_graph()->static_infer_manager();
                        auto&& type = mgr.get_infer_type(v);
                        using InferType = cg::static_infer::InferType;
                        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                            return py::none();
                        }
                        auto* val = mgr.infer_value_fallible(v);
                        if (!val) {
                            return py::none();
                        }
                        return py::cast(*val).attr("numpy")();
                    })
            .def_property_readonly("id", [](cg::VarNode* v) { return (v->id()); })
            .def("__repr__", [](cg::VarNode* v) { return "Var:" + v->name(); });

    py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(
            m, "OperatorNode")
            .def_property_readonly(
                    "graph",
                    [](cg::OperatorNodeBase* opr) { return opr->owner_graph(); })
            .def_property(
                    "name",
                    py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
                    py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
            .def_property_readonly(
                    "inputs",
                    [](cg::OperatorNodeBase* opr) { return to_tuple(opr->input()); })
            .def_property_readonly(
                    "outputs",
                    [](cg::OperatorNodeBase* opr) {
                        return to_tuple(opr->usable_output());
                    })
            .def_property_readonly(
                    "id", [](cg::OperatorNodeBase* opr) { return opr->id(); })
            .def_property_readonly(
                    "params",
                    [](cg::OperatorNodeBase* opr) {
                        return _imperative_sm_opr_footprint_ptr->calc_footprint(opr)
                                .param->to_string();
                    })
            .def_property_readonly(
                    "type",
                    [](cg::OperatorNodeBase* opr) { return opr->dyn_typeinfo()->name; })
            .def("__repr__",
                 [](cg::OperatorNodeBase* opr) { return "Opr:" + opr->name(); })
            .def_property(
                    "priority",
                    [](cg::OperatorNodeBase* opr) {
                        return opr->node_prop().attribute().priority;
                    },
                    [](cg::OperatorNodeBase* opr, int priority) {
                        opr->node_prop().attribute().priority = priority;
                    });
210

211
    py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
M
Megvii Engine Team 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
            .def("execute", &cg::AsyncExecutable::execute,
                 py::call_guard<py::gil_scoped_release>())
            .def("wait", &cg::AsyncExecutable::wait,
                 py::call_guard<py::gil_scoped_release>())
            .def("get_prev_exec_time", &cg::AsyncExecutable::get_prev_exec_time,
                 py::call_guard<py::gil_scoped_release>())
            .def("_to_json",
                 [](cg::AsyncExecutable* exec) {
                     py::call_guard<py::gil_scoped_release>();
                     // dump currently compiled computing graph for debugging
                     return exec->to_json()->to_string();
                 })
            // only used for exception handle
            .def_property_readonly(
                    "_all_rendezvous",
                    [](cg::AsyncExecutable* exec) {
                        auto ud =
                                exec->owner_graph()
                                        ->options()
                                        .user_data.get_user_data<WeakRendezvousArray>();
                        std::vector<std::shared_ptr<RendezvousBase>> ret;
                        if (ud.second) {
                            for (auto&& r : *ud.first[0]) {
                                if (auto p = r.lock()) {
                                    ret.emplace_back(std::move(p));
                                }
                            }
                        }
                        return ret;
                    })
            .def("get_static_memory_alloc_info",
                 &cg::AsyncExecutable::get_static_memory_alloc_info,
                 py::call_guard<py::gil_scoped_release>());

    auto PyComputingGraph =
            py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(
                    m, "ComputingGraph")
                    .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
                    .def("compile",
                         [](cg::ComputingGraph& graph,
                            const std::vector<cg::VarNode*>& dest_vars) {
                             mgb_assert(!dest_vars.empty());
                             cg::ComputingGraph::OutputSpec spec;
                             for (auto v : dest_vars) {
                                 spec.emplace_back(v, nullptr);
                             }
                             return graph.compile(spec);
                         })
                    .def_property_readonly(
                            "options",
                            py::overload_cast<>(&cg::ComputingGraph::options));

    py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(
            m, "GraphProfiler")
            .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
267
                return std::make_shared<_CompGraphProfilerImpl>(graph);
M
Megvii Engine Team 已提交
268 269 270 271
            }))
            .def("get", [](_CompGraphProfilerImpl& profiler) {
                return profiler._get_result();
            });
272

273 274
    using interpreter::intl::ProfilerPlugin;
    py::class_<ProfilerPlugin, std::shared_ptr<ProfilerPlugin>>(m, "GraphProfiler2")
M
Megvii Engine Team 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
            .def(py::init<cg::ComputingGraph*>());

    auto GraphOptimizeOptions =
            py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
                    .def(py::init())
                    .def("serialize", &_OptimizeForInferenceOptions::serialize)
                    .def_static(
                            "deserialize", &_OptimizeForInferenceOptions::deserialize)
                    .def_readwrite(
                            "f16_io_f32_comp",
                            &_OptimizeForInferenceOptions::f16_io_f32_comp)
                    .def_readwrite(
                            "f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
                    .def_readwrite(
                            "fuse_conv_bias_nonlinearity",
                            &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
                    .def_readwrite(
                            "fuse_conv_bias_with_z",
                            &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
                    .def_readwrite(
                            "fuse_preprocess",
                            &_OptimizeForInferenceOptions::fuse_preprocess)
                    .def_readwrite(
                            "layout_transform",
                            &_OptimizeForInferenceOptions::layout_transform);
300 301

    py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
M
Megvii Engine Team 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
            .value("DEFAULT", _LayoutTransform::DEFAULT)
            .value("NCHW4", _LayoutTransform::NCHW4)
            .value("NHWCD4", _LayoutTransform::NHWCD4)
            .value("NCHW88", _LayoutTransform::NCHW88)
            .value("NCHW44", _LayoutTransform::NCHW44)
            .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
            .value("NCHW32", _LayoutTransform::NCHW32)
            .value("CHWN4", _LayoutTransform::CHWN4)
            .value("NCHW64", _LayoutTransform::NCHW64)
            .export_values();

    m.def("optimize_for_inference",
          [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
              SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
              auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
              VarNodeArray vars;
              for (auto& si : res_symvars)
                  vars.push_back(si.node());
              return vars;
          });

    m.def("modify_opr_algo_strategy_inplace",
          [](const VarNodeArray& dest_vars, const _AlgoStrategy& strategy) {
              mgb::gopt::modify_opr_algo_strategy_inplace(dest_vars, strategy);
          });
327

328 329
    m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
        std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
M
Megvii Engine Team 已提交
330
        auto on_opr = [&](cg::OperatorNodeBase* opr) {
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
            if (ser::GraphDumper::should_remove_in_dump(opr))
                return;
            opr_types.insert(opr->dyn_typeinfo()->name);
            for (auto i : opr->output())
                dtype_names.insert(i->dtype().name());
            if (opr->same_type<opr::Elemwise>()) {
                auto mode = opr->cast_final<opr::Elemwise>().param().mode;
                elemwise_modes.insert(
                        megdnn::Elemwise::ModeTrait::from_mode(mode).name);
            }
        };
        cg::DepOprIter opr_iter{on_opr};
        for (auto i : dest_vars)
            opr_iter.add(i->owner_opr());

M
Megvii Engine Team 已提交
346
        auto to_json = [](const std::unordered_set<const char*>& v) {
347 348 349
            std::vector<std::string> vs(v.begin(), v.end());
            std::sort(vs.begin(), vs.end());
            auto ret = json::Array::make();
M
Megvii Engine Team 已提交
350
            for (auto&& i : vs)
351 352 353 354 355
                ret->add(json::String::make(i));
            return ret;
        };

        return json::Object::make({
M
Megvii Engine Team 已提交
356 357 358 359 360
                                          {"opr_types", to_json(opr_types)},
                                          {"dtypes", to_json(dtype_names)},
                                          {"elemwise_modes", to_json(elemwise_modes)},
                                  })
                ->to_string();
361 362
    });

363
    py::class_<_SerializationMetadata>(m, "SerializationMetadata")
M
Megvii Engine Team 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
            .def(py::init())
            .def_property(
                    "user_info",
                    [](const _SerializationMetadata& meta) {
                        return py::bytes(meta.get_user_info());
                    },
                    &_SerializationMetadata::set_user_info)
            .def_readonly(
                    "optimized_for_inference",
                    &_SerializationMetadata::optimized_for_inference)
            .def_property(
                    "optimize_options", &_SerializationMetadata::get_optimize_options,
                    &_SerializationMetadata::set_optimize_options)
            .def_readwrite("graph_modified", &_SerializationMetadata::graph_modified)
            .def_readwrite("is_valid", &_SerializationMetadata::is_valid);

    m.def("dump_graph",
          [](const std::vector<VarNode*>& dest_vars, int keep_var_name,
             bool keep_opr_name, bool keep_param_name, bool keep_opr_priority,
             std::optional<_SerializationMetadata> metadata, py::list& stat,
             py::list& inputs, py::list& outputs, py::list& params) {
              std::vector<uint8_t> buf;
              auto dumper =
                      ser::GraphDumper::make(ser::OutputFile::make_vector_proxy(&buf));
              SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());

              ser::GraphDumper::DumpConfig config{
                      keep_var_name, keep_param_name, keep_opr_priority, keep_opr_name};

              ser::GraphDumper::DumpResult rst;
              if (metadata)
                  rst = dumper->dump(symvars, config, *metadata);
              else
                  rst = dumper->dump(symvars, config);

              for (auto i : rst.inputs) {
                  inputs.append(py::cast(i));
              }
              for (auto i : rst.outputs) {
                  outputs.append(py::cast(i));
              }
              for (auto i : rst.params) {
                  params.append(py::cast(i));
              }
              auto rst_stat = std::vector{
                      rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
                      static_cast<size_t>(rst.content_hash)};
              for (auto i : rst_stat) {
                  stat.append(py::cast(i));
              }
              return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
          });

    m.def("load_graph",
          [](std::string& buf, py::list& output_var_map, py::list& output_var_list) {
              auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
              auto format = ser::GraphLoader::identify_graph_dump_format(*file);
              auto loader = ser::GraphLoader::make(std::move(file), format.val());
              ser::GraphLoader::LoadConfig config;
              auto rst = loader->load(config);
              for (auto i : rst.output_var_map) {
                  output_var_map.append(py::make_tuple(i.first, i.second.node()));
              }
              for (auto i : rst.output_var_list) {
                  output_var_list.append(i.node());
              }
              std::unordered_map<HostTensorND*, const std::string*> tensor2name;
              for (const auto& pair : rst.tensor_map) {
                  tensor2name[pair.second.get()] = &pair.first;
              }
              auto cb = [&tensor2name, graph = rst.graph](cg::OperatorNodeBase* opr) {
                  if (!opr->same_type<opr::Host2DeviceCopy>())
                      return;
                  auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
                  auto it = tensor2name.find(h2d.host_data().get());
                  mgb_throw_if(
                          it == tensor2name.end(), GraphError,
                          "unbound Host2DeviceCopy in loaded graph");
                  h2d.output(0)->name(*it->second);
              };
              cg::DepOprIter iter{cb};
              for (const auto& var : rst.output_var_list) {
                  iter.add(var);
              }
              auto ret = py::tuple(2);
              ret[0] = py::cast(rst.graph);
              ret[1] = py::cast(rst.metadata);
              return ret;
          });
453

454 455
#define CURRENT_CLASS cg::ComputingGraph::Options

456
    // clang-format off
M
Megvii Engine Team 已提交
457 458
    auto PyComputingGraphOptions =
            py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
                // DEF_READWRITE(opr_attribute)
                DEF_READWRITE(seq_opt)
                DEF_READWRITE(graph_opt)
                DEF_READWRITE(graph_opt_level)
                DEF_READWRITE(log_level)
                DEF_READWRITE(async_exec_level)
                DEF_READWRITE(force_dynamic_alloc)
                DEF_READWRITE(var_sanity_check_first_run)
                DEF_READWRITE(allocate_static_mem_after_graph_compile)
                DEF_READWRITE(fake_next_exec)
                DEF_READWRITE(enable_sublinear_memory_opt)
                DEF_READWRITE(enable_dtr_memory_opt)
                DEF_READWRITE(no_profiling_on_shape_change)
                DEF_READWRITE(enable_var_mem_defragment)
                DEF_READWRITE(enable_grad_var_static_reshape)
                DEF_READWRITE(enable_memory_swap)
                DEF_READWRITE(comp_node_seq_record_level)
                DEF_READWRITE(no_force_inplace)
                DEF_READWRITE(sublinear_mem_config)
                DEF_READWRITE(dtr_config)
                // DEF_READWRITE(eager_evaluation)
                // DEF_READWRITE(imperative_proxy_graph)
                // DEF_READWRITE(extra_vardeps)
                // DEF_READWRITE(user_data)
M
Megvii Engine Team 已提交
483
            ;
484
    // clang-format on
485 486 487 488 489

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt

    py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
M
Megvii Engine Team 已提交
490 491
            DEF_READWRITE(enable_mem_plan_opt) DEF_READWRITE(enable_mem_reuse_alloc)
                    DEF_READWRITE(enable_seq_comp_node_opt);
492 493 494 495

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt

496
    auto PyGraphOpt = py::class_<cg::ComputingGraph::Options::GraphOpt>(
M
Megvii Engine Team 已提交
497 498 499
            PyComputingGraphOptions, "GraphOpt") DEF_READWRITE(jit)
            DEF_READWRITE(jit_config)
            DEF_READWRITE(tensorrt);
500 501

#undef CURRENT_CLASS
502
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt::JITConfig
503

M
Megvii Engine Team 已提交
504 505 506
    py::class_<cg::ComputingGraph::Options::GraphOpt::JITConfig>(
            PyGraphOpt, "JITConfig") DEF_READWRITE(fuse_dimshuffle)
            DEF_READWRITE(fuse_reduce);
507 508

#undef CURRENT_CLASS
509 510
#define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig

M
Megvii Engine Team 已提交
511 512 513 514
    py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(
            PyComputingGraphOptions, "SublinearMemConfig") DEF_READWRITE(thresh_nr_try)
            DEF_READWRITE(genetic_nr_iter) DEF_READWRITE(genetic_pool_size)
                    DEF_READWRITE(lb_memory_mb) DEF_READWRITE(num_worker);
515

516 517 518 519
#undef CURRENT_CLASS

#define CURRENT_CLASS cg::ComputingGraph::Options::DTRConfig

M
Megvii Engine Team 已提交
520 521 522 523
    py::class_<cg::ComputingGraph::Options::DTRConfig>(
            PyComputingGraphOptions, "DTRConfig") DEF_READWRITE(eviction_threshold)
            DEF_READWRITE(evictee_minimum_size) DEF_READWRITE(recomp_memory_factor)
                    DEF_READWRITE(recomp_time_factor);
524

525
#undef CURRENT_CLASS
526 527
    auto common = rel_import("common", m, 1);

M
Megvii Engine Team 已提交
528 529 530 531 532 533 534 535
    common.def(
            "invoke_op",
            [](const OpDef& def, const std::vector<cg::VarNode*> inputs,
               cg::ComputingGraph* graph) {
                cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
                return to_tuple(OpDef::apply_on_var_node(def, vinputs));
            },
            py::arg(), py::arg(), py::arg("graph") = py::none());
536

M
Megvii Engine Team 已提交
537 538
    auto input_callback = [](auto callback, const CompNode& comp_node,
                             const DType& dtype, const TensorShape& shape,
539
                             const std::vector<cg::VarNode*>& inputs,
M
Megvii Engine Team 已提交
540
                             cg::ComputingGraph* graph, bool use_static_shape) {
541 542 543 544 545 546 547 548
        if (!graph) {
            graph = inputs[0]->owner_graph();
        }
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
M
Megvii Engine Team 已提交
549 550 551
        auto soutputs = opr::InputCallback::make(
                *graph, std::move(callback), comp_node, dtype, shape, sinputs,
                use_static_shape);
552 553 554 555 556 557 558 559
        std::vector<VarNode*> outputs;
        outputs.reserve(soutputs.size());
        for (auto i : soutputs) {
            outputs.push_back(i.node());
        }
        return outputs;
    };

M
Megvii Engine Team 已提交
560
    m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
M
Megvii Engine Team 已提交
561 562 563 564
        return opr::SharedDeviceTensor::make(
                       *graph, std::make_shared<DeviceTensorND>(data))
                .node();
    });
M
Megvii Engine Team 已提交
565

M
Megvii Engine Team 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    m.def(
            "make_const",
            [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype,
               std::optional<std::string> name) {
                if (!cn.valid()) {
                    cn = CompNode::load(get_default_device());
                }
                OperatorNodeConfig config(cn);
                if (name) {
                    config.name(*name);
                }
                auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
                return opr::ImmutableTensor::make(*graph, hv, config).node();
            },
            py::arg(), py::arg(), py::arg(), py::arg(), py::arg() = py::none());

    m.def(
            "make_h2d",
            [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape,
               std::optional<std::string> name) {
                if (!cn.valid()) {
                    throw py::type_error("device must be valid");
                }
                if (!dtype.valid()) {
                    throw py::type_error("dtype must be valid");
                }
                OperatorNodeConfig config;
                if (name) {
                    config.name(*name);
                }
                return opr::Host2DeviceCopy::make(
                               graph, std::make_shared<HostTensorND>(cn, shape, dtype),
                               config)
                        .node();
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::none());

    m.def("_replace_vars", &_replace_vars, py::arg(), py::arg(), py::arg());
    m.def("_replace_oprs", &_replace_oprs, py::arg(), py::arg(), py::arg());
    m.def("_set_priority_to_id", &_set_priority_to_id, py::arg());

    m.def(
            "input_callback",
            [input_callback](
                    std::function<DeviceTensorND(void)> callback,
                    const CompNode& comp_node, const DType& dtype,
                    const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
                    cg::ComputingGraph* graph, bool use_static_shape) {
                return input_callback(
                        [f = std::move(callback)]() {
                            py::gil_scoped_acquire _;
                            return f();
                        },
                        comp_node, dtype, shape, inputs, graph, use_static_shape);
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::tuple(), py::arg("graph") = py::none(),
            py::arg("use_static_shape") = false);

    m.def(
            "input_callback",
            [input_callback](
                    std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                    const CompNode& comp_node, const DType& dtype,
                    const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
                    cg::ComputingGraph* graph, bool use_static_shape) {
                auto f = [p]() -> DeviceTensorND { return p->get(); };
                return input_callback(
                        std::move(f), comp_node, dtype, shape, inputs, graph,
                        use_static_shape);
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::tuple(), py::arg("graph") = py::none(),
            py::arg("use_static_shape") = false);
641

642
    auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
M
Megvii Engine Team 已提交
643 644
                              std::shared_ptr<RendezvousBase> r = {},
                              bool borrow = false, bool prefer_host_value = false) {
645 646 647
        if (r) {
            mgb_assert(inputs.size());
            auto cg = inputs[0]->owner_graph();
M
Megvii Engine Team 已提交
648 649
            cg->options()
                    .user_data.get_user_data_or_create<WeakRendezvousArray>()
650 651
                    ->emplace_back(r);
        }
652 653 654 655 656
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
M
Megvii Engine Team 已提交
657 658
        opr::OutputCallback::Param param{
                std::move(callback), borrow, prefer_host_value};
659 660 661 662
        auto output = opr::OutputCallback::make(std::move(param), sinputs);
        return output.node();
    };

M
Megvii Engine Team 已提交
663 664 665 666 667
    m.def("output_callback", [output_callback](
                                     std::function<void(DeviceTensorND)> callback,
                                     std::vector<cg::VarNode*> inputs) {
        auto f = [f = std::move(callback)](DeviceTensorND dv) {
            auto task = [f = std::move(f), dv = std::move(dv)]() { f(dv); };
668 669 670 671 672
            py_task_q.add_task(std::move(task));
        };
        return output_callback(std::move(f), std::move(inputs));
    });

M
Megvii Engine Team 已提交
673 674 675 676
    m.def("output_callback", [output_callback](
                                     std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                                     std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) { p->set(std::move(dv)); };
677
        return output_callback(std::move(f), std::move(inputs), p);
678 679
    });

M
Megvii Engine Team 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    m.def("value_output_callback",
          [output_callback](
                  std::shared_ptr<Rendezvous<HostNDWithEvent>> p,
                  std::vector<cg::VarNode*> inputs) {
              auto f = [p](DeviceTensorND dv) {
                  HostNDWithEvent hv_with_event;
                  hv_with_event.first.copy_from(dv);
                  hv_with_event.second = dv.comp_node().create_event();
                  hv_with_event.second->record();
                  p->set(std::move(hv_with_event));
              };
              return output_callback(std::move(f), std::move(inputs), p, true, true);
          });

    m.def("attr_output_callback", [output_callback](
                                          std::shared_ptr<Rendezvous<TensorAttr>> p,
                                          std::vector<cg::VarNode*> inputs) {
697 698 699
        auto f = [p](DeviceTensorND dv) {
            p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
        };
700
        return output_callback(std::move(f), std::move(inputs), p, true);
701
    });
702 703 704 705 706 707 708 709

    m.def("virtual_dep", [](std::vector<cg::VarNode*> inputs, std::string device) {
        auto&& graph = inputs[0]->owner_graph();
        VarNodeArray inps(inputs.begin(), inputs.end());
        cg::OperatorNodeConfig config;
        if (device.length() > 0) {
            config.comp_node(CompNode::load(device));
        }
M
Megvii Engine Team 已提交
710 711
        cg::OperatorNodeBase* opr =
                graph->insert_opr(std::make_unique<mgb::opr::VirtualDep>(inps, config));
712 713
        return opr;
    });
714
}