conv_bias.cpp 15.9 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/common/conv_bias.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14
 */

#include "src/common/conv_bias.h"
#include "src/common/utils.h"
15
#include "src/common/opr_delegate.h"
16 17

namespace megdnn {
18
namespace {
19

20 21 22 23 24 25
void do_check_exec_common(
        ConvBiasForward* opr, const TensorLayout& src,
        const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& z, const TensorLayout& dst,
        size_t workspace_in_bytes,
        const ConvBiasForward::PreprocessedFilter* preprocessed_filter) {
26 27 28
    megdnn_assert((src.dtype.enumv() == filter.dtype.enumv()) ||
                  (src.dtype.enumv() == DTypeEnum::Quantized4Asymm &&
                   filter.dtype.enumv() == DTypeEnum::QuantizedS4));
29 30
    // check compatibility of bias's scale
    if (src.dtype.category() == DTypeCategory::QUANTIZED) {
31
        if (bias.dtype.enumv() == DTypeEnum::QuantizedS32) {
32
            float scale_expected = mul_scale(src.dtype, filter.dtype);
33
            float scale_bias = bias.dtype.param<dtype::QuantizedS32>().scale;
34 35 36 37
            megdnn_assert(std::abs(scale_expected - scale_bias) < 1e-6,
                          "scale_src: %f scale_filter: %f scale_bias: %f",
                          get_scale(src.dtype), get_scale(filter.dtype),
                          scale_bias);
38
        } else {
39
            megdnn_assert(bias.dtype.enumv() == DTypeEnum::Float32);
40 41 42 43
        }
    }

    megdnn_assert_contiguous(bias);
44
    auto required_workspace_in_bytes = opr->get_workspace_in_bytes(
45 46 47 48
            src, filter, bias, z, dst, preprocessed_filter);
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes,
                  "worksapce have size of %zu, but need %zu",
                  workspace_in_bytes, required_workspace_in_bytes);
49 50 51 52 53 54 55 56 57
    if (bias.ndim != 0) {
        //! bias.layout == dst.layout failed, no assert information
        auto check_eq = [](const TensorLayout& bias, const TensorLayout& dst) {
            if (dst.dtype.category() == DTypeCategory::QUANTIZED) {
                return bias.eq_shape(dst);
            } else {
                return bias.eq_layout(dst);
            }
        };
58 59 60 61 62
        if (check_eq(bias, dst)) {
            return;
        }
        if (opr->param().format == param::ConvBias::Format::NCHW ||
            opr->param().format == param::ConvBias::Format::NCHW4_NCHW) {
63 64 65 66 67
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
68 69
        } else if (param().format == param::ConvBias::Format::NHWC ||
                   param().format == param::ConvBias::Format::NCHW4_NHWC) {
70 71 72 73 74
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == dst.shape[3], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
75 76 77 78 79
        } else if (opr->param().format == param::ConvBias::Format::NCHW4 ||
                   opr->param().format == param::ConvBias::Format::NCHW44 ||
                   opr->param().format == param::ConvBias::Format::NCHW44_DOT ||
                   opr->param().format ==
                           param::ConvBias::Format::NCHW32_NCHW4) {
80 81 82 83 84 85
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
86 87
        } else if (opr->param().format == param::ConvBias::Format::NCHW8 ||
                   opr->param().format == param::ConvBias::Format::NCHW88) {
88 89 90 91 92 93
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 8);
94 95 96
        } else if (opr->param().format == param::ConvBias::Format::NCHW32 ||
                   opr->param().format ==
                           param::ConvBias::Format::NCHW4_NCHW32) {
97 98 99 100 101 102
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 32);
103
        } else if (opr->param().format == param::ConvBias::Format::CHWN4) {
104 105 106 107 108 109
            megdnn_assert(bias.shape[0] == dst.shape[0], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
110
        } else if (opr->param().format == param::ConvBias::Format::NCHW64) {
111 112 113 114 115 116
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 64);
117
        } else {
118 119
            megdnn_assert(opr->param().format ==
                          param::ConvBias::Format::NHWCD4);
120 121 122 123 124 125 126 127 128 129
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == dst.shape[2], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        }
    }

    if (z.ndim != 0) {
130 131 132 133
        megdnn_assert(opr->param().format !=
                      param::ConvBias::Format::NCHW4_NCHW32);
        megdnn_assert(opr->param().format !=
                      param::ConvBias::Format::NCHW32_NCHW4);
134 135 136
        megdnn_assert(z.dtype.enumv() == dst.dtype.enumv());
        megdnn_assert(z.eq_shape(dst));
    }
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

}  // namespace

void ConvBiasForward::deduce_dtype(DType src, DType filter, DType /* bias */,
                                   DType /* z */, DType& dst) {
    check_or_deduce_dtype_fwd(src, filter, dst);
}

void ConvBiasForward::deduce_layout(const TensorLayout& src,
                                    const TensorLayout& filter,
                                    const TensorLayout& /* bias */,
                                    const TensorLayout& /* z */,
                                    TensorLayout& dst) {
    deduce_layout_fwd(src, filter, dst);
}

ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
        const TensorLayout& dst, size_t workspace_in_bytes,
        const PreprocessedFilter* preprocessed_filter) {
    do_check_exec_common(this, src, filter, bias, z, dst, workspace_in_bytes,
                         preprocessed_filter);
    auto ret = check_layout_fwd(src, filter, dst);
    return ret;
}

ConvBiasForward::CanonizedFilterMeta
ConvBiasForward::check_exec_allow_noncontiguous(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
        const TensorLayout& dst, size_t workspace_in_bytes,
        const PreprocessedFilter* preprocessed_filter) {
    do_check_exec_common(this, src, filter, bias, z, dst, workspace_in_bytes,
                         preprocessed_filter);
    TensorLayout dst_expected;
    dst_expected.dtype = dst.dtype;
    auto ret = deduce_layout_fwd(src, filter, dst_expected);
    megdnn_assert_eq_shape(dst_expected, dst);
177 178 179 180
    return ret;
}

template <typename T>
181 182 183 184
struct NCHWParamTrait;

template <typename T>
struct NCHW44ParamTrait;
185 186 187 188 189 190 191

std::string ConvBias::WinogradParam::to_string() const {
    return ssprintf("%u:%u:%u", channel_block_size, output_block_size,
                    tile_size);
}

template <typename T>
192 193 194 195 196 197 198 199 200 201 202
std::string ConvBias::algo_name(const std::string& base, const T& p,
                                param::ConvBias::Format format) {
    if (format == param::ConvBias::Format::NCHW) {
        return ssprintf("%s:%s:%s", NCHWParamTrait<T>::category.c_str(),
                        base.c_str(), p.to_string().c_str());
    } else if (format == param::ConvBias::Format::NCHW44) {
        return ssprintf("%s:%s:%s", NCHW44ParamTrait<T>::category.c_str(),
                        base.c_str(), p.to_string().c_str());
    }
    megdnn_throw("Invalid format");
    return "";
203 204 205
}

#define FOREACH_CONV_BIAS_PARAM(cb) \
206
    cb(WinogradParam) cb(DirectParam) cb(MatmulParam) cb(DefaultParam)
207

208 209 210 211 212 213 214 215
#define cb(pt)                              \
    template <>                             \
    struct NCHWParamTrait<ConvBias::pt> {   \
        static const std::string category;  \
    };                                      \
    template <>                             \
    struct NCHW44ParamTrait<ConvBias::pt> { \
        static const std::string category;  \
216 217 218 219
    };
FOREACH_CONV_BIAS_PARAM(cb)
#undef cb

220 221 222
#define cb(pt, ct)                                                 \
    const std::string NCHWParamTrait<ConvBias::pt>::category = ct; \
    const std::string NCHW44ParamTrait<ConvBias::pt>::category = ct
223 224 225 226 227
cb(DirectParam, "DIRECT");
cb(MatmulParam, "MATMUL");
cb(DefaultParam, "DEFAULT");
#undef cb

228 229 230 231 232
const std::string NCHWParamTrait<ConvBias::WinogradParam>::category =
        "WINOGRAD";
const std::string NCHW44ParamTrait<ConvBias::WinogradParam>::category =
        "WINOGRAD_NCHW44";

233 234
#define cb(t)                                              \
    template std::string ConvBias::algo_name<ConvBias::t>( \
235 236
            const std::string& base, const ConvBias::t& p, \
            param::ConvBias::Format format);
237 238 239 240 241 242 243
FOREACH_CONV_BIAS_PARAM(cb)
#undef cb

ConvBias::WinogradParam ConvBias::parse_winograd_name(
        const std::string& algo_name) {
    ConvBias::WinogradParam ret = INVALID_WINOGRAD_PARAM;
    char base[128];
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    char name[128];

    auto parse = [&](const std::string& algo_name,
                     const std::string& pre) -> auto {
        memset(name, 0, 128);
        sscanf(algo_name.c_str(), "%[^:]:%[^:]:%u:%u:%u", name, base,
               &(ret.channel_block_size), &(ret.output_block_size),
               &(ret.tile_size));
        if (strcmp(name, pre.c_str())) {
            ret = INVALID_WINOGRAD_PARAM;
            return false;
        }
        if (ret.tile_size == 0 || ret.output_block_size == 0 ||
            ret.channel_block_size == 0) {
            ret = INVALID_WINOGRAD_PARAM;
            return false;
        }
        return true;
    };

    if (parse(algo_name, "WINOGRAD_NCHW44")) {
        return ret;
    } else {
        parse(algo_name, "WINOGRAD");
        return ret;
269 270
    }
}
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
constexpr ConvBias::WinogradParam ConvBias::INVALID_WINOGRAD_PARAM;

void handle_bias_and_nonlinear(Handle* handle, param::ConvBias args,
                               const TensorND* conv_dst_tensor,
                               const TensorND* dst_tensor,
                               const TensorND* bias_tensor) {
    using NonlineMode = param::ConvBias::NonlineMode;
    switch (args.nonlineMode) {
#define cb(_mode)                                                          \
    case NonlineMode::_mode: {                                             \
        if (conv_dst_tensor->layout.dtype.category() !=                    \
            DTypeCategory::QUANTIZED) {                                    \
            auto nonlinear = handle->create_operator<ElemwiseForward>();   \
            if (bias_tensor->layout.ndim > 0) {                            \
                nonlinear->param().mode =                                  \
                        Elemwise::Param::Mode::FUSE_ADD_##_mode;           \
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},          \
                                *dst_tensor);                              \
            } else {                                                       \
                nonlinear->param().mode = Elemwise::Param::Mode::_mode;    \
                nonlinear->exec({*conv_dst_tensor}, *dst_tensor);          \
            }                                                              \
        } else {                                                           \
            auto nonlinear = handle->create_operator<ElemwiseMultiType>(); \
            if (bias_tensor->layout.ndim > 0) {                            \
                nonlinear->param().mode =                                  \
                        ElemwiseMultiType::Param::Mode::QFUSE_ADD_##_mode; \
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},          \
                                *dst_tensor);                              \
            } else {                                                       \
                nonlinear->param().mode =                                  \
                        ElemwiseMultiType::Param::Mode::Q##_mode;          \
                nonlinear->exec({*conv_dst_tensor}, *dst_tensor);          \
            }                                                              \
        }                                                                  \
        break;                                                             \
    }
        cb(RELU);
        cb(H_SWISH);
#undef cb
        case NonlineMode::SIGMOID: {
            megdnn_assert(conv_dst_tensor->layout.dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto nonlinear = handle->create_operator<ElemwiseForward>();
            if (bias_tensor->layout.ndim > 0) {
                nonlinear->param().mode =
                        Elemwise::Param::Mode::FUSE_ADD_SIGMOID;
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                *conv_dst_tensor);
            } else {
                nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID;
                nonlinear->exec({*conv_dst_tensor}, *conv_dst_tensor);
            }
            break;
        }
        case NonlineMode::IDENTITY: {
            if (bias_tensor->layout.ndim > 0) {
                if (dst_tensor->layout.dtype.category() ==
                    DTypeCategory::QUANTIZED) {
                    auto nonlinear =
                            handle->create_operator<ElemwiseMultiType>();
                    nonlinear->param().mode =
                            ElemwiseMultiType::Param::Mode::QADD;
                    nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                    *dst_tensor);
                } else {
                    auto nonlinear = handle->create_operator<Elemwise>();
                    nonlinear->param().mode = Elemwise::Param::Mode::ADD;
                    nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                    *dst_tensor);
                }
            } else {
                if (conv_dst_tensor->layout.dtype != dst_tensor->layout.dtype) {
                    handle->create_operator<TypeCvt>()->exec({*conv_dst_tensor},
                                                             *dst_tensor);
                }
            }
            break;
        }
        default:
            megdnn_assert(false);
    }
}
}  // namespace megdnn

// vim: syntax=cpp.doxygen