algo_chooser.cpp 33.5 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/search_policy/algo_chooser.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain/opr/search_policy/algo_chooser.h"
14
#include <limits>
15 16
#include <unordered_set>
#include "megbrain/opr/dnn/convolution.h"
17
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"
18
#include "megbrain/opr/search_policy/algo_chooser_helper.h"
19 20 21 22 23 24 25 26
#include "megbrain/opr/search_policy/profiler.h"

#include "../internal/invoke.h"
#include "../internal/megdnn_opr_wrapper.inl"
#include "./workspace_need_limit_getter.inl"

//! TODO: here has to be know some megdnn::opr when there is produced midout.h
//! fix it if there is another graceful way.
27
#include "megdnn/opr_param_defs.h"
28
#include "megdnn/oprs.h"
29
#include "megdnn/oprs/base.h"
30 31 32 33 34 35 36 37
#include "midout.h"
MIDOUT_DECL(megbrain_opr_algo_chooser)
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

using mgb::opr::intl::WorkspaceLimitGetter;
38 39
using namespace megdnn;
using namespace mgb;
40 41 42 43 44 45 46 47

#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

// timeout delta to be added with fastest known algorithm for new algos
constexpr double TIMEOUT_TOLERANCE = 2;

48
#define CACHE_KEY_VERSION "v4"
49 50 51 52 53 54 55 56 57 58

namespace {
template <typename Opr>
std::string profile_name(Opr* opr) {
    std::string ret =
            std::string(MegDNNOpr2MGBOpr<Opr>::MGBOpr::typeinfo()->name) +
            CACHE_KEY_VERSION;
    ret.append(opr->get_algorithm_set_name());
    return ret;
}
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

template <typename Opr>
std::string format_fixlayouts(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts,
        size_t arity_in, size_t arity_out) {
    std::string ret;
    ret.append(": tensor layouts(");
    for (size_t i = 0; i < arity_in; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i].to_string() + " ");
        ret.append(layouts[i].dtype.name());
    }
    ret.append(") -> (");
    for (size_t i = 0; i < arity_out; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i + arity_in].to_string() + " ");
        ret.append(layouts[i + arity_in].dtype.name());
    }
    return ret;
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/**
 * \brief Check if the sub opr list has circular dependence.
 */
class CircularDepsChecker {
    struct SearchItemStorage {
        std::string data_hold;
        size_t hash = 0;

        SearchItemStorage(const Algorithm::SearchItem& item) {
            Algorithm::serialize_write_pod(item.opr_type, data_hold);
            for (auto&& layout : item.layouts) {
                data_hold += layout.serialize();
            }
            data_hold += item.param;
        }

        SearchItemStorage& init_hash() {
            hash = XXHash64CT::hash(data_hold.data(), data_hold.size(),
                                    20201225);
            return *this;
        }

        bool operator==(const SearchItemStorage& rhs) const {
            return data_hold == rhs.data_hold;
        }

        struct Hash {
            size_t operator()(const SearchItemStorage& s) const {
                return s.hash;
            }
        };
    };
    std::unordered_set<SearchItemStorage, SearchItemStorage::Hash> m_set;

public:
    void put(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        mgb_assert(m_set.find(key_storage) == m_set.end(),
                   "Circular dependency during flatten search space");
        auto ret = m_set.insert(std::move(key_storage));
        mgb_assert(ret.second);
    }
    void remove(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        auto&& iter = m_set.find(key_storage);
        mgb_assert(iter != m_set.end());
        m_set.erase(iter);
    }
};

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
///////////////// OprTypeTrait /////////////////////////////
template <megdnn::Algorithm::OprType>
struct OprFromOprTypeTrait;

template <typename Opr>
struct OprTypeFromOprTrait;

#define cb(_opr_type, _opr)                                             \
    template <>                                                         \
    struct OprFromOprTypeTrait<megdnn::Algorithm::OprType::_opr_type> { \
        using Opr = megdnn::_opr;                                       \
    };                                                                  \
    template <>                                                         \
    struct OprTypeFromOprTrait<megdnn::_opr> {                          \
        constexpr static megdnn::Algorithm::OprType opr_type =          \
                megdnn::Algorithm::OprType::_opr_type;                  \
    }

cb(MATRIX_MUL_FORWARD, MatrixMulForward);
cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward);
cb(CONVOLUTION_FORWARD, ConvolutionForward);
cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
cb(LOCAL_SHARE_FORWARD, LocalShareForward);
cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
cb(CONVBIAS_FORWARD, ConvBiasForward);

#undef cb

// clang-format off
#define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt)  \
    cb(MATRIX_MUL_FORWARD, stmt)              \
    cb(BATCHED_MATRIX_MUL_FORWARD, stmt)      \
    cb(CONVOLUTION_FORWARD, stmt)             \
    cb(CONVOLUTION_BACKWARD_DATA, stmt)       \
    cb(CONVOLUTION_BACKWARD_FILTER, stmt)     \
    cb(CONVOLUTION3D_FORWARD, stmt)           \
    cb(CONVOLUTION3D_BACKWARD_DATA, stmt)     \
    cb(CONVOLUTION3D_BACKWARD_FILTER, stmt)   \
    cb(LOCAL_SHARE_FORWARD, stmt)             \
    cb(LOCAL_SHARE_BACKWARD_DATA, stmt)       \
    cb(LOCAL_SHARE_BACKWARD_FILTER, stmt)     \
    cb(DEFORMABLE_CONV_FORWARD, stmt)         \
    cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt)   \
    cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
    cb(BATCH_CONV_FORWARD, stmt)              \
    cb(CONVBIAS_FORWARD, stmt)
// clang-format on

#define _OPR_TYPE_CASE(_opr_type, _stmt)             \
    case Algorithm::OprType::_opr_type: {            \
        using _Opr = typename OprFromOprTypeTrait<   \
                Algorithm::OprType::_opr_type>::Opr; \
        _stmt;                                       \
        break;                                       \
    }

#define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt)          \
    for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
         _item_idx++) {                                          \
        auto&& _item = _search_items[_item_idx];                 \
        switch (_item.opr_type) {                                \
            FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt)    \
            default:                                             \
                mgb_throw(MegBrainError, "unknown opr_type");    \
        }                                                        \
    }

template <typename Opr>
TensorLayoutArray to_layout_array(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts) {
    TensorLayoutArray ret;
    for (auto&& layout : layouts) {
        ret.push_back(layout);
    }
    return ret;
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233
template <typename Opr>
typename opr::AlgoChooser<Opr>::FixedTensorLayouts to_fixed_layouts(
        const TensorLayoutArray& layouts) {
    typename opr::AlgoChooser<Opr>::FixedTensorLayouts ret;
    mgb_assert(ret.size() == layouts.size());
    size_t idx = 0;
    for (auto&& layout : layouts) {
        ret[idx++] = layout;
    }
    return ret;
}

234 235 236 237 238 239 240 241 242 243 244 245
/**
 * flatten search space in postorder traversal
 * The subopr search construct a search tree
 *
 *           A
 *        /    \
 *       B1B2   C
 *      /     \
 *     D1D2D3   E
 * We use postorder traverse the search tree.
 * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
 */
246
template <typename Opr>
247 248 249 250 251 252 253
std::vector<megdnn::Algorithm::SearchItem> flatten_search_space(
        const typename opr::AlgoChooser<Opr>::ExeContext& ctx,
        CircularDepsChecker& checker) {
    auto&& search_item = megdnn::Algorithm::SearchItem{
            OprTypeFromOprTrait<Opr>::opr_type, ctx.param(),
            to_layout_array<Opr>(ctx.layouts())};
    checker.put(search_item);
254 255 256 257 258 259 260 261 262
    std::vector<megdnn::Algorithm::SearchItem> ret;
    for (auto algo_info : ctx.get_all_candidates()) {
        megdnn::Algorithm* algo = ctx.get_algorithm_from_desc(algo_info.desc);
        mgb_assert(algo, "Unknown algo description");
        std::vector<megdnn::Algorithm::SearchItem>&& sub_items =
                algo->get_subopr_list(to_layout_array<Opr>(ctx.layouts()),
                                      ctx.megdnn_opr());

        FOREACH_OPR_TYPE_DISPATCH(sub_items, {
263 264
            auto&& megdnn_opr =
                    opr::intl::create_megdnn_opr<_Opr>(ctx.comp_node());
265 266 267
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
268
            typename opr::AlgoChooser<_Opr>::ExeContext sub_ctx(
269 270 271
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                    _item.param, ctx.mgb_opr(), ctx.comp_node(),
                    ctx.execution_policy(), ctx.allow_weight_preprocess());
272
            auto space = flatten_search_space<_Opr>(sub_ctx, checker);
273 274
            ret.insert(ret.end(), space.begin(), space.end());
        });
275
    }
276 277
    ret.push_back(search_item);
    checker.remove(search_item);
278 279
    return ret;
}
280

281 282 283 284 285 286 287 288 289 290 291 292 293
//! Test whether the algo attribute of a algo match the require
//! algo_strategy
static bool algo_attribute_match_strategy(AlgoAttribute attribute,
                                          ExecutionStrategy selected_strategy) {
    bool ret = true;
    if (selected_strategy & ExecutionStrategy::OPTMIZED) {
        ret &= (!static_cast<bool>(AlgoAttribute::NAIVE & attribute));
    } else if (selected_strategy & ExecutionStrategy::REPRODUCIBLE) {
        ret &= static_cast<bool>(AlgoAttribute::REPRODUCIBLE & attribute);
    }
    return ret;
}

294 295 296 297 298
}  // namespace

namespace mgb {
namespace opr {

299
template <typename Opr>
300
void AlgoChooser<Opr>::profile(ExeContext& ctx,
301 302
                               ExecutionStrategy selected_strategy) {
    if (ctx.get_profile_result_from_cache(selected_strategy).valid())
303
        return;
304 305 306 307 308 309
    AlgoChooserProfileCache::Result prof_rst;

    std::string str_on_inp_shape = ssprintf(
            "on input layouts (%s, %s)", ctx.layouts()[0].to_string().c_str(),
            ctx.layouts()[1].to_string().c_str());
    double cur_timeout = 0;
310 311 312 313

    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
            ctx.owner_graph(), ctx.comp_node(),
            ctx.execution_policy().workspace_limit);
314
    RealTimer timer;
315
    for (auto algo : ctx.get_all_candidates()) {
316 317 318
        Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;
        std::string msg = ssprintf("profiling %s algorithm %s %s",
                                   ctx.mgb_opr()->dyn_typeinfo()->name,
319
                                   algo.name.c_str(), str_on_inp_shape.c_str());
320 321
        ImplExecutionPolicy policy;
        policy.algo = algo.desc;
322 323
        ctx.construct_execution_policy(selected_strategy, policy);
        if (ctx.get_workspace_size_bytes(policy) >= workspace_limit) {
324
            continue;
325 326 327 328 329 330 331 332 333 334
        }
        auto algo_attribute = ctx.megdnn_opr()
                                      ->get_algorithm_from_desc(policy.algo)
                                      ->attribute();
        if (!algo_attribute_match_strategy(algo_attribute, selected_strategy)) {
            mgb_log_debug(
                    "skip algo %s, which is not match the profile strategy.",
                    algo.name.c_str());
            continue;
        }
335

336
        timer.reset();
337
        MGB_TRY { cur_rst = ctx.profile_single_algo(policy, cur_timeout); }
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        MGB_CATCH(std::exception & exc, {
            mgb_log_warn("caught exception during %s: %s", msg.c_str(),
                         exc.what());
            continue;
        })
        MGB_CATCH(..., {
            mgb_log_warn("caught exception during %s", msg.c_str());
            continue;
        })
        if (!cur_rst.valid()) {
            mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
                         msg.c_str(), cur_timeout);
            continue;
        }
        if (!cur_timeout) {
            cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
        } else {
            cur_timeout =
                    std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
        }
        auto&& rst = cur_rst.val();
        mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
                      rst.workspace, rst.time);
        prof_rst.push_back(rst);
    }
363 364 365 366
    std::string msg = ssprintf("no usable %s algorithm %s",
                                ctx.mgb_opr()->dyn_typeinfo()->name,
                                str_on_inp_shape.c_str());
    mgb_assert(!prof_rst.empty(), "%s", msg.c_str());
367

368 369 370 371 372 373 374 375
    FixedTensorLayouts origin_layouts = ctx.layouts();
    typename Opr::Param origin_param = ctx.megdnn_opr()->param();
    AlgoChooserProfileCache::Key cache_key{origin_layouts.data(),
                                           origin_layouts.size(), &origin_param,
                                           sizeof(origin_param)};

    AlgoChooserProfileCache cache(ctx.comp_node(),
                                  profile_name(ctx.megdnn_opr()).c_str());
376 377 378 379
    cache.put(cache_key, prof_rst);
}

template <typename Opr>
380
typename AlgoChooser<Opr>::ImplExecutionPolicy
381
AlgoChooser<Opr>::choose_by_profile(ExeContext& ctx,
382
                                    ExecutionStrategy selected_strategy,
383
                                    bool enable_update) {
384
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile")))
385 386
    if (ctx.owner_graph()->options().no_profiling_on_shape_change) {
        auto policy = ctx.megdnn_opr()->execution_policy();
387
        if (policy.algo.valid()){
388
            return policy;
389 390 391 392 393 394 395
        }
        if (!algo_usable_on_shape_change<Opr>()) {
            mgb_log_warn(
                    "choose algo by heuristic, which may cause performance "
                    "regression.");
            return ctx.choose_by_heuristic(selected_strategy);
        }
396 397
    }

398
    if (enable_update) {
399 400 401
        CircularDepsChecker circular_deps_checker;
        auto&& search_items =
                flatten_search_space<Opr>(ctx, circular_deps_checker);
402 403 404 405 406 407 408 409 410
        FOREACH_OPR_TYPE_DISPATCH(search_items, {
            auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(ctx.comp_node());
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
            typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                    _item.param, ctx.mgb_opr(), ctx.comp_node(),
                    ctx.execution_policy(), ctx.allow_weight_preprocess());
411
            AlgoChooser<_Opr>::profile(sub_ctx, selected_strategy);
412
        });
413
    }
414
    typename AlgoChooser<Opr>::ImplExecutionPolicy policy;
415
    ctx.construct_execution_policy(selected_strategy, policy);
416
    return policy;
417 418 419 420
    MIDOUT_E
}

template <typename Opr>
421
size_t AlgoChooser<Opr>::setup_algo(const FixedTensorLayouts& layouts,
422 423 424 425 426 427
                                    Opr* megdnn_opr, const MGBOpr* mgb_opr,
                                    bool allow_weight_preprocess) {
    if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
        return 0;
    }

428 429 430 431 432
    std::string param_str;
    Algorithm::serialize_write_pod(megdnn_opr->param(), param_str);
    ExeContext ctx(layouts, megdnn_opr, param_str, mgb_opr,
                   mgb_opr->comp_node(), mgb_opr->execution_policy(),
                   allow_weight_preprocess);
433

434
    ImplExecutionPolicy policy;
435
    if (auto algo_choose_hook = mgb_opr->algo_chooser()) {
436
        policy = algo_choose_hook(mgb_opr);
437 438 439
        ctx.construct_execution_policy((ExecutionStrategy::HEURISTIC |
                                        ExecutionStrategy::REPRODUCIBLE),
                                       policy, false);
440
    }
441 442
    if (!policy.algo.valid()) {
        policy = get_policy(ctx);
443
    }
444
    size_t workspace = ctx.get_workspace_size_bytes(policy);
M
Megvii Engine Team 已提交
445 446

    std::string ret;
447
    ret.append(mgb_opr->dyn_typeinfo()->name);
448 449 450 451
    ret += format_fixlayouts<Opr>(layouts, arity_in, arity_out);
    Algorithm* palgo = megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
    ret.append("): algo=" + std::string(palgo->name()));
452
    ret.append(ssprintf(" workspace=%.2fMiB attirbute=%d",
453
                        workspace / (1024 * 1024.0),
454
                        static_cast<uint32_t>(palgo->attribute())));
M
Megvii Engine Team 已提交
455 456
    mgb_log_debug("%s", ret.c_str());

457
    megdnn_opr->execution_policy() = policy;
458 459 460 461
    return workspace;
}

template <typename Opr>
462
typename AlgoChooser<Opr>::ImplExecutionPolicy AlgoChooser<Opr>::get_policy(
463 464
        ExeContext& ctx) {
    MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE);
465 466 467 468 469 470 471 472
    auto opr_strategy = ctx.execution_policy().strategy;
    if ((opr_strategy & ExecutionStrategy::HEURISTIC) &&
               (opr_strategy & ExecutionStrategy::PROFILE)) {
        ImplExecutionPolicy policy =
                choose_by_profile(ctx, opr_strategy, false);
        if (!policy.algo.valid())
            policy = ctx.choose_by_heuristic(opr_strategy);
        return policy;
473 474
    } else if (!static_cast<int>(opr_strategy) ||
               (opr_strategy & ExecutionStrategy::HEURISTIC)) {
475 476
        return ctx.choose_by_heuristic(opr_strategy);
    }
477
#if MGB_ENABLE_FASTRUN
478 479 480
    else if (opr_strategy & ExecutionStrategy::PROFILE) {
        return choose_by_profile(ctx, opr_strategy);
    }
481
#endif
482
    else {
483
        mgb_throw(GraphError, "bad ExecutionPolicy strategy");
484 485 486
    }
}

487 488 489 490 491 492 493 494 495 496 497
#define INST(Opr)                                                       \
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy              \
    AlgoChooser<megdnn::Opr>::get_policy(ExeContext& ctx);              \
    template void AlgoChooser<megdnn::Opr>::profile(ExeContext& ctx,    \
                                                    ExecutionStrategy); \
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy              \
    AlgoChooser<megdnn::Opr>::choose_by_profile(                        \
            ExeContext& ctx, ExecutionStrategy, bool enable_update);    \
    template size_t AlgoChooser<megdnn::Opr>::setup_algo(               \
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \
            const MGBOpr* mgb_opr, bool allow_weight_preprocess);
498 499 500 501 502 503

MGB_FOREACH_FASTRUN_OPR(INST)

#undef INST

//////////////////////////////// ExeContext /////////////////////////////
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
template <typename Opr>
AlgoChooser<Opr>::ExeContext::ExeContext(
        const FixedTensorLayouts& layouts, Opr* megdnn_opr,
        const std::string& param_str, const cg::OperatorNodeBase* mgb_opr,
        const CompNode& cn,
        const megdnn::param::ExecutionPolicy& execution_policy,
        bool allow_weight_preprocess)
        : m_layouts{layouts},
          m_megdnn_opr{megdnn_opr},
          m_param{param_str},
          m_base_mgb_opr{mgb_opr},
          m_cn{cn},
          m_execution_policy{execution_policy},
          m_allow_weight_preprocess{allow_weight_preprocess} {
    mgb_assert(m_layouts.size() == layouts.size());
    static_assert(std::tuple_size<FixedTensorLayouts>::value == 3 ||
                          std::tuple_size<FixedTensorLayouts>::value == 5 ||
                          std::tuple_size<FixedTensorLayouts>::value == 8,
                  "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
                  "deformable conv)");
}
525 526 527

template <typename Opr>
typename AlgoChooser<Opr>::ImplAlgo
528
AlgoChooser<Opr>::ExeContext::get_profile_result_from_cache(
529
        ExecutionStrategy selected_strategy) const {
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    MIDOUT_B(Opr,
             midout_iv(MGB_HASH_STR(
                     "AlgoChooser::ExeContext::get_profile_result_from_cache")))
    AlgoChooserProfileCache cache(m_cn,
                                  profile_name(m_megdnn_opr).c_str());

    typename Opr::Param origin_param = m_megdnn_opr->param();
    AlgoChooserProfileCache::Key cache_key{m_layouts.data(), m_layouts.size(),
                                           &origin_param, sizeof(origin_param)};
    auto&& rst = cache.get(cache_key);
    if (!rst.valid())
        return {};

    auto&& prof = rst.val();
    std::unordered_map<std::string, ImplAlgo> algo_map;
    for (auto i : get_all_candidates()) {
        auto ins = algo_map.emplace(i.name.c_str(), i);
        mgb_assert(ins.second, "duplicated algo name: %s", i.name.c_str());
    }

    if (prof.empty())
        return {};
    for (auto&& i : prof) {
553
        if (!(selected_strategy & ExecutionStrategy::REPRODUCIBLE) ||
554 555
            static_cast<AlgoAttribute>(i.attribute) &
                    AlgoAttribute::REPRODUCIBLE) {
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
            auto iter = algo_map.find(i.algo);
            mgb_assert(iter != algo_map.end(),
                       "algorithm %s exists in "
                       "profiling result but not in algo_map; please "
                       "report this "
                       "bug; opr: %s{%s}, layouts: %s ",
                       i.algo.c_str(), m_base_mgb_opr->cname(),
                       m_base_mgb_opr->dyn_typeinfo()->name,
                       format_fixlayouts<Opr>(m_layouts, arity_in, arity_out)
                               .c_str());
            return iter->second;
        }
    }

    mgb_log_error(
            "Workspace requirement (%zu) could not be satisfied. Abort now "
            "to "
            "avoid further problems",
            WorkspaceLimitGetter::get_workspace_limit(
                    m_base_mgb_opr->owner_graph(), m_cn,
                    m_execution_policy.workspace_limit));
    mgb_trap();
    MIDOUT_E
}

template <typename Opr>
typename AlgoChooser<Opr>::ImplExecutionPolicy
583
AlgoChooser<Opr>::ExeContext::choose_by_heuristic(
584
        ExecutionStrategy selected_strategy) const {
585 586 587 588 589 590 591
    if (m_execution_policy.workspace_limit !=
        std::numeric_limits<decltype(
                m_execution_policy.workspace_limit)>::max()) {
        mgb_log_warn(
                "workspace_limit should not be setted if choose algo by "
                "heuristic");
    }
592
    bool reproducible = static_cast<bool>(selected_strategy &
593
                                          ExecutionStrategy::REPRODUCIBLE);
594
    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
            owner_graph(), m_cn, m_execution_policy.workspace_limit);
    ImplExecutionPolicy policy;
    policy.algo = APPLY(m_megdnn_opr->get_algorithm_info_heuristic(
                                args..., workspace_limit, reproducible),
                        m_layouts).desc;

    Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
            to_layout_array<Opr>(m_layouts), m_megdnn_opr);

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
615
        policy.sub_policy.push_back(
616
                sub_ctx.choose_by_heuristic(selected_strategy));
617 618 619
    });

    return policy;
620 621 622 623 624
}

template <typename Opr>
std::vector<typename AlgoChooser<Opr>::ImplAlgo>
AlgoChooser<Opr>::ExeContext::get_all_candidates() const {
625 626
    auto heu = choose_by_heuristic(ExecutionStrategy::HEURISTIC);
    auto&& ret = APPLY(m_megdnn_opr->get_all_algorithms_info(args...), m_layouts);
627 628
    bool found = false;
    for (size_t i = 0; i < ret.size(); ++i) {
629
        if (ret[i].desc == heu.algo) {
630 631 632 633 634
            found = true;
            std::swap(ret[i], ret[0]);
            break;
        }
    }
635 636 637

    Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(heu.algo);
    mgb_assert(palgo, "Unknown algo description");
638 639
    mgb_assert(found,
               "algo %s got by heuristic not found in "
640
               "candidate list",
641
               palgo->name());
642 643 644 645
    return std::move(ret);
}

template <typename Opr>
646
void AlgoChooser<Opr>::ExeContext::construct_execution_policy(
647
        ExecutionStrategy selected_strategy,
648 649
        typename AlgoChooser<Opr>::ImplExecutionPolicy& policy,
        bool retrive_from_cache) const {
650
    bool reproducible = static_cast<bool>(selected_strategy &
651
                                          ExecutionStrategy::REPRODUCIBLE);
652
    if (!policy.algo.valid()) {
653 654
        if (retrive_from_cache) {
            policy.algo =
655
                    get_profile_result_from_cache(selected_strategy).desc;
656 657 658 659 660
        } else {
            auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
                    owner_graph(), m_cn, m_execution_policy.workspace_limit);
            policy.algo = APPLY(m_megdnn_opr->get_algorithm_info_heuristic(
                                        args..., workspace_limit,
661
                                        reproducible),
662 663 664
                                m_layouts)
                                  .desc;
        }
665
        mgb_assert(policy.algo.valid(),
666 667
                   "No algo found from cache or heuristic, maybe some error "
                   "occured");
668
    }
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

    Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
            to_layout_array<Opr>(m_layouts), m_megdnn_opr);

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back({});
685
        sub_ctx.construct_execution_policy(selected_strategy,
686 687
                                           policy.sub_policy.back(),
                                           retrive_from_cache);
688 689 690
    });

    return;
691 692 693 694
}

template <typename Opr>
size_t AlgoChooser<Opr>::ExeContext::get_workspace_size_bytes(
695 696
        const ImplExecutionPolicy& policy) const {
    m_megdnn_opr->execution_policy() = policy;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    size_t result;
    if_constexpr<opr_supports_preprocess<Opr>()>(
            [&](auto _) {
                auto&& opr = _(m_megdnn_opr);
                auto prep = this->construct_fake_preprocess_filter();
                PreprocessFilter<Opr>* prep_ptr =
                        prep.valid() ? &prep.val() : nullptr;
                result = std::max(
                        APPLY(opr->get_preprocess_workspace_in_bytes(args...),
                              m_layouts),
                        APPLY(opr->get_workspace_in_bytes(args..., prep_ptr),
                              m_layouts));
            },
            /* else */
            [&](auto _) {
                result = APPLY(_(m_megdnn_opr)->get_workspace_in_bytes(args...),
                               m_layouts);
            });
    return result;
}

template <typename Opr>
Maybe<AlgoChooserProfileCache::ResultEntry>
720 721
AlgoChooser<Opr>::ExeContext::profile_single_algo(
        const ImplExecutionPolicy& policy, double& timeout) const {
722 723
    typename TimedProfiler<Opr>::Param param;
    // force check copy size <= dest len-1 from gcc8 for safe
724 725 726
    param.execution_policy =
            TimedProfiler<Opr>::Param::ExecutionPolicyBlob::serialize(policy);
    param.workspace = get_workspace_size_bytes(policy);
727 728 729 730 731 732 733 734 735 736
    for (int i = 0; i < arity; ++i) {
        auto&& src = m_layouts[i];
        mgb_assert(src.format.is_default() &&
                           (src.dtype.category() == DTypeCategory::FLOAT ||
                            src.dtype.category() == DTypeCategory::INT ||
                            src.dtype.category() == DTypeCategory::QUANTIZED),
                   "unsupported layout in profiling: %s",
                   src.to_string().c_str());
        param.dtypes[i] = src.dtype.enumv();
    }
737
    param.comp_node_loc = m_cn.locator();
738 739 740 741 742 743
    mgb_assert(param.shapes.size() == m_layouts.size());
    for (size_t i = 0; i < param.shapes.size(); ++i)
        param.shapes[i] = m_layouts[i];
    param.opr_param = m_megdnn_opr->param();
    param.allow_weight_preprocess = m_allow_weight_preprocess;

744 745
    Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
746 747 748 749
    auto rst = TimedProfiler<Opr>::profile(param, timeout);
    // MIOpen conv profiles all available algos when a specfic shape is
    // provided for the first time, which probably adds to the result time.
    // Therefore, a second profile execution is needed.
750
    if (strncmp(palgo->name(), "MIOpen", 6) == 0)
751 752 753 754
        rst = TimedProfiler<Opr>::profile(param, timeout);
    if (!rst.valid())
        return None;
    return AlgoChooserProfileCache::ResultEntry{
755
            palgo->name(),
756
            static_cast<uint32_t>(palgo->attribute()),
757
            rst.val().time, param.workspace};
758 759 760 761 762 763 764 765 766 767
}

template <typename Opr>
Maybe<PreprocessFilter<Opr>>
AlgoChooser<Opr>::ExeContext::construct_fake_preprocess_filter() const {
    Maybe<PreprocessFilter<Opr>> result = None;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (!m_allow_weight_preprocess)
            return;
        auto opr = _(m_megdnn_opr);
768 769 770 771
        auto layouts = APPLY(opr->deduce_preprocessed_filter_layout(args...),
                             m_layouts);
        //! No preprocess layout means no need weight preprocess
        if (layouts.empty()) {
772
            return;
773 774 775 776 777 778 779 780 781 782 783 784
        }
        //! all layouts arm empty means no need weight preprocess
        bool layout_valid = false;
        for (auto&& layout : layouts) {
            if (!layout.is_empty()) {
                layout_valid = true;
            }
        }
        if (!layout_valid) {
            return;
        }

785 786 787
        result = PreprocessFilter<Opr>{};
        auto& res = result.val();
        res.algorithm_id = nullptr;
788 789 790
        res.tensors.resize(layouts.size());
        for (size_t i = 0; i < layouts.size(); i++) {
            res.tensors[i] = megdnn::TensorND(nullptr, layouts[i]);
791 792 793 794 795 796
        }
    });
    return result;
}

#define INST(Opr)                                                              \
797 798 799 800 801 802 803
    template AlgoChooser<megdnn::Opr>::ExeContext::ExeContext(                 \
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,        \
            const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, \
            const CompNode& cn,                                                \
            const megdnn::param::ExecutionPolicy& execution_policy,            \
            bool allow_weight_preprocess);                                     \
    template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy            \
804
    AlgoChooser<megdnn::Opr>::ExeContext::choose_by_heuristic(                 \
805
            ExecutionStrategy select_strategy) const;                          \
806 807
    template typename AlgoChooser<megdnn::Opr>::ImplAlgo                       \
    AlgoChooser<megdnn::Opr>::ExeContext::get_profile_result_from_cache(       \
808
            ExecutionStrategy select_strategy) const;                          \
809 810 811 812
    template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo>          \
    AlgoChooser<megdnn::Opr>::ExeContext::get_all_candidates() const;          \
    template size_t                                                            \
    AlgoChooser<megdnn::Opr>::ExeContext::get_workspace_size_bytes(            \
813 814
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy) const;                                             \
815 816
    template void                                                              \
    AlgoChooser<megdnn::Opr>::ExeContext::construct_execution_policy(          \
817
            ExecutionStrategy select_strategy,                                 \
818 819
            typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy& policy,    \
            bool retrive_from_cache) const;                                    \
820 821
    template Maybe<AlgoChooserProfileCache::ResultEntry>                       \
    AlgoChooser<megdnn::Opr>::ExeContext::profile_single_algo(                 \
822 823 824
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy,                                                    \
            double& timeout) const;
825 826 827 828 829 830 831 832

MGB_FOREACH_FASTRUN_OPR(INST)

#undef INST
}  // namespace opr
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}