conv_bias.cpp 15.8 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/common/conv_bias.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15
 */

#include "src/common/conv_bias.h"
#include "megdnn/oprs/nn.h"
#include "src/common/utils.h"
16
#include "src/common/opr_delegate.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

namespace megdnn {

void ConvBiasForward::deduce_dtype(DType src, DType filter, DType /* bias */,
                                   DType /* z */, DType& dst) {
    check_or_deduce_dtype_fwd(src, filter, dst);
}

void ConvBiasForward::deduce_layout(const TensorLayout& src,
                                    const TensorLayout& filter,
                                    const TensorLayout& /* bias */,
                                    const TensorLayout& /* z */,
                                    TensorLayout& dst) {
    deduce_layout_fwd(src, filter, dst);
}

ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
36 37
        const TensorLayout& dst, size_t workspace_in_bytes,
        const PreprocessedFilter* preprocessed_filter) {
38
    megdnn_assert(src.dtype.enumv() == filter.dtype.enumv());
39 40
    // check compatibility of bias's scale
    if (src.dtype.category() == DTypeCategory::QUANTIZED) {
41
        if (bias.dtype.enumv() == DTypeEnum::QuantizedS32) {
42
            float scale_expected = mul_scale(src.dtype, filter.dtype);
43
            float scale_bias = bias.dtype.param<dtype::QuantizedS32>().scale;
44 45 46 47
            megdnn_assert(std::abs(scale_expected - scale_bias) < 1e-6,
                          "scale_src: %f scale_filter: %f scale_bias: %f",
                          get_scale(src.dtype), get_scale(filter.dtype),
                          scale_bias);
48
        } else {
49
            megdnn_assert(bias.dtype.enumv() == DTypeEnum::Float32);
50 51 52 53 54
        }
    }

    auto ret = check_layout_fwd(src, filter, dst);
    megdnn_assert_contiguous(bias);
55 56 57 58 59
    auto required_workspace_in_bytes = get_workspace_in_bytes(
            src, filter, bias, z, dst, preprocessed_filter);
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes,
                  "worksapce have size of %zu, but need %zu",
                  workspace_in_bytes, required_workspace_in_bytes);
60 61 62 63 64 65 66 67 68 69 70 71
    if (bias.ndim != 0) {
        //! bias.layout == dst.layout failed, no assert information
        auto check_eq = [](const TensorLayout& bias, const TensorLayout& dst) {
            if (dst.dtype.category() == DTypeCategory::QUANTIZED) {
                return bias.eq_shape(dst);
            } else {
                return bias.eq_layout(dst);
            }
        };
        if (check_eq(bias, dst))
            return ret;
        if (param().format == param::ConvBias::Format::NCHW ||
72
            param().format == param::ConvBias::Format::NCHW4_NCHW) {
73 74 75 76 77 78 79 80 81 82 83
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
        } else if (param().format == param::ConvBias::Format::NHWC) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == dst.shape[3], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
84 85
        } else if (param().format == param::ConvBias::Format::NCHW4 ||
                   param().format == param::ConvBias::Format::NCHW44 ||
86
                   param().format == param::ConvBias::Format::NCHW44_DOT ||
87
                   param().format == param::ConvBias::Format::NCHW32_NCHW4) {
88 89 90 91 92 93 94
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        } else if (param().format == param::ConvBias::Format::NCHW8 ||
95
                   param().format == param::ConvBias::Format::NCHW88 ) {
96 97 98 99 100 101
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 8);
102 103
        } else if (param().format == param::ConvBias::Format::NCHW32 ||
                   param().format == param::ConvBias::Format::NCHW4_NCHW32) {
104 105 106 107 108 109 110 111 112 113 114 115 116
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 32);
        } else if (param().format == param::ConvBias::Format::CHWN4) {
            megdnn_assert(bias.shape[0] == dst.shape[0], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
117 118 119 120 121 122 123
        } else if (param().format == param::ConvBias::Format::NCHW64) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 64);
124 125 126 127 128 129 130 131 132 133 134 135
        } else {
            megdnn_assert(param().format == param::ConvBias::Format::NHWCD4);
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == dst.shape[2], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        }
    }

    if (z.ndim != 0) {
136 137
        megdnn_assert(param().format != param::ConvBias::Format::NCHW4_NCHW32);
        megdnn_assert(param().format != param::ConvBias::Format::NCHW32_NCHW4);
138 139 140 141 142 143 144
        megdnn_assert(z.dtype.enumv() == dst.dtype.enumv());
        megdnn_assert(z.eq_shape(dst));
    }
    return ret;
}

template <typename T>
145 146 147 148
struct NCHWParamTrait;

template <typename T>
struct NCHW44ParamTrait;
149 150 151 152 153 154 155

std::string ConvBias::WinogradParam::to_string() const {
    return ssprintf("%u:%u:%u", channel_block_size, output_block_size,
                    tile_size);
}

template <typename T>
156 157 158 159 160 161 162 163 164 165 166
std::string ConvBias::algo_name(const std::string& base, const T& p,
                                param::ConvBias::Format format) {
    if (format == param::ConvBias::Format::NCHW) {
        return ssprintf("%s:%s:%s", NCHWParamTrait<T>::category.c_str(),
                        base.c_str(), p.to_string().c_str());
    } else if (format == param::ConvBias::Format::NCHW44) {
        return ssprintf("%s:%s:%s", NCHW44ParamTrait<T>::category.c_str(),
                        base.c_str(), p.to_string().c_str());
    }
    megdnn_throw("Invalid format");
    return "";
167 168 169
}

#define FOREACH_CONV_BIAS_PARAM(cb) \
170
    cb(WinogradParam) cb(DirectParam) cb(MatmulParam) cb(DefaultParam)
171

172 173 174 175 176 177 178 179
#define cb(pt)                              \
    template <>                             \
    struct NCHWParamTrait<ConvBias::pt> {   \
        static const std::string category;  \
    };                                      \
    template <>                             \
    struct NCHW44ParamTrait<ConvBias::pt> { \
        static const std::string category;  \
180 181 182 183
    };
FOREACH_CONV_BIAS_PARAM(cb)
#undef cb

184 185 186
#define cb(pt, ct)                                                 \
    const std::string NCHWParamTrait<ConvBias::pt>::category = ct; \
    const std::string NCHW44ParamTrait<ConvBias::pt>::category = ct
187 188 189 190 191
cb(DirectParam, "DIRECT");
cb(MatmulParam, "MATMUL");
cb(DefaultParam, "DEFAULT");
#undef cb

192 193 194 195 196
const std::string NCHWParamTrait<ConvBias::WinogradParam>::category =
        "WINOGRAD";
const std::string NCHW44ParamTrait<ConvBias::WinogradParam>::category =
        "WINOGRAD_NCHW44";

197 198
#define cb(t)                                              \
    template std::string ConvBias::algo_name<ConvBias::t>( \
199 200
            const std::string& base, const ConvBias::t& p, \
            param::ConvBias::Format format);
201 202 203 204 205 206 207
FOREACH_CONV_BIAS_PARAM(cb)
#undef cb

ConvBias::WinogradParam ConvBias::parse_winograd_name(
        const std::string& algo_name) {
    ConvBias::WinogradParam ret = INVALID_WINOGRAD_PARAM;
    char base[128];
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    char name[128];

    auto parse = [&](const std::string& algo_name,
                     const std::string& pre) -> auto {
        memset(name, 0, 128);
        sscanf(algo_name.c_str(), "%[^:]:%[^:]:%u:%u:%u", name, base,
               &(ret.channel_block_size), &(ret.output_block_size),
               &(ret.tile_size));
        if (strcmp(name, pre.c_str())) {
            ret = INVALID_WINOGRAD_PARAM;
            return false;
        }
        if (ret.tile_size == 0 || ret.output_block_size == 0 ||
            ret.channel_block_size == 0) {
            ret = INVALID_WINOGRAD_PARAM;
            return false;
        }
        return true;
    };

    if (parse(algo_name, "WINOGRAD_NCHW44")) {
        return ret;
    } else {
        parse(algo_name, "WINOGRAD");
        return ret;
233 234
    }
}
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
constexpr ConvBias::WinogradParam ConvBias::INVALID_WINOGRAD_PARAM;

void handle_bias_and_nonlinear(Handle* handle, param::ConvBias args,
                               const TensorND* conv_dst_tensor,
                               const TensorND* dst_tensor,
                               const TensorND* bias_tensor) {
    using NonlineMode = param::ConvBias::NonlineMode;
    switch (args.nonlineMode) {
#define cb(_mode)                                                          \
    case NonlineMode::_mode: {                                             \
        if (conv_dst_tensor->layout.dtype.category() !=                    \
            DTypeCategory::QUANTIZED) {                                    \
            auto nonlinear = handle->create_operator<ElemwiseForward>();   \
            if (bias_tensor->layout.ndim > 0) {                            \
                nonlinear->param().mode =                                  \
                        Elemwise::Param::Mode::FUSE_ADD_##_mode;           \
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},          \
                                *dst_tensor);                              \
            } else {                                                       \
                nonlinear->param().mode = Elemwise::Param::Mode::_mode;    \
                nonlinear->exec({*conv_dst_tensor}, *dst_tensor);          \
            }                                                              \
        } else {                                                           \
            auto nonlinear = handle->create_operator<ElemwiseMultiType>(); \
            if (bias_tensor->layout.ndim > 0) {                            \
                nonlinear->param().mode =                                  \
                        ElemwiseMultiType::Param::Mode::QFUSE_ADD_##_mode; \
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},          \
                                *dst_tensor);                              \
            } else {                                                       \
                nonlinear->param().mode =                                  \
                        ElemwiseMultiType::Param::Mode::Q##_mode;          \
                nonlinear->exec({*conv_dst_tensor}, *dst_tensor);          \
            }                                                              \
        }                                                                  \
        break;                                                             \
    }
        cb(RELU);
        cb(H_SWISH);
#undef cb
        case NonlineMode::SIGMOID: {
            megdnn_assert(conv_dst_tensor->layout.dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto nonlinear = handle->create_operator<ElemwiseForward>();
            if (bias_tensor->layout.ndim > 0) {
                nonlinear->param().mode =
                        Elemwise::Param::Mode::FUSE_ADD_SIGMOID;
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                *conv_dst_tensor);
            } else {
                nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID;
                nonlinear->exec({*conv_dst_tensor}, *conv_dst_tensor);
            }
            break;
        }
        case NonlineMode::IDENTITY: {
            if (bias_tensor->layout.ndim > 0) {
                if (dst_tensor->layout.dtype.category() ==
                    DTypeCategory::QUANTIZED) {
                    auto nonlinear =
                            handle->create_operator<ElemwiseMultiType>();
                    nonlinear->param().mode =
                            ElemwiseMultiType::Param::Mode::QADD;
                    nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                    *dst_tensor);
                } else {
                    auto nonlinear = handle->create_operator<Elemwise>();
                    nonlinear->param().mode = Elemwise::Param::Mode::ADD;
                    nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                    *dst_tensor);
                }
            } else {
                if (conv_dst_tensor->layout.dtype != dst_tensor->layout.dtype) {
                    handle->create_operator<TypeCvt>()->exec({*conv_dst_tensor},
                                                             *dst_tensor);
                }
            }
            break;
        }
        default:
            megdnn_assert(false);
    }
}

320 321 322 323 324 325 326 327 328 329 330 331 332
bool check_bias_share_in_channel(const TensorLayout& bias,
                                 const param::ConvBias::Format format) {
    bool share_in_channel = false;
    if (format == param::ConvBias::Format::NCHW ||
        format == param::ConvBias::Format::NCHW4_NCHW) {
        share_in_channel = (bias.ndim == 4 && bias[0] == 1 && bias[2] == 1 &&
                            bias[3] == 1);
    } else if (format == param::ConvBias::Format::NHWC) {
        share_in_channel = (bias.ndim == 4 && bias[0] == 1 && bias[1] == 1 &&
                            bias[2] == 1);
    } else if (format == param::ConvBias::Format::NCHW4 ||
               format == param::ConvBias::Format::NCHW8 ||
               format == param::ConvBias::Format::NCHW32 ||
333
               format == param::ConvBias::Format::NCHW64 ||
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
               format == param::ConvBias::Format::NCHW4_NCHW32 ||
               format == param::ConvBias::Format::NCHW32_NCHW4) {
        share_in_channel = (bias.ndim == 5 && bias[0] == 1 && bias[2] == 1 &&
                            bias[3] == 1);
    } else if (format == param::ConvBias::Format::NHWCD4) {
        share_in_channel = (bias.ndim == 5 && bias[0] == 1 && bias[1] == 1 &&
                            bias[3] == 1);
    } else {
        megdnn_assert(format == param::ConvBias::Format::CHWN4);
        share_in_channel = (bias.ndim == 5 && bias[1] == 1 && bias[2] == 1 &&
                            bias[3] == 1);
    }
    return share_in_channel;
}

349 350 351
}  // namespace megdnn

// vim: syntax=cpp.doxygen