graph_rt.cpp 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#include "./graph_rt.h"

#include "megbrain/imperative/opr_utility.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/imperative.h"
#include "./helper.h"

namespace py = pybind11;

using namespace mgb;
using namespace imperative;

#define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)

template<typename T>
auto def_rendezvous(py::object m, const char* name) {
    return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
        .def(py::init([](){return std::make_shared<Rendezvous<T>>();}))
        .def("set", [](Rendezvous<T>& r, T v) {r.set(std::move(v));})
        .def("get", [](Rendezvous<T>& r) {return r.get();}, py::call_guard<py::gil_scoped_release>())
        .def("reset", &Rendezvous<T>::reset);
}

using TensorAttr = LogicalTensorDesc;

void init_graph_rt(py::module m) {
    def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");

    def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");

    py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
        .def_property_readonly("owner", [](cg::VarNode* v) {return v->owner_opr();})
        .def_property_readonly("graph", [](cg::VarNode* v) {return v->owner_graph();})
        .def_property_readonly("dtype", [](cg::VarNode* v) {return v->dtype();})
        .def_property_readonly("comp_node", [](cg::VarNode* v) {return v->comp_node();});

    py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode")
        .def_property_readonly("graph", [](cg::OperatorNodeBase* opr) {return opr->owner_graph();})
        .def_property_readonly("inputs", [](cg::OperatorNodeBase* opr) {
                return to_tuple(opr->input());
            })
        .def_property_readonly("outputs", [](cg::OperatorNodeBase* opr) {
                return to_tuple(opr->output());
            });

    py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
        .def("execute", &cg::AsyncExecutable::execute, py::call_guard<py::gil_scoped_release>())
        .def("wait", &cg::AsyncExecutable::wait, py::call_guard<py::gil_scoped_release>());

    auto PyComputingGraph = py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(m, "ComputingGraph")
        .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
        .def("compile", [](cg::ComputingGraph& graph, const std::vector<cg::VarNode*>& dest_vars) {
                mgb_assert(!dest_vars.empty());
                cg::ComputingGraph::OutputSpec spec;
                for (auto v : dest_vars) {
                    spec.emplace_back(v, nullptr);
                }
                return graph.compile(spec);
            })
        .def_property_readonly("options", py::overload_cast<>(&cg::ComputingGraph::options));

#define CURRENT_CLASS cg::ComputingGraph::Options

    auto PyComputingGraphOptions = py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
        // DEF_READWRITE(opr_attribute)
        DEF_READWRITE(seq_opt)
        DEF_READWRITE(graph_opt)
        DEF_READWRITE(graph_opt_level)
        DEF_READWRITE(log_level)
        DEF_READWRITE(async_exec_level)
        DEF_READWRITE(force_dynamic_alloc)
        DEF_READWRITE(var_sanity_check_first_run)
        DEF_READWRITE(allocate_static_mem_after_graph_compile)
        DEF_READWRITE(fake_next_exec)
        DEF_READWRITE(enable_sublinear_memory_opt)
        DEF_READWRITE(no_profiling_on_shape_change)
        DEF_READWRITE(enable_var_mem_defragment)
        DEF_READWRITE(enable_grad_var_static_reshape)
        DEF_READWRITE(enable_memory_swap)
        DEF_READWRITE(comp_node_seq_record_level)
        // DEF_READWRITE(eager_evaluation)
        // DEF_READWRITE(imperative_proxy_graph)
        // DEF_READWRITE(extra_vardeps)
        // DEF_READWRITE(user_data)
        ;

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt

    py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
        DEF_READWRITE(enable_mem_plan_opt)
        DEF_READWRITE(enable_mem_reuse_alloc)
        DEF_READWRITE(enable_seq_comp_node_opt);

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt

    py::class_<cg::ComputingGraph::Options::GraphOpt>(PyComputingGraphOptions, "GraphOpt")
        DEF_READWRITE(jit)
        DEF_READWRITE(tensorrt);

#undef CURRENT_CLASS

    auto common = rel_import("common", m, 1);

    common.def("invoke_op", [](const OpDef& def, const std::vector<cg::VarNode*> inputs, cg::ComputingGraph* graph) {
            cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
            auto opr = OpDef::apply_on_var_node(def, vinputs);
            auto outputs = opr->output();
            return to_tuple(outputs);
        },
        py::arg(), py::arg(), py::arg("graph") = py::none());

    auto input_callback = [](auto callback,
                             const CompNode& comp_node,
                             const DType& dtype,
                             const std::vector<cg::VarNode*>& inputs,
                             cg::ComputingGraph* graph) {
        if (!graph) {
            graph = inputs[0]->owner_graph();
        }
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
        auto soutputs = opr::InputCallback::make(*graph, std::move(callback), comp_node, dtype, sinputs);
        std::vector<VarNode*> outputs;
        outputs.reserve(soutputs.size());
        for (auto i : soutputs) {
            outputs.push_back(i.node());
        }
        return outputs;
    };

    m.def("input_callback", [input_callback](std::function<DeviceTensorND(void)> callback,
                                             const CompNode& comp_node,
                                             const DType& dtype,
                                             const std::vector<cg::VarNode*>& inputs,
                                             cg::ComputingGraph* graph) {
            return input_callback([f=std::move(callback)](){py::gil_scoped_acquire _; return f();}, comp_node, dtype, inputs, graph);
        },
        py::arg(), py::arg(), py::arg(), py::arg() = py::tuple(), py::arg("graph") = py::none());

    m.def("input_callback", [input_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                                             const CompNode& comp_node,
                                             const DType& dtype,
                                             const std::vector<cg::VarNode*>& inputs,
                                             cg::ComputingGraph* graph) {
            auto f = [p]() -> DeviceTensorND {
                return p->get();
            };
            return input_callback(std::move(f), comp_node, dtype, inputs, graph);
        },
        py::arg(), py::arg(), py::arg(), py::arg() = py::tuple(), py::arg("graph") = py::none());

    auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs, bool borrow = false) {
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
        opr::OutputCallback::Param param{std::move(callback), borrow};
        auto output = opr::OutputCallback::make(std::move(param), sinputs);
        return output.node();
    };

    m.def("output_callback", [output_callback](std::function<void(DeviceTensorND)> callback, std::vector<cg::VarNode*> inputs) {
        auto f = [f=std::move(callback)](DeviceTensorND dv) {
            auto task = [f=std::move(f), dv=std::move(dv)]() {
                f(dv);
            };
            py_task_q.add_task(std::move(task));
        };
        return output_callback(std::move(f), std::move(inputs));
    });

    m.def("output_callback", [output_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p, std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) {
            p->set(std::move(dv));
        };
        return output_callback(std::move(f), std::move(inputs));
    });

    m.def("attr_output_callback", [output_callback](std::shared_ptr<Rendezvous<TensorAttr>> p, std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) {
            p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
        };
        return output_callback(std::move(f), std::move(inputs), true);
    });
}