提交 fad5bc74 编写于 作者: M Megvii Engine Team

feat(mge/tools): add load_network_and_run for megengine

GitOrigin-RevId: 7d8ed5af79619b50c14e062f50da29cbee13e875
上级 3f2e15f5
......@@ -107,14 +107,14 @@ def load(f, map_location=None, pickle_module=pickle):
.. testcode:
import megengine as mge
# Load tensors to the same device as defined in model.mge
mge.load('model.mge')
# Load tensors to the same device as defined in model.pkl
mge.load('model.pkl')
# Load all tensors to gpu0.
mge.load('model.mge', map_location='gpu0')
mge.load('model.pkl', map_location='gpu0')
# Load all tensors originally on gpu0 to cpu0
mge.load('model.mge', map_location={'gpu0':'cpu0'})
mge.load('model.pkl', map_location={'gpu0':'cpu0'})
# Load all tensors to cpu0
mge.load('model.mge', map_location=lambda dev: 'cpu0')
mge.load('model.pkl', map_location=lambda dev: 'cpu0')
"""
if isinstance(f, str):
......
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import logging
import time
from collections import OrderedDict
import numpy as np
import megengine as mge
from megengine.core.tensor import megbrain_graph as G
from megengine.device import get_device_count, set_default_device
from megengine.functional.debug_param import set_execution_strategy
from megengine.logger import enable_debug_log, get_logger, set_log_file
from megengine.utils import comp_graph_tools as tools
logger = get_logger(__name__)
def make_data_given_desc(args, inputs, shape0_multiply=1):
if args.load_input_data:
logger.info("load data from {}".format(args.load_input_data))
data = mge.load(args.load_input_data)
data_names = [inp.name for inp in inputs]
if isinstance(data, np.ndarray):
assert len(data_names) == 1, (
"data is given as a single numpy array, so there should be "
"exactly one input in the graph; got: {}".format(data_names)
)
data = {data_names[0]: data}
assert isinstance(data, dict)
for v in data.values():
assert isinstance(
v, np.ndarray
), "data should provide ndarray; got {} instead".format(v)
if args.batchsize:
for k, v in list(data.items()):
assert (
args.batchsize % v.shape[0] == 0
), "current batch size must divide given batch size: {} {}".format(
args.batchsize, v.shape[0]
)
data[k] = np.repeat(v, args.batchsize // v.shape[0], axis=0)
return data
def iter_inpdesc(desc):
if not desc:
return
for pair in desc.split(";"):
name, value = pair.split(":")
if name not in data_shapes:
logger.warning("rng name {} not in data provider".format(name))
yield name, value
rng = np.random.RandomState(args.seed)
data_shapes = OrderedDict((inp.name, list(inp.shape)) for inp in inputs)
data_dtypes = OrderedDict((inp.name, inp.dtype) for inp in inputs)
for name, shape in iter_inpdesc(args.input_desc):
data_shapes[name] = list(map(int, shape.split(",")))
if args.batchsize:
for i in data_shapes.values():
i[0] = args.batchsize
data_rngs = dict(iter_inpdesc(args.rng))
result = OrderedDict()
for name, shape in data_shapes.items():
shape[0] *= shape0_multiply
rng_expr = data_rngs.get(name)
if rng_expr:
value = eval("rng.{}".format(rng_expr).format(shape), {"rng": rng})
else:
value = rng.uniform(size=shape)
value = np.ascontiguousarray(value, dtype=data_dtypes[name])
assert value.shape == tuple(shape)
result[name] = value
return result
def get_execution_strategy(args):
if not args.fast_run:
logger.warning("--fast-run not enabled; execution may be slow")
strategy = "HEURISTIC"
else:
logger.warning("--fast-run enabled; compile may be slow")
strategy = "PROFILE"
if args.reproducible:
strategy += "_REPRODUCIBLE"
return strategy
def get_opt_kwargs(args):
args_list = [
"enable_io16xc32",
"enable_ioc16",
"enable_hwcd4",
"enable_nchw4",
"enable_nchw88",
"enable_nchw44",
"enable_nchw44_dot",
"enable_nchw32",
"enable_chwn4",
"enable_fuse_conv_bias_nonlinearity",
"enable_fuse_conv_bias_with_z",
]
kwargs = {}
for k in args_list:
if getattr(args, k):
kwargs[k] = True
return kwargs
def run_model(args, graph, inputs, outputs, data):
# must use level0 to avoid unintended opr modification
graph.options.graph_opt_level = 0
logger.info("input tensors: ")
for k, v in data.items():
logger.info(" {}: {}".format(k, v.shape))
G.modify_opr_algo_strategy_inplace(outputs, get_execution_strategy(args))
if args.optimize_for_inference:
opt_kwargs = get_opt_kwargs(args)
outputs = G.optimize_for_inference(outputs, **opt_kwargs)
# embed inputs must be on the last, to avoid const fold
if args.embed_input:
outputs, inp_dict = tools.embed_inputs(outputs, data.values(), inputs=inputs)
else:
outputs, inp_dict = tools.convert_inputs(outputs, inputs=inputs)
if args.dump_cpp_model:
dump_content, _ = G.dump_graph(outputs, keep_var_name=2)
with open(args.dump_cpp_model, "wb") as file:
file.write(dump_content)
logger.info("C++ model written to {}".format(args.dump_cpp_model))
outputs, output_dict = tools.convert_outputs(outputs)
if args.profile:
profiler = tools.GraphProfiler(graph)
func = graph.compile(outputs)
def run():
if not args.embed_input:
for key in inp_dict:
inp_dict[key].set_value(mge.Tensor(data[key])._dev_tensor())
func.execute()
func.wait()
return [oup_node.get_value().numpy() for oup_node in output_dict.values()]
if args.warm_up:
logger.info("warming up")
run()
total_time = 0
for i in range(args.iter):
logger.info("iter {}".format(i))
start_time = time.time()
retval = run()
cur_time = time.time() - start_time
total_time += cur_time
avg_speed = (i + 1) / total_time
if "data" in data:
avg_speed *= data["data"].shape[0]
avg_speed_txt = "{:.3f}sample/s".format(avg_speed)
else:
avg_speed_txt = "{:.3f}batch/s".format(avg_speed)
msg = (
"iter {}: duration={:.4f}({:.4f})s average={:.4f}s "
"avg_speed={} time={:.4f}s"
).format(
i,
cur_time,
func.get_prev_exec_time(),
total_time / (i + 1),
avg_speed_txt,
total_time,
)
if args.calc_output_rms:
rms = []
for v in retval:
rms.append("{:.3g}".format(float(((v ** 2).mean()) ** 0.5)))
msg += " output_rms=[{}]".format(", ".join(rms))
if logger.level > logging.INFO:
print(msg)
else:
logger.info(msg)
if args.focused_nvprof:
if get_device_count("gpu") < 1:
logger.warning(
"No cuda device detected. ``focused_nvprof`` will be ignored."
)
else:
try:
import pycuda.driver as D
D.start_profiler()
func.execute()
func.wait()
D.stop_profiler()
except ImportError:
logger.error("`focused_nvprof need pycuda`", exc_info=True)
if args.profile:
with open(args.profile, "w") as fout:
fout.write(profiler.get())
return avg_speed
def main():
parser = argparse.ArgumentParser(
description="load a network and run inference on random data",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("net")
parser.add_argument(
"--device", "-d", help="set defult device, like 'gpux' or 'cpux'"
)
parser.add_argument(
"--calc-output-rms",
action="store_true",
help="compute RMS of outputs; useful for comparing computing results",
)
parser.add_argument(
"--output-name",
nargs="*",
help="Specify output name. This option can be"
" specified multiple times. We will look for opr/var"
" in the graph",
)
parser.add_argument(
"--load-input-data",
help="load input data from pickle file; it should be"
" a numpy array or a dict of numpy array",
)
parser.add_argument("--profile", help="profiler output file")
parser.add_argument(
"--fast-run",
action="store_true",
help="enable fast running by profiling conv algorithms during compiling.",
)
parser.add_argument(
"--reproducible", action="store_true", help="use reproducible kernels"
)
parser.add_argument(
"--input-desc",
help="specifiy input names and shapes manually in"
" format: <name>:<shape>[;<name>:<shape>, ...], where"
" name is a string and shape is a comma separated"
' string. e.g., "data:128,1,28,28,label:128".'
" different input tensor are separated by semicolon.",
)
parser.add_argument(
"--batchsize",
type=int,
help="change batchsize; the first dimension of each"
" input is assumed to be batch size",
)
parser.add_argument(
"--warm-up",
action="store_true",
help="warm up model before do timing " " for better estimation",
)
parser.add_argument(
"--verbose",
"-v",
action="store_true",
help="verbose output, logging in debug mode",
)
parser.add_argument(
"--iter", type=int, default=1, help="number of iters to run the model"
)
parser.add_argument("--log", help="give a file path to duplicate log to")
parser.add_argument(
"--seed",
type=int,
default=0,
help="seed for random number generator for input data",
)
parser.add_argument(
"--rng",
help="special RNG options to generate input data in"
" format: <name>:func[;<name>:func, ...] where name is"
" a string and func is a python expression containing"
' "{}" for the size param, e.g. '
' "label:randint(low=0,high=1000,size={})"',
)
parser.add_argument(
"--focused-nvprof",
action="store_true",
help="only profile last iter for `nvprof --profile-from-start off`",
)
parser.add_argument(
"--optimize-for-inference",
action="store_true",
help="optimize model for inference",
)
parser.add_argument(
"--enable-io16xc32",
action="store_true",
help="transform the mode to float16 io float32 compute",
)
parser.add_argument(
"--enable-ioc16",
action="store_true",
help="transform the dtype of the model to float16 io and compute",
)
parser.add_argument(
"--enable-hwcd4",
action="store_true",
help="transform the model format from NCHW to NHWCD4 for inference",
)
parser.add_argument(
"--enable-nchw4",
action="store_true",
help="transform the model format from NCHW to NCHW4 for inference",
)
parser.add_argument(
"--enable-nchw88",
action="store_true",
help="transform the model format from NCHW to NCHW88 for inference",
)
parser.add_argument(
"--enable-nchw44",
action="store_true",
help="transform the model format from NCHW to NCHW44 for inference",
)
parser.add_argument(
"--enable-nchw44-dot",
action="store_true",
help="transform the model format from NCHW to NCHW44_DOT "
"for optimizing armv8.2 dot in inference",
)
parser.add_argument(
"--enable-chwn4",
action="store_true",
help="transform the model format to CHWN4 "
"for inference, mainly used for nvidia tensorcore",
)
parser.add_argument(
"--enable-nchw32",
action="store_true",
help="transform the model format from NCHW4 to NCHW32 "
"for inference on nvidia TensoCore",
)
parser.add_argument(
"--enable-fuse-conv-bias-nonlinearity",
action="store_true",
help="fuse convolution bias and nonlinearity opr to a "
"conv_bias opr and compute",
)
parser.add_argument(
"--enable-fuse-conv-bias-with-z",
action="store_true",
help="fuse conv_bias with z input for inference on "
"nvidia GPU (this optimization pass will result in mismatch "
"of the precision of output of training and inference)",
)
parser.add_argument(
"--dump-cpp-model",
help="write a C++ model that can be loaded by "
"megbrain/sdk/load-and-run; "
"this implies --embed-input",
)
parser.add_argument(
"--embed-input",
action="store_true",
help="embed input data as SharedDeviceTensor in model, "
"to remove memory copy for inputs",
)
args = parser.parse_args()
if args.verbose:
enable_debug_log()
if args.log:
set_log_file(args.log)
if args.device:
set_default_device(args.device)
if args.dump_cpp_model:
args.embed_input = True
logger.info("loading model ...")
graph, _, output_vars = G.load_graph(args.net)
input_vars = tools.get_dep_vars(output_vars, "Host2DeviceCopy")
if args.output_name is not None:
output_vars = tools.find_vars_by_name(output_vars, args.output_name)
data = make_data_given_desc(args, input_vars)
run_model(args, graph, input_vars, output_vars, data)
if __name__ == "__main__":
main()
......@@ -181,7 +181,7 @@ class ProfileAnalyzer:
:param opr_filter: function that filter oprs.
"""
self._opr_set = dict() # type: dict
assert isinstance(obj, dict)
assert isinstance(obj, dict), type(obj)
varz = obj["graph_exec"]["var"]
for opr_id, entry in obj["graph_exec"]["operator"].items():
inp = [varz[i] for i in entry["input"]]
......
......@@ -195,6 +195,7 @@ void init_graph_rt(py::module m) {
py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
.def("execute", &cg::AsyncExecutable::execute, py::call_guard<py::gil_scoped_release>())
.def("wait", &cg::AsyncExecutable::wait, py::call_guard<py::gil_scoped_release>())
.def("get_prev_exec_time", &cg::AsyncExecutable::get_prev_exec_time, py::call_guard<py::gil_scoped_release>())
// only used for exception handle
.def_property_readonly("_all_rendezvous", [](cg::AsyncExecutable* exec) {
auto ud = exec->owner_graph()->options().user_data
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册