conv_bias.cpp 24.7 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/common/conv_bias.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 */

#include "src/common/conv_bias.h"
#include "megdnn/oprs/nn.h"
#include "src/common/utils.h"

namespace megdnn {

void ConvBiasForward::deduce_dtype(DType src, DType filter, DType /* bias */,
                                   DType /* z */, DType& dst) {
    check_or_deduce_dtype_fwd(src, filter, dst);
}

void ConvBiasForward::deduce_layout(const TensorLayout& src,
                                    const TensorLayout& filter,
                                    const TensorLayout& /* bias */,
                                    const TensorLayout& /* z */,
                                    TensorLayout& dst) {
    deduce_layout_fwd(src, filter, dst);
}

ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
35 36
        const TensorLayout& dst, size_t workspace_in_bytes,
        const PreprocessedFilter* preprocessed_filter) {
37
    if ((param().format == param::ConvBias::Format::NCHW_WINOGRAD ||
38 39
         param().format == param::ConvBias::Format::NCHW88_WINOGRAD ||
         param().format == param::ConvBias::Format::NCHW44_WINOGRAD) &&
40
        src.dtype.category() == DTypeCategory::QUANTIZED) {
41 42 43
        megdnn_assert(filter.dtype.enumv() == DTypeEnum::QuantizedS16 ||
                      //!int8 winogradf23_44 using float,QuantizedS32 take the scale
                      filter.dtype.enumv() == DTypeEnum::QuantizedS32);
44 45 46 47 48 49 50 51 52
        megdnn_assert(src.dtype.enumv() == DTypeEnum::QuantizedS8 ||
                      src.dtype.enumv() == DTypeEnum::Quantized8Asymm);
    } else {
        megdnn_assert(src.dtype.enumv() == filter.dtype.enumv());
    }
    if (src.dtype.enumv() == DTypeEnum::QuantizedS8) {
        float scale_src = src.dtype.param<dtype::QuantizedS8>().scale;
        float scale_filter = 0.f;
        if (param().format == param::ConvBias::Format::NCHW_WINOGRAD ||
53 54
            param().format == param::ConvBias::Format::NCHW88_WINOGRAD ||
            param().format == param::ConvBias::Format::NCHW44_WINOGRAD) {
55 56 57 58 59 60
            if (filter.dtype.enumv() == DTypeEnum::QuantizedS32) {
                //!int8 winogradf23_44 using float,QuantizedS32 take the scale
                scale_filter = filter.dtype.param<dtype::QuantizedS32>().scale;
            } else {
                scale_filter = filter.dtype.param<dtype::QuantizedS16>().scale;
            }
61 62 63 64 65 66 67 68 69 70 71
        } else {
            scale_filter = filter.dtype.param<dtype::QuantizedS8>().scale;
        }
        float scale_bias = bias.dtype.param<dtype::QuantizedS32>().scale;
        megdnn_assert(std::abs(scale_src * scale_filter - scale_bias) < 1e-6,
                      "scale_src: %f scale_filter: %f scale_bias: %f",
                      scale_src, scale_filter, scale_bias);
    } else if (src.dtype.enumv() == DTypeEnum::Quantized8Asymm) {
        float scale_src = src.dtype.param<dtype::Quantized8Asymm>().scale;
        float scale_filter = 0.f;
        if (param().format == param::ConvBias::Format::NCHW_WINOGRAD ||
72 73
            param().format == param::ConvBias::Format::NCHW88_WINOGRAD ||
            param().format == param::ConvBias::Format::NCHW44_WINOGRAD) {
74 75 76 77 78 79 80 81 82 83 84 85
            scale_filter = filter.dtype.param<dtype::QuantizedS16>().scale;
        } else {
            scale_filter = filter.dtype.param<dtype::Quantized8Asymm>().scale;
        }
        float scale_bias = bias.dtype.param<dtype::QuantizedS32>().scale;
        megdnn_assert(std::abs(scale_src * scale_filter - scale_bias) < 1e-6,
                      "scale_src: %f scale_filter: %f scale_bias: %f",
                      scale_src, scale_filter, scale_bias);
    }

    auto ret = check_layout_fwd(src, filter, dst);
    megdnn_assert_contiguous(bias);
86 87 88 89 90
    auto required_workspace_in_bytes = get_workspace_in_bytes(
            src, filter, bias, z, dst, preprocessed_filter);
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes,
                  "worksapce have size of %zu, but need %zu",
                  workspace_in_bytes, required_workspace_in_bytes);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    if (bias.ndim != 0) {
        //! bias.layout == dst.layout failed, no assert information
        auto check_eq = [](const TensorLayout& bias, const TensorLayout& dst) {
            if (dst.dtype.category() == DTypeCategory::QUANTIZED) {
                return bias.eq_shape(dst);
            } else {
                return bias.eq_layout(dst);
            }
        };
        if (check_eq(bias, dst))
            return ret;
        if (param().format == param::ConvBias::Format::NCHW ||
            param().format == param::ConvBias::Format::NCHW_WINOGRAD) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
        } else if (param().format == param::ConvBias::Format::NHWC) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == dst.shape[3], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
115 116
        } else if (param().format == param::ConvBias::Format::NCHW4 ||
                   param().format == param::ConvBias::Format::NCHW44 ||
117
                   param().format == param::ConvBias::Format::NCHW44_DOT ||
118
                   param().format == param::ConvBias::Format::NCHW44_WINOGRAD) {
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        } else if (param().format == param::ConvBias::Format::NCHW8 ||
                   param().format == param::ConvBias::Format::NCHW88 ||
                   param().format == param::ConvBias::Format::NCHW88_WINOGRAD) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 8);
        } else if (param().format == param::ConvBias::Format::NCHW32) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 32);
        } else if (param().format == param::ConvBias::Format::CHWN4) {
            megdnn_assert(bias.shape[0] == dst.shape[0], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        } else {
            megdnn_assert(param().format == param::ConvBias::Format::NHWCD4);
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == dst.shape[2], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        }
    }

    if (z.ndim != 0) {
        megdnn_assert(param().format != param::ConvBias::Format::NCHW_WINOGRAD);
161 162 163 164
        megdnn_assert(param().format !=
                      param::ConvBias::Format::NCHW88_WINOGRAD);
        megdnn_assert(param().format !=
                      param::ConvBias::Format::NCHW44_WINOGRAD);
165 166 167 168 169
        megdnn_assert(z.dtype.enumv() == dst.dtype.enumv());
        megdnn_assert(z.eq_shape(dst));
    }
    return ret;
}
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*!
 * \brief deduce the origin filter layout and param after winograd transformed
 */
void ConvBiasForward::deduce_winograd_origin_layout_and_param(
        const Param::Format format, const size_t output_block_size,
        const TensorLayout& src_layout,
        const TensorLayout& winograd_filter_layout, TensorLayout& origin_layout,
        Param& origin_param) {
    if (format == megdnn::param::ConvBias::Format::NCHW88_WINOGRAD ||
        format == megdnn::param::ConvBias::Format::NCHW44_WINOGRAD ||
        format == megdnn::param::ConvBias::Format::NCHW_WINOGRAD) {
        //! change NCHWxx_WINOGRAD to NCHWxx
        size_t OC = 0;
        size_t IC = 0;
        size_t GROUP = 1;
        size_t FH = winograd_filter_layout[1] - output_block_size + 1;

        //! {alpha, alpha, IC, OC}
        if (winograd_filter_layout.ndim == 4) {
            OC = winograd_filter_layout[3];
            IC = winograd_filter_layout[2];
        }
        //! {group, alpha, alpha, IC, OC}
        else if (winograd_filter_layout.ndim == 5) {
            OC = winograd_filter_layout[4];
            IC = winograd_filter_layout[3];
            GROUP = winograd_filter_layout[0];
        }
        //! {alpha, alpha, OC/f, IC/f, f, f}
        else if (winograd_filter_layout.ndim == 6) {
            OC = winograd_filter_layout[2] * winograd_filter_layout[5];
            IC = winograd_filter_layout[3] * winograd_filter_layout[4];
        }
        //! {group, alpha, alpha, OC/f, IC/f, f, f}
        else if (winograd_filter_layout.ndim == 7) {
            OC = winograd_filter_layout[3] * winograd_filter_layout[6];
            IC = winograd_filter_layout[4] * winograd_filter_layout[5];
            GROUP = winograd_filter_layout[0];
        }
        auto origin_data_type = winograd_filter_layout.dtype;
        if (src_layout.dtype.enumv() == DTypeEnum::QuantizedS8) {
            if (origin_data_type.enumv() == DTypeEnum::QuantizedS16) {
                float scale =
                        origin_data_type.param<dtype::QuantizedS16>().scale;
                origin_data_type = megdnn::dtype::QuantizedS8(scale);
            } else {
                //! In order to braing the sacle of filter, the transformed
                //! qint8 winograd filter computing with float dtype is Qint32
                megdnn_assert(origin_data_type.enumv() ==
                              DTypeEnum::QuantizedS32);
                float scale =
                        origin_data_type.param<dtype::QuantizedS32>().scale;
                origin_data_type = megdnn::dtype::QuantizedS8(scale);
            }
        }

        if (GROUP == 1) {
            if (format == megdnn::param::ConvBias::Format::NCHW_WINOGRAD) {
                origin_layout =
                        TensorLayout({OC, IC, FH, FH}, origin_data_type);
            } else if (format ==
                       megdnn::param::ConvBias::Format::NCHW44_WINOGRAD) {
                origin_layout = TensorLayout({OC / 4, IC / 4, FH, FH, 4, 4},
                                             origin_data_type);
            } else {
                megdnn_assert(format ==
                              megdnn::param::ConvBias::Format::NCHW88_WINOGRAD);
                origin_layout = TensorLayout({OC / 8, IC / 8, FH, FH, 8, 8},
                                             origin_data_type);
            }
        } else {
            if (format == megdnn::param::ConvBias::Format::NCHW_WINOGRAD) {
                origin_layout =
                        TensorLayout({GROUP, OC, IC, FH, FH}, origin_data_type);
            } else if (format ==
                       megdnn::param::ConvBias::Format::NCHW44_WINOGRAD) {
                origin_layout =
                        TensorLayout({GROUP, OC / 4, IC / 4, FH, FH, 4, 4},
                                     origin_data_type);
            } else {
                megdnn_assert(format ==
                              megdnn::param::ConvBias::Format::NCHW88_WINOGRAD);
                origin_layout =
                        TensorLayout({GROUP, OC / 8, IC / 8, FH, FH, 8, 8},
                                     origin_data_type);
            }
        }
        origin_param.output_block_size = 0;
        if (format == megdnn::param::ConvBias::Format::NCHW_WINOGRAD) {
            origin_param.format = megdnn::param::ConvBias::Format::NCHW;
        } else if (format == megdnn::param::ConvBias::Format::NCHW44_WINOGRAD) {
            origin_param.format = megdnn::param::ConvBias::Format::NCHW44;
        } else {
            megdnn_assert(format ==
                          megdnn::param::ConvBias::Format::NCHW88_WINOGRAD);
            origin_param.format = megdnn::param::ConvBias::Format::NCHW88;
        }
    }
}
269 270

template <typename T>
271 272 273 274
struct NCHWParamTrait;

template <typename T>
struct NCHW44ParamTrait;
275 276 277 278 279 280 281

std::string ConvBias::WinogradParam::to_string() const {
    return ssprintf("%u:%u:%u", channel_block_size, output_block_size,
                    tile_size);
}

template <typename T>
282 283 284 285 286 287 288 289 290 291 292
std::string ConvBias::algo_name(const std::string& base, const T& p,
                                param::ConvBias::Format format) {
    if (format == param::ConvBias::Format::NCHW) {
        return ssprintf("%s:%s:%s", NCHWParamTrait<T>::category.c_str(),
                        base.c_str(), p.to_string().c_str());
    } else if (format == param::ConvBias::Format::NCHW44) {
        return ssprintf("%s:%s:%s", NCHW44ParamTrait<T>::category.c_str(),
                        base.c_str(), p.to_string().c_str());
    }
    megdnn_throw("Invalid format");
    return "";
293 294 295
}

#define FOREACH_CONV_BIAS_PARAM(cb) \
296
    cb(WinogradParam) cb(DirectParam) cb(MatmulParam) cb(DefaultParam)
297

298 299 300 301 302 303 304 305
#define cb(pt)                              \
    template <>                             \
    struct NCHWParamTrait<ConvBias::pt> {   \
        static const std::string category;  \
    };                                      \
    template <>                             \
    struct NCHW44ParamTrait<ConvBias::pt> { \
        static const std::string category;  \
306 307 308 309
    };
FOREACH_CONV_BIAS_PARAM(cb)
#undef cb

310 311 312
#define cb(pt, ct)                                                 \
    const std::string NCHWParamTrait<ConvBias::pt>::category = ct; \
    const std::string NCHW44ParamTrait<ConvBias::pt>::category = ct
313 314 315 316 317
cb(DirectParam, "DIRECT");
cb(MatmulParam, "MATMUL");
cb(DefaultParam, "DEFAULT");
#undef cb

318 319 320 321 322
const std::string NCHWParamTrait<ConvBias::WinogradParam>::category =
        "WINOGRAD";
const std::string NCHW44ParamTrait<ConvBias::WinogradParam>::category =
        "WINOGRAD_NCHW44";

323 324
#define cb(t)                                              \
    template std::string ConvBias::algo_name<ConvBias::t>( \
325 326
            const std::string& base, const ConvBias::t& p, \
            param::ConvBias::Format format);
327 328 329 330 331 332 333
FOREACH_CONV_BIAS_PARAM(cb)
#undef cb

ConvBias::WinogradParam ConvBias::parse_winograd_name(
        const std::string& algo_name) {
    ConvBias::WinogradParam ret = INVALID_WINOGRAD_PARAM;
    char base[128];
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    char name[128];

    auto parse = [&](const std::string& algo_name,
                     const std::string& pre) -> auto {
        memset(name, 0, 128);
        sscanf(algo_name.c_str(), "%[^:]:%[^:]:%u:%u:%u", name, base,
               &(ret.channel_block_size), &(ret.output_block_size),
               &(ret.tile_size));
        if (strcmp(name, pre.c_str())) {
            ret = INVALID_WINOGRAD_PARAM;
            return false;
        }
        if (ret.tile_size == 0 || ret.output_block_size == 0 ||
            ret.channel_block_size == 0) {
            ret = INVALID_WINOGRAD_PARAM;
            return false;
        }
        return true;
    };

    if (parse(algo_name, "WINOGRAD_NCHW44")) {
        return ret;
    } else {
        parse(algo_name, "WINOGRAD");
        return ret;
359 360
    }
}
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
constexpr ConvBias::WinogradParam ConvBias::INVALID_WINOGRAD_PARAM;

void handle_bias_and_nonlinear(Handle* handle, param::ConvBias args,
                               const TensorND* conv_dst_tensor,
                               const TensorND* dst_tensor,
                               const TensorND* bias_tensor) {
    using NonlineMode = param::ConvBias::NonlineMode;
    switch (args.nonlineMode) {
#define cb(_mode)                                                          \
    case NonlineMode::_mode: {                                             \
        if (conv_dst_tensor->layout.dtype.category() !=                    \
            DTypeCategory::QUANTIZED) {                                    \
            auto nonlinear = handle->create_operator<ElemwiseForward>();   \
            if (bias_tensor->layout.ndim > 0) {                            \
                nonlinear->param().mode =                                  \
                        Elemwise::Param::Mode::FUSE_ADD_##_mode;           \
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},          \
                                *dst_tensor);                              \
            } else {                                                       \
                nonlinear->param().mode = Elemwise::Param::Mode::_mode;    \
                nonlinear->exec({*conv_dst_tensor}, *dst_tensor);          \
            }                                                              \
        } else {                                                           \
            auto nonlinear = handle->create_operator<ElemwiseMultiType>(); \
            if (bias_tensor->layout.ndim > 0) {                            \
                nonlinear->param().mode =                                  \
                        ElemwiseMultiType::Param::Mode::QFUSE_ADD_##_mode; \
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},          \
                                *dst_tensor);                              \
            } else {                                                       \
                nonlinear->param().mode =                                  \
                        ElemwiseMultiType::Param::Mode::Q##_mode;          \
                nonlinear->exec({*conv_dst_tensor}, *dst_tensor);          \
            }                                                              \
        }                                                                  \
        break;                                                             \
    }
        cb(RELU);
        cb(H_SWISH);
#undef cb
        case NonlineMode::SIGMOID: {
            megdnn_assert(conv_dst_tensor->layout.dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto nonlinear = handle->create_operator<ElemwiseForward>();
            if (bias_tensor->layout.ndim > 0) {
                nonlinear->param().mode =
                        Elemwise::Param::Mode::FUSE_ADD_SIGMOID;
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                *conv_dst_tensor);
            } else {
                nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID;
                nonlinear->exec({*conv_dst_tensor}, *conv_dst_tensor);
            }
            break;
        }
        case NonlineMode::IDENTITY: {
            if (bias_tensor->layout.ndim > 0) {
                if (dst_tensor->layout.dtype.category() ==
                    DTypeCategory::QUANTIZED) {
                    auto nonlinear =
                            handle->create_operator<ElemwiseMultiType>();
                    nonlinear->param().mode =
                            ElemwiseMultiType::Param::Mode::QADD;
                    nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                    *dst_tensor);
                } else {
                    auto nonlinear = handle->create_operator<Elemwise>();
                    nonlinear->param().mode = Elemwise::Param::Mode::ADD;
                    nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                    *dst_tensor);
                }
            } else {
                if (conv_dst_tensor->layout.dtype != dst_tensor->layout.dtype) {
                    handle->create_operator<TypeCvt>()->exec({*conv_dst_tensor},
                                                             *dst_tensor);
                }
            }
            break;
        }
        default:
            megdnn_assert(false);
    }
}

//! Only used for naive implementation. DO NOT use the following function in
//! other backends.
void handle_z_inp_and_activation(Handle* handle,
                                 param::ConvBias::NonlineMode nonline_mode,
                                 const TensorND& conv_bias_tensor,
                                 const TensorND& z_tensor,
                                 const TensorND& dst_tensor,
                                 dt_byte* workspace_ptr) {
    auto res = dst_tensor, z_float = z_tensor;
    if (z_tensor.layout.ndim > 0 &&
        z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) {
        dt_byte *res_float_workspace_ptr = nullptr,
                *z_float_workspace_ptr = nullptr;
        megdnn_assert(z_tensor.layout.eq_shape(dst_tensor.layout));
        res_float_workspace_ptr = workspace_ptr;
        z_float_workspace_ptr = res_float_workspace_ptr +
                                TensorLayout{z_tensor.layout, dtype::Float32()}
                                        .span()
                                        .dist_byte();
        res = TensorND{res_float_workspace_ptr,
                       TensorLayout{dst_tensor.layout, dtype::Float32()}};
        z_float = TensorND{z_float_workspace_ptr,
                           TensorLayout{z_tensor.layout, dtype::Float32()}};
    }
    // ====================sfb + z_tensor=====================
    if (z_tensor.layout.ndim > 0) {
        if (z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) {
            auto&& type_cvt = handle->create_operator<TypeCvt>();
            type_cvt->exec(conv_bias_tensor, res);
            type_cvt->exec(z_tensor, z_float);
        }
        auto add_opr = handle->create_operator<ElemwiseForward>();
        add_opr->param().mode = Elemwise::Param::Mode::ADD;
        add_opr->exec({res, z_float}, res);
    } else {
        res = conv_bias_tensor;
    }

    using NonlineMode = param::ConvBias::NonlineMode;

    switch (nonline_mode) {
#define cb(_mode)                                                          \
    case NonlineMode::_mode: {                                             \
        if (res.layout.dtype.category() != DTypeCategory::QUANTIZED) {     \
            auto nonlinear = handle->create_operator<ElemwiseForward>();   \
            nonlinear->param().mode = Elemwise::Param::Mode::_mode;        \
            if (res.layout.dtype == dst_tensor.layout.dtype) {             \
                nonlinear->exec({res}, dst_tensor);                        \
            } else {                                                       \
                nonlinear->exec({res}, res);                               \
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor); \
            }                                                              \
        } else {                                                           \
            auto nonlinear = handle->create_operator<ElemwiseMultiType>(); \
            nonlinear->param().mode =                                      \
                    ElemwiseMultiType::Param::Mode::Q##_mode;              \
            nonlinear->exec({res}, dst_tensor);                            \
        }                                                                  \
        break;                                                             \
    }
        cb(RELU);
        cb(H_SWISH);
#undef cb
        case NonlineMode::SIGMOID: {
            megdnn_assert(res.layout.dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto nonlinear = handle->create_operator<ElemwiseForward>();
            nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID;
            nonlinear->exec({res}, res);
            if (res.raw_ptr != dst_tensor.raw_ptr) {
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor);
            }
            break;
        }
        case NonlineMode::IDENTITY: {
            if (res.raw_ptr != dst_tensor.raw_ptr) {
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor);
            }
            break;
        }
        default:
            megdnn_assert(false);
    }
}

}  // namespace megdnn

// vim: syntax=cpp.doxygen