conv_bias.cpp 16.1 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/common/conv_bias.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15
 */

#include "src/common/conv_bias.h"
#include "megdnn/oprs/nn.h"
#include "src/common/utils.h"
16
#include "src/common/opr_delegate.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

namespace megdnn {

void ConvBiasForward::deduce_dtype(DType src, DType filter, DType /* bias */,
                                   DType /* z */, DType& dst) {
    check_or_deduce_dtype_fwd(src, filter, dst);
}

void ConvBiasForward::deduce_layout(const TensorLayout& src,
                                    const TensorLayout& filter,
                                    const TensorLayout& /* bias */,
                                    const TensorLayout& /* z */,
                                    TensorLayout& dst) {
    deduce_layout_fwd(src, filter, dst);
}

ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
36 37
        const TensorLayout& dst, size_t workspace_in_bytes,
        const PreprocessedFilter* preprocessed_filter) {
38
    megdnn_assert(src.dtype.enumv() == filter.dtype.enumv());
39
    if (src.dtype.enumv() == DTypeEnum::QuantizedS8) {
40 41
        if (bias.dtype.enumv() == DTypeEnum::QuantizedS32) {
            float scale_src = src.dtype.param<dtype::QuantizedS8>().scale;
42
            float scale_filter = filter.dtype.param<dtype::QuantizedS8>().scale;
43 44 45 46 47
            float scale_bias = bias.dtype.param<dtype::QuantizedS32>().scale;
            megdnn_assert(
                    std::abs(scale_src * scale_filter - scale_bias) < 1e-6,
                    "scale_src: %f scale_filter: %f scale_bias: %f", scale_src,
                    scale_filter, scale_bias);
48
        } else {
49
            megdnn_assert(bias.dtype.enumv() == DTypeEnum::Float32);
50 51
        }
    } else if (src.dtype.enumv() == DTypeEnum::Quantized8Asymm) {
52 53
        if (bias.dtype.enumv() == DTypeEnum::QuantizedS32) {
            float scale_src = src.dtype.param<dtype::Quantized8Asymm>().scale;
54 55
            float scale_filter =
                    filter.dtype.param<dtype::Quantized8Asymm>().scale;
56 57 58 59 60
            float scale_bias = bias.dtype.param<dtype::QuantizedS32>().scale;
            megdnn_assert(
                    std::abs(scale_src * scale_filter - scale_bias) < 1e-6,
                    "scale_src: %f scale_filter: %f scale_bias: %f", scale_src,
                    scale_filter, scale_bias);
61
        } else {
62
            megdnn_assert(bias.dtype.enumv() == DTypeEnum::Float32);
63 64 65 66 67
        }
    }

    auto ret = check_layout_fwd(src, filter, dst);
    megdnn_assert_contiguous(bias);
68 69 70 71 72
    auto required_workspace_in_bytes = get_workspace_in_bytes(
            src, filter, bias, z, dst, preprocessed_filter);
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes,
                  "worksapce have size of %zu, but need %zu",
                  workspace_in_bytes, required_workspace_in_bytes);
73 74 75 76 77 78 79 80 81 82 83 84
    if (bias.ndim != 0) {
        //! bias.layout == dst.layout failed, no assert information
        auto check_eq = [](const TensorLayout& bias, const TensorLayout& dst) {
            if (dst.dtype.category() == DTypeCategory::QUANTIZED) {
                return bias.eq_shape(dst);
            } else {
                return bias.eq_layout(dst);
            }
        };
        if (check_eq(bias, dst))
            return ret;
        if (param().format == param::ConvBias::Format::NCHW ||
85
            param().format == param::ConvBias::Format::NCHW4_NCHW) {
86 87 88 89 90 91 92 93 94 95 96
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
        } else if (param().format == param::ConvBias::Format::NHWC) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == dst.shape[3], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
97 98
        } else if (param().format == param::ConvBias::Format::NCHW4 ||
                   param().format == param::ConvBias::Format::NCHW44 ||
99
                   param().format == param::ConvBias::Format::NCHW44_DOT ||
100
                   param().format == param::ConvBias::Format::NCHW32_NCHW4) {
101 102 103 104 105 106 107
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        } else if (param().format == param::ConvBias::Format::NCHW8 ||
108
                   param().format == param::ConvBias::Format::NCHW88 ) {
109 110 111 112 113 114
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 8);
115 116
        } else if (param().format == param::ConvBias::Format::NCHW32 ||
                   param().format == param::ConvBias::Format::NCHW4_NCHW32) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 32);
        } else if (param().format == param::ConvBias::Format::CHWN4) {
            megdnn_assert(bias.shape[0] == dst.shape[0], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        } else {
            megdnn_assert(param().format == param::ConvBias::Format::NHWCD4);
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == dst.shape[2], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        }
    }

    if (z.ndim != 0) {
142 143
        megdnn_assert(param().format != param::ConvBias::Format::NCHW4_NCHW32);
        megdnn_assert(param().format != param::ConvBias::Format::NCHW32_NCHW4);
144 145 146 147 148 149 150
        megdnn_assert(z.dtype.enumv() == dst.dtype.enumv());
        megdnn_assert(z.eq_shape(dst));
    }
    return ret;
}

template <typename T>
151 152 153 154
struct NCHWParamTrait;

template <typename T>
struct NCHW44ParamTrait;
155 156 157 158 159 160 161

std::string ConvBias::WinogradParam::to_string() const {
    return ssprintf("%u:%u:%u", channel_block_size, output_block_size,
                    tile_size);
}

template <typename T>
162 163 164 165 166 167 168 169 170 171 172
std::string ConvBias::algo_name(const std::string& base, const T& p,
                                param::ConvBias::Format format) {
    if (format == param::ConvBias::Format::NCHW) {
        return ssprintf("%s:%s:%s", NCHWParamTrait<T>::category.c_str(),
                        base.c_str(), p.to_string().c_str());
    } else if (format == param::ConvBias::Format::NCHW44) {
        return ssprintf("%s:%s:%s", NCHW44ParamTrait<T>::category.c_str(),
                        base.c_str(), p.to_string().c_str());
    }
    megdnn_throw("Invalid format");
    return "";
173 174 175
}

#define FOREACH_CONV_BIAS_PARAM(cb) \
176
    cb(WinogradParam) cb(DirectParam) cb(MatmulParam) cb(DefaultParam)
177

178 179 180 181 182 183 184 185
#define cb(pt)                              \
    template <>                             \
    struct NCHWParamTrait<ConvBias::pt> {   \
        static const std::string category;  \
    };                                      \
    template <>                             \
    struct NCHW44ParamTrait<ConvBias::pt> { \
        static const std::string category;  \
186 187 188 189
    };
FOREACH_CONV_BIAS_PARAM(cb)
#undef cb

190 191 192
#define cb(pt, ct)                                                 \
    const std::string NCHWParamTrait<ConvBias::pt>::category = ct; \
    const std::string NCHW44ParamTrait<ConvBias::pt>::category = ct
193 194 195 196 197
cb(DirectParam, "DIRECT");
cb(MatmulParam, "MATMUL");
cb(DefaultParam, "DEFAULT");
#undef cb

198 199 200 201 202
const std::string NCHWParamTrait<ConvBias::WinogradParam>::category =
        "WINOGRAD";
const std::string NCHW44ParamTrait<ConvBias::WinogradParam>::category =
        "WINOGRAD_NCHW44";

203 204
#define cb(t)                                              \
    template std::string ConvBias::algo_name<ConvBias::t>( \
205 206
            const std::string& base, const ConvBias::t& p, \
            param::ConvBias::Format format);
207 208 209 210 211 212 213
FOREACH_CONV_BIAS_PARAM(cb)
#undef cb

ConvBias::WinogradParam ConvBias::parse_winograd_name(
        const std::string& algo_name) {
    ConvBias::WinogradParam ret = INVALID_WINOGRAD_PARAM;
    char base[128];
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    char name[128];

    auto parse = [&](const std::string& algo_name,
                     const std::string& pre) -> auto {
        memset(name, 0, 128);
        sscanf(algo_name.c_str(), "%[^:]:%[^:]:%u:%u:%u", name, base,
               &(ret.channel_block_size), &(ret.output_block_size),
               &(ret.tile_size));
        if (strcmp(name, pre.c_str())) {
            ret = INVALID_WINOGRAD_PARAM;
            return false;
        }
        if (ret.tile_size == 0 || ret.output_block_size == 0 ||
            ret.channel_block_size == 0) {
            ret = INVALID_WINOGRAD_PARAM;
            return false;
        }
        return true;
    };

    if (parse(algo_name, "WINOGRAD_NCHW44")) {
        return ret;
    } else {
        parse(algo_name, "WINOGRAD");
        return ret;
239 240
    }
}
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
constexpr ConvBias::WinogradParam ConvBias::INVALID_WINOGRAD_PARAM;

void handle_bias_and_nonlinear(Handle* handle, param::ConvBias args,
                               const TensorND* conv_dst_tensor,
                               const TensorND* dst_tensor,
                               const TensorND* bias_tensor) {
    using NonlineMode = param::ConvBias::NonlineMode;
    switch (args.nonlineMode) {
#define cb(_mode)                                                          \
    case NonlineMode::_mode: {                                             \
        if (conv_dst_tensor->layout.dtype.category() !=                    \
            DTypeCategory::QUANTIZED) {                                    \
            auto nonlinear = handle->create_operator<ElemwiseForward>();   \
            if (bias_tensor->layout.ndim > 0) {                            \
                nonlinear->param().mode =                                  \
                        Elemwise::Param::Mode::FUSE_ADD_##_mode;           \
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},          \
                                *dst_tensor);                              \
            } else {                                                       \
                nonlinear->param().mode = Elemwise::Param::Mode::_mode;    \
                nonlinear->exec({*conv_dst_tensor}, *dst_tensor);          \
            }                                                              \
        } else {                                                           \
            auto nonlinear = handle->create_operator<ElemwiseMultiType>(); \
            if (bias_tensor->layout.ndim > 0) {                            \
                nonlinear->param().mode =                                  \
                        ElemwiseMultiType::Param::Mode::QFUSE_ADD_##_mode; \
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},          \
                                *dst_tensor);                              \
            } else {                                                       \
                nonlinear->param().mode =                                  \
                        ElemwiseMultiType::Param::Mode::Q##_mode;          \
                nonlinear->exec({*conv_dst_tensor}, *dst_tensor);          \
            }                                                              \
        }                                                                  \
        break;                                                             \
    }
        cb(RELU);
        cb(H_SWISH);
#undef cb
        case NonlineMode::SIGMOID: {
            megdnn_assert(conv_dst_tensor->layout.dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto nonlinear = handle->create_operator<ElemwiseForward>();
            if (bias_tensor->layout.ndim > 0) {
                nonlinear->param().mode =
                        Elemwise::Param::Mode::FUSE_ADD_SIGMOID;
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                *conv_dst_tensor);
            } else {
                nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID;
                nonlinear->exec({*conv_dst_tensor}, *conv_dst_tensor);
            }
            break;
        }
        case NonlineMode::IDENTITY: {
            if (bias_tensor->layout.ndim > 0) {
                if (dst_tensor->layout.dtype.category() ==
                    DTypeCategory::QUANTIZED) {
                    auto nonlinear =
                            handle->create_operator<ElemwiseMultiType>();
                    nonlinear->param().mode =
                            ElemwiseMultiType::Param::Mode::QADD;
                    nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                    *dst_tensor);
                } else {
                    auto nonlinear = handle->create_operator<Elemwise>();
                    nonlinear->param().mode = Elemwise::Param::Mode::ADD;
                    nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                    *dst_tensor);
                }
            } else {
                if (conv_dst_tensor->layout.dtype != dst_tensor->layout.dtype) {
                    handle->create_operator<TypeCvt>()->exec({*conv_dst_tensor},
                                                             *dst_tensor);
                }
            }
            break;
        }
        default:
            megdnn_assert(false);
    }
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
bool check_bias_share_in_channel(const TensorLayout& bias,
                                 const param::ConvBias::Format format) {
    bool share_in_channel = false;
    if (format == param::ConvBias::Format::NCHW ||
        format == param::ConvBias::Format::NCHW4_NCHW) {
        share_in_channel = (bias.ndim == 4 && bias[0] == 1 && bias[2] == 1 &&
                            bias[3] == 1);
    } else if (format == param::ConvBias::Format::NHWC) {
        share_in_channel = (bias.ndim == 4 && bias[0] == 1 && bias[1] == 1 &&
                            bias[2] == 1);
    } else if (format == param::ConvBias::Format::NCHW4 ||
               format == param::ConvBias::Format::NCHW8 ||
               format == param::ConvBias::Format::NCHW32 ||
               format == param::ConvBias::Format::NCHW4_NCHW32 ||
               format == param::ConvBias::Format::NCHW32_NCHW4) {
        share_in_channel = (bias.ndim == 5 && bias[0] == 1 && bias[2] == 1 &&
                            bias[3] == 1);
    } else if (format == param::ConvBias::Format::NHWCD4) {
        share_in_channel = (bias.ndim == 5 && bias[0] == 1 && bias[1] == 1 &&
                            bias[3] == 1);
    } else {
        megdnn_assert(format == param::ConvBias::Format::CHWN4);
        share_in_channel = (bias.ndim == 5 && bias[1] == 1 && bias[2] == 1 &&
                            bias[3] == 1);
    }
    return share_in_channel;
}

354 355 356
}  // namespace megdnn

// vim: syntax=cpp.doxygen