algo_chooser.cpp 32.2 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/search_policy/algo_chooser.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain/opr/search_policy/algo_chooser.h"
14
#include <limits>
15 16
#include <unordered_set>
#include "megbrain/opr/dnn/convolution.h"
17
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"
18
#include "megbrain/opr/search_policy/algo_chooser_helper.h"
19 20 21 22 23 24 25 26
#include "megbrain/opr/search_policy/profiler.h"

#include "../internal/invoke.h"
#include "../internal/megdnn_opr_wrapper.inl"
#include "./workspace_need_limit_getter.inl"

//! TODO: here has to be know some megdnn::opr when there is produced midout.h
//! fix it if there is another graceful way.
27
#include "megdnn/opr_param_defs.h"
28
#include "megdnn/oprs.h"
29
#include "megdnn/oprs/base.h"
30 31 32 33 34 35 36 37
#include "midout.h"
MIDOUT_DECL(megbrain_opr_algo_chooser)
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

using mgb::opr::intl::WorkspaceLimitGetter;
38 39
using namespace megdnn;
using namespace mgb;
40 41 42 43 44 45 46 47

#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

// timeout delta to be added with fastest known algorithm for new algos
constexpr double TIMEOUT_TOLERANCE = 2;

48
#define CACHE_KEY_VERSION "v4"
49 50 51 52 53 54 55 56 57 58

namespace {
template <typename Opr>
std::string profile_name(Opr* opr) {
    std::string ret =
            std::string(MegDNNOpr2MGBOpr<Opr>::MGBOpr::typeinfo()->name) +
            CACHE_KEY_VERSION;
    ret.append(opr->get_algorithm_set_name());
    return ret;
}
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

template <typename Opr>
std::string format_fixlayouts(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts,
        size_t arity_in, size_t arity_out) {
    std::string ret;
    ret.append(": tensor layouts(");
    for (size_t i = 0; i < arity_in; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i].to_string() + " ");
        ret.append(layouts[i].dtype.name());
    }
    ret.append(") -> (");
    for (size_t i = 0; i < arity_out; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i + arity_in].to_string() + " ");
        ret.append(layouts[i + arity_in].dtype.name());
    }
    return ret;
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/**
 * \brief Check if the sub opr list has circular dependence.
 */
class CircularDepsChecker {
    struct SearchItemStorage {
        std::string data_hold;
        size_t hash = 0;

        SearchItemStorage(const Algorithm::SearchItem& item) {
            Algorithm::serialize_write_pod(item.opr_type, data_hold);
            for (auto&& layout : item.layouts) {
                data_hold += layout.serialize();
            }
            data_hold += item.param;
        }

        SearchItemStorage& init_hash() {
            hash = XXHash64CT::hash(data_hold.data(), data_hold.size(),
                                    20201225);
            return *this;
        }

        bool operator==(const SearchItemStorage& rhs) const {
            return data_hold == rhs.data_hold;
        }

        struct Hash {
            size_t operator()(const SearchItemStorage& s) const {
                return s.hash;
            }
        };
    };
    std::unordered_set<SearchItemStorage, SearchItemStorage::Hash> m_set;

public:
    void put(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        mgb_assert(m_set.find(key_storage) == m_set.end(),
                   "Circular dependency during flatten search space");
        auto ret = m_set.insert(std::move(key_storage));
        mgb_assert(ret.second);
    }
    void remove(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        auto&& iter = m_set.find(key_storage);
        mgb_assert(iter != m_set.end());
        m_set.erase(iter);
    }
};

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
///////////////// OprTypeTrait /////////////////////////////
template <megdnn::Algorithm::OprType>
struct OprFromOprTypeTrait;

template <typename Opr>
struct OprTypeFromOprTrait;

#define cb(_opr_type, _opr)                                             \
    template <>                                                         \
    struct OprFromOprTypeTrait<megdnn::Algorithm::OprType::_opr_type> { \
        using Opr = megdnn::_opr;                                       \
    };                                                                  \
    template <>                                                         \
    struct OprTypeFromOprTrait<megdnn::_opr> {                          \
        constexpr static megdnn::Algorithm::OprType opr_type =          \
                megdnn::Algorithm::OprType::_opr_type;                  \
    }

cb(MATRIX_MUL_FORWARD, MatrixMulForward);
cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward);
cb(CONVOLUTION_FORWARD, ConvolutionForward);
cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
cb(LOCAL_SHARE_FORWARD, LocalShareForward);
cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
cb(CONVBIAS_FORWARD, ConvBiasForward);

#undef cb

// clang-format off
#define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt)  \
    cb(MATRIX_MUL_FORWARD, stmt)              \
    cb(BATCHED_MATRIX_MUL_FORWARD, stmt)      \
    cb(CONVOLUTION_FORWARD, stmt)             \
    cb(CONVOLUTION_BACKWARD_DATA, stmt)       \
    cb(CONVOLUTION_BACKWARD_FILTER, stmt)     \
    cb(CONVOLUTION3D_FORWARD, stmt)           \
    cb(CONVOLUTION3D_BACKWARD_DATA, stmt)     \
    cb(CONVOLUTION3D_BACKWARD_FILTER, stmt)   \
    cb(LOCAL_SHARE_FORWARD, stmt)             \
    cb(LOCAL_SHARE_BACKWARD_DATA, stmt)       \
    cb(LOCAL_SHARE_BACKWARD_FILTER, stmt)     \
    cb(DEFORMABLE_CONV_FORWARD, stmt)         \
    cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt)   \
    cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
    cb(BATCH_CONV_FORWARD, stmt)              \
    cb(CONVBIAS_FORWARD, stmt)
// clang-format on

#define _OPR_TYPE_CASE(_opr_type, _stmt)             \
    case Algorithm::OprType::_opr_type: {            \
        using _Opr = typename OprFromOprTypeTrait<   \
                Algorithm::OprType::_opr_type>::Opr; \
        _stmt;                                       \
        break;                                       \
    }

#define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt)          \
    for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
         _item_idx++) {                                          \
        auto&& _item = _search_items[_item_idx];                 \
        switch (_item.opr_type) {                                \
            FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt)    \
            default:                                             \
                mgb_throw(MegBrainError, "unknown opr_type");    \
        }                                                        \
    }

template <typename Opr>
TensorLayoutArray to_layout_array(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts) {
    TensorLayoutArray ret;
    for (auto&& layout : layouts) {
        ret.push_back(layout);
    }
    return ret;
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233
template <typename Opr>
typename opr::AlgoChooser<Opr>::FixedTensorLayouts to_fixed_layouts(
        const TensorLayoutArray& layouts) {
    typename opr::AlgoChooser<Opr>::FixedTensorLayouts ret;
    mgb_assert(ret.size() == layouts.size());
    size_t idx = 0;
    for (auto&& layout : layouts) {
        ret[idx++] = layout;
    }
    return ret;
}

234 235 236 237 238 239 240 241 242 243 244 245
/**
 * flatten search space in postorder traversal
 * The subopr search construct a search tree
 *
 *           A
 *        /    \
 *       B1B2   C
 *      /     \
 *     D1D2D3   E
 * We use postorder traverse the search tree.
 * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
 */
246
template <typename Opr>
247 248 249 250 251 252 253
std::vector<megdnn::Algorithm::SearchItem> flatten_search_space(
        const typename opr::AlgoChooser<Opr>::ExeContext& ctx,
        CircularDepsChecker& checker) {
    auto&& search_item = megdnn::Algorithm::SearchItem{
            OprTypeFromOprTrait<Opr>::opr_type, ctx.param(),
            to_layout_array<Opr>(ctx.layouts())};
    checker.put(search_item);
254 255 256 257 258 259 260 261 262
    std::vector<megdnn::Algorithm::SearchItem> ret;
    for (auto algo_info : ctx.get_all_candidates()) {
        megdnn::Algorithm* algo = ctx.get_algorithm_from_desc(algo_info.desc);
        mgb_assert(algo, "Unknown algo description");
        std::vector<megdnn::Algorithm::SearchItem>&& sub_items =
                algo->get_subopr_list(to_layout_array<Opr>(ctx.layouts()),
                                      ctx.megdnn_opr());

        FOREACH_OPR_TYPE_DISPATCH(sub_items, {
263 264
            auto&& megdnn_opr =
                    opr::intl::create_megdnn_opr<_Opr>(ctx.comp_node());
265 266 267
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
268
            typename opr::AlgoChooser<_Opr>::ExeContext sub_ctx(
269 270 271
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                    _item.param, ctx.mgb_opr(), ctx.comp_node(),
                    ctx.execution_policy(), ctx.allow_weight_preprocess());
272
            auto space = flatten_search_space<_Opr>(sub_ctx, checker);
273 274
            ret.insert(ret.end(), space.begin(), space.end());
        });
275
    }
276 277
    ret.push_back(search_item);
    checker.remove(search_item);
278 279
    return ret;
}
280

281 282 283 284 285
}  // namespace

namespace mgb {
namespace opr {

286
template <typename Opr>
287 288 289
void AlgoChooser<Opr>::profile(ExeContext& ctx,
                               ExecutionStrategy select_strategy) {
    if (ctx.get_profile_result_from_cache(select_strategy).valid())
290
        return;
291 292 293 294 295 296
    AlgoChooserProfileCache::Result prof_rst;

    std::string str_on_inp_shape = ssprintf(
            "on input layouts (%s, %s)", ctx.layouts()[0].to_string().c_str(),
            ctx.layouts()[1].to_string().c_str());
    double cur_timeout = 0;
297 298 299 300

    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
            ctx.owner_graph(), ctx.comp_node(),
            ctx.execution_policy().workspace_limit);
301
    RealTimer timer;
302
    for (auto algo : ctx.get_all_candidates()) {
303 304 305
        Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;
        std::string msg = ssprintf("profiling %s algorithm %s %s",
                                   ctx.mgb_opr()->dyn_typeinfo()->name,
306
                                   algo.name.c_str(), str_on_inp_shape.c_str());
307 308
        ImplExecutionPolicy policy;
        policy.algo = algo.desc;
309
        ctx.construct_execution_policy(select_strategy, policy);
310 311 312
        if (ctx.get_workspace_size_bytes(policy) >= workspace_limit)
            continue;

313
        timer.reset();
314
        MGB_TRY { cur_rst = ctx.profile_single_algo(policy, cur_timeout); }
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        MGB_CATCH(std::exception & exc, {
            mgb_log_warn("caught exception during %s: %s", msg.c_str(),
                         exc.what());
            continue;
        })
        MGB_CATCH(..., {
            mgb_log_warn("caught exception during %s", msg.c_str());
            continue;
        })
        if (!cur_rst.valid()) {
            mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
                         msg.c_str(), cur_timeout);
            continue;
        }
        if (!cur_timeout) {
            cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
        } else {
            cur_timeout =
                    std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
        }
        auto&& rst = cur_rst.val();
        mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
                      rst.workspace, rst.time);
        prof_rst.push_back(rst);
    }
340 341 342 343
    std::string msg = ssprintf("no usable %s algorithm %s",
                                ctx.mgb_opr()->dyn_typeinfo()->name,
                                str_on_inp_shape.c_str());
    mgb_assert(!prof_rst.empty(), "%s", msg.c_str());
344

345 346 347 348 349 350 351 352
    FixedTensorLayouts origin_layouts = ctx.layouts();
    typename Opr::Param origin_param = ctx.megdnn_opr()->param();
    AlgoChooserProfileCache::Key cache_key{origin_layouts.data(),
                                           origin_layouts.size(), &origin_param,
                                           sizeof(origin_param)};

    AlgoChooserProfileCache cache(ctx.comp_node(),
                                  profile_name(ctx.megdnn_opr()).c_str());
353 354 355 356
    cache.put(cache_key, prof_rst);
}

template <typename Opr>
357
typename AlgoChooser<Opr>::ImplExecutionPolicy
358 359
AlgoChooser<Opr>::choose_by_profile(ExeContext& ctx,
                                    ExecutionStrategy select_strategy,
360
                                    bool enable_update) {
361
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile")))
362 363 364 365
    if (ctx.owner_graph()->options().no_profiling_on_shape_change) {
        auto policy = ctx.megdnn_opr()->execution_policy();
        if (policy.algo.valid())
            return policy;
366 367
    }

368
    if (enable_update) {
369 370 371
        CircularDepsChecker circular_deps_checker;
        auto&& search_items =
                flatten_search_space<Opr>(ctx, circular_deps_checker);
372 373 374 375 376 377 378 379 380
        FOREACH_OPR_TYPE_DISPATCH(search_items, {
            auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(ctx.comp_node());
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
            typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                    _item.param, ctx.mgb_opr(), ctx.comp_node(),
                    ctx.execution_policy(), ctx.allow_weight_preprocess());
381
            AlgoChooser<_Opr>::profile(sub_ctx, select_strategy);
382
        });
383
    }
384
    typename AlgoChooser<Opr>::ImplExecutionPolicy policy;
385
    ctx.construct_execution_policy(select_strategy, policy);
386
    return policy;
387 388 389 390
    MIDOUT_E
}

template <typename Opr>
391
size_t AlgoChooser<Opr>::setup_algo(const FixedTensorLayouts& layouts,
392 393 394 395 396 397
                                    Opr* megdnn_opr, const MGBOpr* mgb_opr,
                                    bool allow_weight_preprocess) {
    if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
        return 0;
    }

398 399 400 401 402
    std::string param_str;
    Algorithm::serialize_write_pod(megdnn_opr->param(), param_str);
    ExeContext ctx(layouts, megdnn_opr, param_str, mgb_opr,
                   mgb_opr->comp_node(), mgb_opr->execution_policy(),
                   allow_weight_preprocess);
403

404
    ImplExecutionPolicy policy;
405
    if (auto algo_choose_hook = mgb_opr->algo_chooser()) {
406
        policy = algo_choose_hook(mgb_opr);
407 408 409
        ctx.construct_execution_policy((ExecutionStrategy::HEURISTIC |
                                        ExecutionStrategy::REPRODUCIBLE),
                                       policy, false);
410
    }
411 412
    if (!policy.algo.valid()) {
        policy = get_policy(ctx);
413
    }
414
    size_t workspace = ctx.get_workspace_size_bytes(policy);
M
Megvii Engine Team 已提交
415 416

    std::string ret;
417
    ret.append(mgb_opr->dyn_typeinfo()->name);
418 419 420 421
    ret += format_fixlayouts<Opr>(layouts, arity_in, arity_out);
    Algorithm* palgo = megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
    ret.append("): algo=" + std::string(palgo->name()));
422
    ret.append(ssprintf(" workspace=%.2fMiB attirbute=%d",
423
                        workspace / (1024 * 1024.0),
424
                        static_cast<uint32_t>(palgo->attribute())));
M
Megvii Engine Team 已提交
425 426
    mgb_log_debug("%s", ret.c_str());

427
    megdnn_opr->execution_policy() = policy;
428 429 430 431
    return workspace;
}

template <typename Opr>
432
typename AlgoChooser<Opr>::ImplExecutionPolicy AlgoChooser<Opr>::get_policy(
433 434
        ExeContext& ctx) {
    MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE);
435 436 437 438 439 440 441 442 443 444 445
    auto opr_strategy = ctx.execution_policy().strategy;
    if ((opr_strategy & ExecutionStrategy::HEURISTIC) &&
               (opr_strategy & ExecutionStrategy::PROFILE)) {
        ImplExecutionPolicy policy =
                choose_by_profile(ctx, opr_strategy, false);
        if (!policy.algo.valid())
            policy = ctx.choose_by_heuristic(opr_strategy);
        return policy;
    } else if ((opr_strategy & ExecutionStrategy::HEURISTIC)) {
        return ctx.choose_by_heuristic(opr_strategy);
    }
446
#if MGB_ENABLE_FASTRUN
447 448 449
    else if (opr_strategy & ExecutionStrategy::PROFILE) {
        return choose_by_profile(ctx, opr_strategy);
    }
450
#endif
451 452
    else {
        mgb_throw(GraphError, "bad convolution ExecutionPolicy strategy");
453 454 455
    }
}

456 457 458 459 460 461 462 463 464 465 466
#define INST(Opr)                                                       \
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy              \
    AlgoChooser<megdnn::Opr>::get_policy(ExeContext& ctx);              \
    template void AlgoChooser<megdnn::Opr>::profile(ExeContext& ctx,    \
                                                    ExecutionStrategy); \
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy              \
    AlgoChooser<megdnn::Opr>::choose_by_profile(                        \
            ExeContext& ctx, ExecutionStrategy, bool enable_update);    \
    template size_t AlgoChooser<megdnn::Opr>::setup_algo(               \
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \
            const MGBOpr* mgb_opr, bool allow_weight_preprocess);
467 468 469 470 471 472

MGB_FOREACH_FASTRUN_OPR(INST)

#undef INST

//////////////////////////////// ExeContext /////////////////////////////
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
template <typename Opr>
AlgoChooser<Opr>::ExeContext::ExeContext(
        const FixedTensorLayouts& layouts, Opr* megdnn_opr,
        const std::string& param_str, const cg::OperatorNodeBase* mgb_opr,
        const CompNode& cn,
        const megdnn::param::ExecutionPolicy& execution_policy,
        bool allow_weight_preprocess)
        : m_layouts{layouts},
          m_megdnn_opr{megdnn_opr},
          m_param{param_str},
          m_base_mgb_opr{mgb_opr},
          m_cn{cn},
          m_execution_policy{execution_policy},
          m_allow_weight_preprocess{allow_weight_preprocess} {
    mgb_assert(m_layouts.size() == layouts.size());
    static_assert(std::tuple_size<FixedTensorLayouts>::value == 3 ||
                          std::tuple_size<FixedTensorLayouts>::value == 5 ||
                          std::tuple_size<FixedTensorLayouts>::value == 8,
                  "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
                  "deformable conv)");
}
494 495 496

template <typename Opr>
typename AlgoChooser<Opr>::ImplAlgo
497
AlgoChooser<Opr>::ExeContext::get_profile_result_from_cache(
498
        ExecutionStrategy select_strategy) const {
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    MIDOUT_B(Opr,
             midout_iv(MGB_HASH_STR(
                     "AlgoChooser::ExeContext::get_profile_result_from_cache")))
    AlgoChooserProfileCache cache(m_cn,
                                  profile_name(m_megdnn_opr).c_str());

    typename Opr::Param origin_param = m_megdnn_opr->param();
    AlgoChooserProfileCache::Key cache_key{m_layouts.data(), m_layouts.size(),
                                           &origin_param, sizeof(origin_param)};
    auto&& rst = cache.get(cache_key);
    if (!rst.valid())
        return {};

    auto&& prof = rst.val();
    std::unordered_map<std::string, ImplAlgo> algo_map;
    for (auto i : get_all_candidates()) {
        auto ins = algo_map.emplace(i.name.c_str(), i);
        mgb_assert(ins.second, "duplicated algo name: %s", i.name.c_str());
    }

    if (prof.empty())
        return {};
    for (auto&& i : prof) {
522 523 524
        if (!(select_strategy & ExecutionStrategy::REPRODUCIBLE) ||
            static_cast<AlgoAttribute>(i.attribute) &
                    AlgoAttribute::REPRODUCIBLE) {
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
            auto iter = algo_map.find(i.algo);
            mgb_assert(iter != algo_map.end(),
                       "algorithm %s exists in "
                       "profiling result but not in algo_map; please "
                       "report this "
                       "bug; opr: %s{%s}, layouts: %s ",
                       i.algo.c_str(), m_base_mgb_opr->cname(),
                       m_base_mgb_opr->dyn_typeinfo()->name,
                       format_fixlayouts<Opr>(m_layouts, arity_in, arity_out)
                               .c_str());
            return iter->second;
        }
    }

    mgb_log_error(
            "Workspace requirement (%zu) could not be satisfied. Abort now "
            "to "
            "avoid further problems",
            WorkspaceLimitGetter::get_workspace_limit(
                    m_base_mgb_opr->owner_graph(), m_cn,
                    m_execution_policy.workspace_limit));
    mgb_trap();
    MIDOUT_E
}

template <typename Opr>
typename AlgoChooser<Opr>::ImplExecutionPolicy
552 553
AlgoChooser<Opr>::ExeContext::choose_by_heuristic(
        ExecutionStrategy select_strategy) const {
554 555 556 557 558 559 560
    if (m_execution_policy.workspace_limit !=
        std::numeric_limits<decltype(
                m_execution_policy.workspace_limit)>::max()) {
        mgb_log_warn(
                "workspace_limit should not be setted if choose algo by "
                "heuristic");
    }
561 562
    bool reproducible = static_cast<bool>(select_strategy &
                                          ExecutionStrategy::REPRODUCIBLE);
563
    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
            owner_graph(), m_cn, m_execution_policy.workspace_limit);
    ImplExecutionPolicy policy;
    policy.algo = APPLY(m_megdnn_opr->get_algorithm_info_heuristic(
                                args..., workspace_limit, reproducible),
                        m_layouts).desc;

    Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
            to_layout_array<Opr>(m_layouts), m_megdnn_opr);

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
584 585
        policy.sub_policy.push_back(
                sub_ctx.choose_by_heuristic(select_strategy));
586 587 588
    });

    return policy;
589 590 591 592 593
}

template <typename Opr>
std::vector<typename AlgoChooser<Opr>::ImplAlgo>
AlgoChooser<Opr>::ExeContext::get_all_candidates() const {
594 595
    auto heu = choose_by_heuristic(ExecutionStrategy::HEURISTIC);
    auto&& ret = APPLY(m_megdnn_opr->get_all_algorithms_info(args...), m_layouts);
596 597
    bool found = false;
    for (size_t i = 0; i < ret.size(); ++i) {
598
        if (ret[i].desc == heu.algo) {
599 600 601 602 603
            found = true;
            std::swap(ret[i], ret[0]);
            break;
        }
    }
604 605 606

    Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(heu.algo);
    mgb_assert(palgo, "Unknown algo description");
607 608
    mgb_assert(found,
               "algo %s got by heuristic not found in "
609
               "candidate list",
610
               palgo->name());
611 612 613 614
    return std::move(ret);
}

template <typename Opr>
615
void AlgoChooser<Opr>::ExeContext::construct_execution_policy(
616
        ExecutionStrategy select_strategy,
617 618
        typename AlgoChooser<Opr>::ImplExecutionPolicy& policy,
        bool retrive_from_cache) const {
619 620
    bool reproducible = static_cast<bool>(select_strategy &
                                          ExecutionStrategy::REPRODUCIBLE);
621
    if (!policy.algo.valid()) {
622 623
        if (retrive_from_cache) {
            policy.algo =
624
                    get_profile_result_from_cache(select_strategy).desc;
625 626 627 628 629
        } else {
            auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
                    owner_graph(), m_cn, m_execution_policy.workspace_limit);
            policy.algo = APPLY(m_megdnn_opr->get_algorithm_info_heuristic(
                                        args..., workspace_limit,
630
                                        reproducible),
631 632 633
                                m_layouts)
                                  .desc;
        }
634
        mgb_assert(policy.algo.valid(),
635 636
                   "No algo found from cache or heuristic, maybe some error "
                   "occured");
637
    }
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

    Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
            to_layout_array<Opr>(m_layouts), m_megdnn_opr);

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back({});
654
        sub_ctx.construct_execution_policy(select_strategy,
655 656
                                           policy.sub_policy.back(),
                                           retrive_from_cache);
657 658 659
    });

    return;
660 661 662 663
}

template <typename Opr>
size_t AlgoChooser<Opr>::ExeContext::get_workspace_size_bytes(
664 665
        const ImplExecutionPolicy& policy) const {
    m_megdnn_opr->execution_policy() = policy;
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    size_t result;
    if_constexpr<opr_supports_preprocess<Opr>()>(
            [&](auto _) {
                auto&& opr = _(m_megdnn_opr);
                auto prep = this->construct_fake_preprocess_filter();
                PreprocessFilter<Opr>* prep_ptr =
                        prep.valid() ? &prep.val() : nullptr;
                result = std::max(
                        APPLY(opr->get_preprocess_workspace_in_bytes(args...),
                              m_layouts),
                        APPLY(opr->get_workspace_in_bytes(args..., prep_ptr),
                              m_layouts));
            },
            /* else */
            [&](auto _) {
                result = APPLY(_(m_megdnn_opr)->get_workspace_in_bytes(args...),
                               m_layouts);
            });
    return result;
}

template <typename Opr>
Maybe<AlgoChooserProfileCache::ResultEntry>
689 690
AlgoChooser<Opr>::ExeContext::profile_single_algo(
        const ImplExecutionPolicy& policy, double& timeout) const {
691 692
    typename TimedProfiler<Opr>::Param param;
    // force check copy size <= dest len-1 from gcc8 for safe
693 694 695
    param.execution_policy =
            TimedProfiler<Opr>::Param::ExecutionPolicyBlob::serialize(policy);
    param.workspace = get_workspace_size_bytes(policy);
696 697 698 699 700 701 702 703 704 705
    for (int i = 0; i < arity; ++i) {
        auto&& src = m_layouts[i];
        mgb_assert(src.format.is_default() &&
                           (src.dtype.category() == DTypeCategory::FLOAT ||
                            src.dtype.category() == DTypeCategory::INT ||
                            src.dtype.category() == DTypeCategory::QUANTIZED),
                   "unsupported layout in profiling: %s",
                   src.to_string().c_str());
        param.dtypes[i] = src.dtype.enumv();
    }
706
    param.comp_node_loc = m_cn.locator();
707 708 709 710 711 712
    mgb_assert(param.shapes.size() == m_layouts.size());
    for (size_t i = 0; i < param.shapes.size(); ++i)
        param.shapes[i] = m_layouts[i];
    param.opr_param = m_megdnn_opr->param();
    param.allow_weight_preprocess = m_allow_weight_preprocess;

713 714
    Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
715 716 717 718
    auto rst = TimedProfiler<Opr>::profile(param, timeout);
    // MIOpen conv profiles all available algos when a specfic shape is
    // provided for the first time, which probably adds to the result time.
    // Therefore, a second profile execution is needed.
719
    if (strncmp(palgo->name(), "MIOpen", 6) == 0)
720 721 722 723
        rst = TimedProfiler<Opr>::profile(param, timeout);
    if (!rst.valid())
        return None;
    return AlgoChooserProfileCache::ResultEntry{
724
            palgo->name(),
725
            static_cast<uint32_t>(palgo->attribute()),
726
            rst.val().time, param.workspace};
727 728 729 730 731 732 733 734 735 736
}

template <typename Opr>
Maybe<PreprocessFilter<Opr>>
AlgoChooser<Opr>::ExeContext::construct_fake_preprocess_filter() const {
    Maybe<PreprocessFilter<Opr>> result = None;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (!m_allow_weight_preprocess)
            return;
        auto opr = _(m_megdnn_opr);
737 738 739 740
        auto layouts = APPLY(opr->deduce_preprocessed_filter_layout(args...),
                             m_layouts);
        //! No preprocess layout means no need weight preprocess
        if (layouts.empty()) {
741
            return;
742 743 744 745 746 747 748 749 750 751 752 753
        }
        //! all layouts arm empty means no need weight preprocess
        bool layout_valid = false;
        for (auto&& layout : layouts) {
            if (!layout.is_empty()) {
                layout_valid = true;
            }
        }
        if (!layout_valid) {
            return;
        }

754 755 756
        result = PreprocessFilter<Opr>{};
        auto& res = result.val();
        res.algorithm_id = nullptr;
757 758 759
        res.tensors.resize(layouts.size());
        for (size_t i = 0; i < layouts.size(); i++) {
            res.tensors[i] = megdnn::TensorND(nullptr, layouts[i]);
760 761 762 763 764 765
        }
    });
    return result;
}

#define INST(Opr)                                                              \
766 767 768 769 770 771 772
    template AlgoChooser<megdnn::Opr>::ExeContext::ExeContext(                 \
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,        \
            const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, \
            const CompNode& cn,                                                \
            const megdnn::param::ExecutionPolicy& execution_policy,            \
            bool allow_weight_preprocess);                                     \
    template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy            \
773
    AlgoChooser<megdnn::Opr>::ExeContext::choose_by_heuristic(                 \
774
            ExecutionStrategy select_strategy) const;                          \
775 776
    template typename AlgoChooser<megdnn::Opr>::ImplAlgo                       \
    AlgoChooser<megdnn::Opr>::ExeContext::get_profile_result_from_cache(       \
777
            ExecutionStrategy select_strategy) const;                          \
778 779 780 781
    template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo>          \
    AlgoChooser<megdnn::Opr>::ExeContext::get_all_candidates() const;          \
    template size_t                                                            \
    AlgoChooser<megdnn::Opr>::ExeContext::get_workspace_size_bytes(            \
782 783
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy) const;                                             \
784 785
    template void                                                              \
    AlgoChooser<megdnn::Opr>::ExeContext::construct_execution_policy(          \
786
            ExecutionStrategy select_strategy,                                 \
787 788
            typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy& policy,    \
            bool retrive_from_cache) const;                                    \
789 790
    template Maybe<AlgoChooserProfileCache::ResultEntry>                       \
    AlgoChooser<megdnn::Opr>::ExeContext::profile_single_algo(                 \
791 792 793
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy,                                                    \
            double& timeout) const;
794 795 796 797 798 799 800 801

MGB_FOREACH_FASTRUN_OPR(INST)

#undef INST
}  // namespace opr
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}