tensor.cpp 40.2 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
13
#include "megbrain/dtype.h"
14
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
15 16
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
17
#include "megbrain/imperative/profiler.h"
18 19 20 21 22 23
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
24
#include "megbrain/opr/io.h"
25
#include "megbrain/plugin/profiler.h"
26

27
#include "./common.h"
M
Megvii Engine Team 已提交
28
#include "./grad.h"
29
#include "./graph_rt.h"
30
#include "./helper.h"
M
Megvii Engine Team 已提交
31 32 33
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
34
#include "./transformation.h"
35

36
#include <object.h>
37 38
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
39 40
#include <pybind11/pytypes.h>
#include <pyerrors.h>
41
#include <range/v3/all.hpp>
42
#include <string>
43 44 45

#include <unordered_map>

46 47
#include "../../src/impl/mgb_cg_impl.h"

48
namespace py = pybind11;
49
namespace views = ranges::views;
50 51 52

namespace mgb::imperative::python {

53 54
namespace {
WeakKeyMap<ValueWeakRef, py::object> module_trace_info_map;
M
Megvii Engine Team 已提交
55
}
56

57 58
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
59

M
Megvii Engine Team 已提交
60 61
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
62 63 64 65 66
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
67
        if (nargs < 2) {
M
Megvii Engine Team 已提交
68 69 70 71
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
72 73
            return nullptr;
        }
74

75
        auto* py_op = args[0];
76

77 78 79
        ++args;
        --nargs;

80 81
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
        SmallVector<ValueRef, 64> tensors(nargs);
82

M
Megvii Engine Team 已提交
83
        if (py::isinstance<PySymbolVar>(py::handle(args[0]))) {
84 85 86 87 88 89 90 91 92 93 94
            // swap to a special context to reuse scalar handle
            TransformationContext symbol_var_context;
            Transformation::swap_context(symbol_var_context);
            CleanupGuard _{[&] { Transformation::swap_context(symbol_var_context); }};
            auto* graph =
                    py::handle(args[0]).cast<PySymbolVar*>()->m_node->owner_graph();
            std::make_shared<SymbolTransformation>(graph)->register_at(
                    Transformation::top());
            std::make_shared<ScalarTransformation>()->register_at(
                    Transformation::top());
            SmallVector<ValueRef> inputs(nargs);
95
            for (size_t i = 0; i < nargs; ++i) {
96 97 98 99 100 101
                auto* py_input = py::handle(args[i]).cast<PySymbolVar*>();
                ValueRef input = SymbolValue::make(py_input->m_node);
                if (py_input->is_scalar) {
                    input = ScalarValue::make(input);
                }
                inputs[i] = input;
102
            }
103 104
            auto outputs = imperative::apply(*op, inputs);
            auto ret = pybind11::tuple(outputs.size());
105
            auto typeobj = py::handle(args[0]).get_type();
106 107 108 109 110 111 112 113 114 115
            for (size_t i = 0; i < outputs.size(); ++i) {
                bool is_scalar = false;
                if (auto* scalar_value = outputs[i].as<ScalarValue>()) {
                    outputs[i] = scalar_value->value();
                    is_scalar = true;
                }
                auto* node = outputs[i].cast<SymbolValue>().node();
                ret[i] = typeobj(
                        pybind11::cast(node, pybind11::return_value_policy::automatic));
                py::handle(ret[i]).cast<PySymbolVar*>()->is_scalar = is_scalar;
116 117 118
            }
            return ret.release().ptr();
        }
119 120

        for (size_t i = 0; i < nargs; ++i) {
121
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
122
                tensors[i] = tw->m_tensor->data();
123
            } else {
M
Megvii Engine Team 已提交
124 125 126 127
                PyErr_SetString(
                        PyExc_TypeError,
                        ssprintf(
                                "op %s expect type Tensor as inputs, got %s actually",
128
                                op->make_name().c_str(), Py_TYPE(args[i])->tp_name)
M
Megvii Engine Team 已提交
129
                                .c_str());
130 131 132 133
                return nullptr;
            }
        }

134
        auto outputs = imperative::apply(ApplyOp(*op), {tensors.data(), nargs});
135 136 137
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
138
            ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i]));
139 140
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
141 142
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
143 144 145 146 147 148 149 150 151 152 153
}

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
154
    if (auto* t = try_cast(tup[0].ptr())) {
155 156 157
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
158
        m_tensor = t->m_tensor->copy();
159
    } else {
160 161
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
162 163 164 165 166 167
            // for DeviceTensorND
            if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                auto dv = py::handle(arg0).cast<DeviceTensorND>();
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(CreateTensor::Common, dv.comp_node(), dv.layout()),
                        DeviceStorage::make(dv.storage()))[0]);
168
            } else {
169 170
                throw py::type_error(
                        "single argument is not tensor, varnode or devicetensor");
171
            }
172
        } else {
M
Megvii Engine Team 已提交
173
            py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
174 175
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
176
            }
177 178 179 180
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
181
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
182
            std::string name;
M
Megvii Engine Team 已提交
183 184
            if (tup[nargs - 1].ptr() != Py_None)
                name = tup[nargs - 1].cast<std::string>();
185 186

            // const op
187
            {
188 189 190
                CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                        : no_cache ? CreateTensor::Unique
                                                   : CreateTensor::Common;
191
                HostTensorND ret(cn);
192 193 194 195 196 197 198 199 200 201 202
                ret = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype);
                mgb_assert(
                        ret.layout().is_empty() || ret.layout().is_contiguous(),
                        "host value should be continuous");
                ValueShape shape;
                for (size_t i = 0; i < data.ndim(); ++i) {
                    shape[shape.ndim++] = data.shape(i);
                }
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(kind, cn, ret.dtype(), shape),
                        HostStorage::make(ret.storage()))[0]);
203 204
            }

205 206 207 208 209 210 211
            if (!name.empty()) {
                m_tensor->reset(
                        imperative::apply(RenameValue(name), m_tensor->data())[0]);
                mgb_assert(
                        ((std::string&)*m_tensor->data().name()) == name,
                        "result name incorrect");
            }
212

213
            if (data.ndim() == 0) {
214
                mgb_assert(m_tensor->is_scalar(), "result should be scalar");
215
            }
216 217 218 219
        }
    }
}

220
PyObject* TensorWrapper::module_trace_info() {
221
    if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) {
222 223 224
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
225
    }
226 227 228 229 230
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
231 232 233
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
234
    // TODO: erase when obj == nullptr
235
    module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj);
236 237
}

238 239 240 241 242
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
    m_tensor->set_name(name);
}
243

244 245
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
246 247
}

248 249
void TensorWrapper::_watch() {
    m_tensor->data().watch();
250 251
}

252
PyObject* TensorWrapper::shape() {
253
    auto shape = m_tensor->shape();
254

255
    if (!shape) {
256 257
        Py_RETURN_NONE;
    }
258 259 260
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
261 262 263 264 265 266 267 268 269 270 271 272 273
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

PyObject* TensorWrapper::numpy() {
274
    auto hv = m_tensor->numpy();
275
    if (!hv) {
276 277 278
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
279 280
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
281
    if (hv->shape().is_scalar()) {
282 283 284 285 286 287 288
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
289
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
290 291 292
    if (!t) {
        throw py::type_error("expect Tensor");
    }
293
    m_tensor->reset(t->m_tensor->data());
294 295
}

296
PyObject* TensorWrapper::detach() {
297 298
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
299 300
}

M
Megvii Engine Team 已提交
301
PyObject* TensorWrapper::_dev_tensor() {
302 303 304
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
305 306 307
}

void TensorWrapper::_drop() {
308
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
309 310
}

311
PyObject* TensorWrapper::isscalar() {
312
    if (m_tensor->is_scalar()) {
313 314 315 316 317 318 319 320 321 322 323 324 325
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
326
            return TensorWrapper::make(py_tensor_type, p);
327 328 329
        }
        return py::none();
    }
330
    int _use_cnt() { return wptr.use_count(); }
331 332
};

333 334 335 336 337
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
M
Megvii Engine Team 已提交
338 339 340 341 342 343 344 345 346 347
        case 'f':
            return 3;  // floating-point
        case 'i':
            return 2;  // signed integer
        case 'u':
            return 2;  // unsigned integer
        case 'b':
            return 1;  // boolean
        default:
            return 0;
348 349 350 351 352 353 354 355 356
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
M
Megvii Engine Team 已提交
357
        for (auto&& desc : types) {
358 359 360 361 362 363
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

364
// Returns the data type with sufficient size to hold all types of
365 366 367 368
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
M
Megvii Engine Team 已提交
369
    for (auto&& desc : types) {
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

M
Megvii Engine Team 已提交
404
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs) {
405 406 407 408 409
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
410
    PyObject* tuple = nullptr;
411 412 413 414 415 416 417 418 419 420 421 422
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
M
Megvii Engine Team 已提交
423 424 425
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
        if (handle == Py_None)
            continue;
426
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
427 428 429 430 431
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
M
Megvii Engine Team 已提交
432
        } else {
433 434 435 436 437
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
438

M
Megvii Engine Team 已提交
439
            if (py::isinstance<PySymbolVar>(py::handle(handle))) {
440 441
                auto var = py::handle(handle).cast<PySymbolVar*>();
                mgb::DType type = var->m_node->dtype();
M
Megvii Engine Team 已提交
442
                auto&& descr = npy::dtype_mgb2np_descr(type);
443 444 445 446 447
                Py_INCREF(descr.get());
                tensors.emplace_back(descr.get());
                continue;
            }

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
M
Megvii Engine Team 已提交
465
    } else {
466 467
        res = promote_types(tensors, max_pri_tensors);
    }
M
Megvii Engine Team 已提交
468 469 470 471 472 473
    for (auto* p : tensors) {
        Py_DECREF(p);
    }
    for (auto* p : scalars) {
        Py_DECREF(p);
    }
474
    Py_XDECREF(tuple);
475 476 477
    return res;
}

M
Megvii Engine Team 已提交
478
CompNode _get_device(PyObject* const* args, size_t nargs) {
479
    bool is_tuple = false;
480
    PyObject* tuple = nullptr;
481 482 483 484 485 486 487 488 489 490 491 492 493
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
494
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
495
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
496

497 498
        bool is_symvar = py::isinstance<PySymbolVar>(py::handle(handle));
        if (tw || is_symvar) {
499
            if (!valid) {
500
                cn = tw ? tw->m_tensor->comp_node()
M
Megvii Engine Team 已提交
501
                        : py::handle(handle).cast<PySymbolVar*>()->m_node->comp_node();
502 503
                valid = true;
            } else {
504 505 506 507
                CompNode cn1 = tw ? tw->m_tensor->comp_node()
                                  : py::handle(handle)
                                               .cast<PySymbolVar*>()
                                               ->m_node->comp_node();
508
                if (cn1 != cn) {
M
Megvii Engine Team 已提交
509 510 511
                    throw py::value_error(ssprintf(
                            "ambiguous device: %s vs %s", cn.to_string().c_str(),
                            cn1.to_string().c_str()));
512 513 514 515 516
                }
            }
        }
    }
    if (!valid) {
517
        return CompNode::load(get_default_device());
518
    }
519
    Py_XDECREF(tuple);
520 521 522 523 524
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
M
Megvii Engine Team 已提交
525
PyObject* dtype_promotion(PyObject* self, PyObject* const* args, size_t nargs) {
526 527 528 529 530 531 532
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
M
Megvii Engine Team 已提交
533 534
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
535 536
}

M
Megvii Engine Team 已提交
537
PyObject* get_device(PyObject* self, PyObject* const* args, size_t nargs) {
538 539 540 541 542 543 544
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
M
Megvii Engine Team 已提交
545 546
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
547
}
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

567
void init_tensor(py::module m) {
568
    imperative::Tensor::static_initialize();
569 570 571 572 573 574 575 576 577 578 579 580

    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

    auto* channel = interpreter::Interpreter::inst().create_channel().release();
    interpreter_for_py = channel;
    transformations.register_at<Segment::Eval>(
            std::make_shared<InterpreterTransformation>(
                    std::unique_ptr<interpreter::Interpreter::Channel>(channel)));
    transformations.register_at<Segment::Scalar>(
            std::make_shared<ScalarTransformation>());
581

M
Megvii Engine Team 已提交
582 583
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
584 585
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
586 587
            if (p)
                std::rethrow_exception(p);
588 589 590 591 592 593 594 595 596 597
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
598 599
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
600
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
601 602 603
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
604 605
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
606 607
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
608 609 610 611 612 613
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

M
Megvii Engine Team 已提交
614 615 616 617 618 619 620 621 622
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
623
                    // TODO: remove this
M
Megvii Engine Team 已提交
624 625 626
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
                    .def<&TensorWrapper::_use_cnt>("_use_cnt")
627 628 629
                    .def<&TensorWrapper::_detail>("_detail")
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
M
Megvii Engine Team 已提交
630 631 632 633 634 635
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
636 637 638
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
639 640 641
            .def(py::init<const TensorWrapper&>())
            .def("__call__", &TensorWeakRef::operator())
            .def("_use_cnt", &TensorWeakRef::_use_cnt);
642

643 644 645
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
M
Megvii Engine Team 已提交
646 647 648
            .def_property(
                    "var", [](PySymbolVar* v) { return v->m_node; },
                    [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
649
            .def_property_readonly(
M
Megvii Engine Team 已提交
650
                    "device", [](PySymbolVar* v) { return v->m_node->comp_node(); })
651
            .def_property_readonly(
M
Megvii Engine Team 已提交
652
                    "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); })
653 654 655
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
M
Megvii Engine Team 已提交
656
                        auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
657 658
                        return mgr.infer_shape_fallible(v->m_node);
                    })
M
Megvii Engine Team 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
            .def("numpy",
                 [](PySymbolVar* v) {
                     auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                     auto&& type = mgr.get_infer_type(v->m_node);
                     using InferType = cg::static_infer::InferType;
                     if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                         throw py::value_error("value invalid!");
                     }
                     auto* val = mgr.infer_value_fallible(v->m_node);
                     if (!val) {
                         throw py::value_error("value invalid!");
                     }
                     auto np_val = py::cast(*val).attr("numpy")();
                     return np_val;
                 })
674 675 676 677 678 679
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

680
    static PyMethodDef method_defs[] = {
681 682 683 684
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
685
    for (auto&& def : method_defs) {
686 687
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
688 689
            if (!func)
                throw py::error_already_set();
690 691 692
            py::setattr(m, def.ml_name, func);
        }
    }
693

694 695 696 697
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
698

699
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
700 701
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
702
    });
703
    m.def("get_option",
704 705
          [channel](std::string name) { return channel->get_option(name); });
    m.def("set_buffer_length", [channel](int length) {
M
Megvii Engine Team 已提交
706
        mgb_assert(length >= 0 and length < 100, "buffer_length should be in [0, 100)");
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
        channel->set_option("buffer_length", length);
    });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
754 755 756 757 758 759 760 761
    });

    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
762 763 764 765
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
766 767 768
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
769
    py::setattr(m, "GradKey", grad_key_type);
770
    m.def("backward", &GradKeyWrapper::backward);
771
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;

        bool compare_value(ValueRef lhs, ValueRef rhs) {
            if (!lhs.shape()->eq(*rhs.shape())) {
                return false;
            }
            HostTensorND lvalue = lhs.numpy()->as_nd(true);
            HostTensorND rvalue = rhs.numpy()->as_nd(true);
            auto larr = py::reinterpret_steal<py::array>(
                    npy::ndarray_from_tensor(lvalue, npy::ShareType::TRY_SHARE));
            auto rarr = py::reinterpret_steal<py::array>(
                    npy::ndarray_from_tensor(rvalue, npy::ShareType::TRY_SHARE));
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
                self.compiled->compile();
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
                transformations.register_at<Segment::Trace>(self.compiled);
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
                transformations.register_at<Segment::Trace>(self.tracing);
                if (self.lazy_eval) {
                    transformations.register_at<Segment::Eval>(self.lazy_eval);
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
                transformations.unregister<Segment::Trace>(self.tracing);
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
                    transformations.unregister<Segment::Eval>(lazy_eval);
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
                transformations.unregister<Segment::Trace>(self.compiled);
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
                         transformations.unregister<Segment::Trace>(self.tracing);
                     } else if (self.compiled) {
                         transformations.unregister<Segment::Trace>(self.compiled);
                     }
M
Megvii Engine Team 已提交
941
                 })
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
                    transformations.register_at<Segment::Trace>(self.tracing);
                } else if (self.compiled) {
                    transformations.register_at<Segment::Trace>(self.compiled);
                }
            });

    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
        SmallVector<ValueRef> values;
        for (auto&& tensor : tensors) {
            values.push_back(tensor.cast<TensorWrapper>().m_tensor->data());
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
        SmallVector<ValueRef> values;
        for (auto&& tensor : tensors) {
            values.push_back(tensor.cast<TensorWrapper>().m_tensor->data());
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (auto* grad_key_val = outputs[0].as<GradKeyValue>()) {
            return py::reinterpret_borrow<py::object>(
                    GradKeyWrapper::wrap_t::pycast(GradKeyWrapper::get(*grad_key_val)));
        } else {
            return py::none();
        }
    });

    m.def("set_grad", [](py::object py_key, py::function backward_fn,
                         std::vector<py::object> inputs,
                         std::vector<py::object> outputs) {
        mgb_assert(GradKeyWrapper::wrap_t::type().isinstance(py_key.ptr()));
        auto* key = reinterpret_cast<GradKeyWrapper::wrap_t*>(py_key.ptr())->inst();
        GenericFunction generic_backward_fn =
                [backward_fn](Span<ValueRef> output_grads) -> std::vector<ValueRef> {
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
            std::vector<ValueRef> input_grads;
            for (auto&& input_grad_tw : input_grad_tws) {
                if (!input_grad_tw.is_none()) {
                    input_grads.push_back(
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data());
                } else {
                    input_grads.push_back({});
                }
            }
            return input_grads;
        };
        SmallVector<ValueRef> values;
        for (auto&& input : inputs) {
            values.push_back(input.cast<TensorWrapper>().m_tensor->data());
        }
        for (auto&& output : outputs) {
            values.push_back(output.cast<TensorWrapper>().m_tensor->data());
        }
        auto wrapped_output_values = imperative::apply(
                SetGrad(key->m_key, generic_backward_fn, inputs.size()), values);
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

    static py::function module_trace_hook;

1032 1033
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
1034 1035 1036 1037
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
1038
            transformations.register_at<Segment::ModuleTrace>(
1039 1040
                    module_trace_transformation);
        }
1041 1042
        return module_trace_transformation;
    };
1043

1044 1045 1046
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
1047

1048
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

    m.def("set_module_trace_hook",
          [](py::function function) { module_trace_hook = function; });

    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

    py::register_exception<TraceError>(m, "TraceError");
1065 1066
}

1067 1068
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1069
}  // namespace mgb::imperative::python