memcontrol.c 146.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204 205

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
206
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
enum {
	SCAN_BY_LIMIT,
	SCAN_BY_SYSTEM,
	NR_SCAN_CONTEXT,
	SCAN_BY_SHRINK,	/* not recorded now */
};

enum {
	SCAN,
	SCAN_ANON,
	SCAN_FILE,
	ROTATE,
	ROTATE_ANON,
	ROTATE_FILE,
	FREED,
	FREED_ANON,
	FREED_FILE,
	ELAPSED,
	NR_SCANSTATS,
};

struct scanstat {
	spinlock_t	lock;
	unsigned long	stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
	unsigned long	rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
};

const char *scanstat_string[NR_SCANSTATS] = {
	"scanned_pages",
	"scanned_anon_pages",
	"scanned_file_pages",
	"rotated_pages",
	"rotated_anon_pages",
	"rotated_file_pages",
	"freed_pages",
	"freed_anon_pages",
	"freed_file_pages",
	"elapsed_ns",
};
#define SCANSTAT_WORD_LIMIT	"_by_limit"
#define SCANSTAT_WORD_SYSTEM	"_by_system"
#define SCANSTAT_WORD_HIERARCHY	"_under_hierarchy"


B
Balbir Singh 已提交
252 253 254 255 256 257 258
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
259 260 261
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
262 263 264 265 266 267 268
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
269 270 271 272
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
273 274 275 276
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
277
	struct mem_cgroup_lru_info info;
278
	/*
279
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
280
	 * reclaimed from.
281
	 */
K
KAMEZAWA Hiroyuki 已提交
282
	int last_scanned_child;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293 294 295 296

	bool		oom_lock;
	atomic_t	under_oom;

297
	atomic_t	refcnt;
298

299
	int	swappiness;
300 301
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
302

303 304 305
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

306 307 308 309
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
310
	struct mem_cgroup_thresholds thresholds;
311

312
	/* thresholds for mem+swap usage. RCU-protected */
313
	struct mem_cgroup_thresholds memsw_thresholds;
314

K
KAMEZAWA Hiroyuki 已提交
315 316
	/* For oom notifier event fd */
	struct list_head oom_notify;
317 318
	/* For recording LRU-scan statistics */
	struct scanstat scanstat;
319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324
	/*
325
	 * percpu counter.
326
	 */
327
	struct mem_cgroup_stat_cpu *stat;
328 329 330 331 332 333
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
334 335
};

336 337 338 339 340 341
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
342
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
343
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
344 345 346
	NR_MOVE_TYPE,
};

347 348
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
349
	spinlock_t	  lock; /* for from, to */
350 351 352
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
353
	unsigned long moved_charge;
354
	unsigned long moved_swap;
355 356 357
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
358
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
359 360
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
361

D
Daisuke Nishimura 已提交
362 363 364 365 366 367
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

368 369 370 371 372 373
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

374 375 376 377 378 379 380
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

381 382 383
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
384
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
385
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
386
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
387
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
388 389 390
	NR_CHARGE_TYPE,
};

391 392 393
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
394
#define _OOM_TYPE		(2)
395 396 397
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
398 399
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
400

401 402 403 404 405 406 407
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
408 409
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
410

411 412
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
413
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
414
static void drain_all_stock_async(struct mem_cgroup *mem);
415

416 417 418 419 420 421
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

422 423 424 425 426
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

427
static struct mem_cgroup_per_zone *
428
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
429
{
430 431
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
452
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
453
				struct mem_cgroup_per_zone *mz,
454 455
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
456 457 458 459 460 461 462 463
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

464 465 466
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
483 484 485 486 487 488 489 490 491 492 493 494 495
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

496 497 498 499 500 501
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
502
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
503 504 505 506 507 508
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
509
	unsigned long long excess;
510 511
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
512 513
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
514 515 516
	mctz = soft_limit_tree_from_page(page);

	/*
517 518
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
519
	 */
520 521
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
522
		excess = res_counter_soft_limit_excess(&mem->res);
523 524 525 526
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
527
		if (excess || mz->on_tree) {
528 529 530 531 532
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
533 534
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
535
			 */
536
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
537 538
			spin_unlock(&mctz->lock);
		}
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

557 558 559 560
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
561
	struct mem_cgroup_per_zone *mz;
562 563

retry:
564
	mz = NULL;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
613 614
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
615
{
616
	long val = 0;
617 618
	int cpu;

619 620
	get_online_cpus();
	for_each_online_cpu(cpu)
621
		val += per_cpu(mem->stat->count[idx], cpu);
622 623 624 625 626 627
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
628 629 630
	return val;
}

631 632 633 634
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
635
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
636 637
}

638 639 640 641 642 643 644 645 646 647
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

664
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
665
					 bool file, int nr_pages)
666
{
667 668
	preempt_disable();

669 670
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
671
	else
672
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
673

674 675
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
676
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
677
	else {
678
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
679 680
		nr_pages = -nr_pages; /* for event */
	}
681

682
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
683

684
	preempt_enable();
685 686
}

687 688 689
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
			unsigned int lru_mask)
690 691
{
	struct mem_cgroup_per_zone *mz;
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	enum lru_list l;
	unsigned long ret = 0;

	mz = mem_cgroup_zoneinfo(mem, nid, zid);

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
			int nid, unsigned int lru_mask)
{
708 709 710
	u64 total = 0;
	int zid;

711 712 713
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);

714 715
	return total;
}
716 717 718

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
			unsigned int lru_mask)
719
{
720
	int nid;
721 722
	u64 total = 0;

723 724
	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
725
	return total;
726 727
}

728 729 730 731 732 733 734 735 736 737 738
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
739
{
740
	unsigned long val, next;
741

742
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
743

744 745 746 747 748 749 750
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
751 752 753
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
754 755 756 757 758
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
759 760 761 762 763 764 765 766 767
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
768
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
769
		mem_cgroup_threshold(mem);
770 771
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
772
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
773
			mem_cgroup_update_tree(mem, page);
774
			__mem_cgroup_target_update(mem,
775 776 777 778 779 780 781 782
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
783
		}
784
#endif
785 786 787
	}
}

788
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
789 790 791 792 793 794
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

795
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
796
{
797 798 799 800 801 802 803 804
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

805 806 807 808
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

809
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
810 811
{
	struct mem_cgroup *mem = NULL;
812 813 814

	if (!mm)
		return NULL;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
830 831
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
832
{
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
855 856 857 858 859 860 861 862 863
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
864 865
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
866
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
867

K
KAMEZAWA Hiroyuki 已提交
868
	css_put(&iter->css);
869 870
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
871
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
872

873 874 875
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
876 877
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
878
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
879 880 881

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
882
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
883
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
884
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
885
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
886
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
887
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
888

K
KAMEZAWA Hiroyuki 已提交
889
	return iter;
K
KAMEZAWA Hiroyuki 已提交
890
}
K
KAMEZAWA Hiroyuki 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

904 905 906
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
907

908 909 910 911 912
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
953

K
KAMEZAWA Hiroyuki 已提交
954 955 956 957
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
958

959
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
960 961 962
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
963
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
964
		return;
965
	VM_BUG_ON(!pc->mem_cgroup);
966 967 968 969
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
970
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
971 972
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
973 974 975
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
976
	list_del_init(&pc->lru);
977 978
}

K
KAMEZAWA Hiroyuki 已提交
979
void mem_cgroup_del_lru(struct page *page)
980
{
K
KAMEZAWA Hiroyuki 已提交
981 982
	mem_cgroup_del_lru_list(page, page_lru(page));
}
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
1006
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1007 1008 1009
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
1010 1011 1012 1013
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1014

1015
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1016
		return;
1017

K
KAMEZAWA Hiroyuki 已提交
1018
	pc = lookup_page_cgroup(page);
1019
	/* unused or root page is not rotated. */
1020 1021 1022 1023 1024
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
1025
		return;
1026
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1027
	list_move(&pc->lru, &mz->lists[lru]);
1028 1029
}

K
KAMEZAWA Hiroyuki 已提交
1030
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1031
{
K
KAMEZAWA Hiroyuki 已提交
1032 1033
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1034

1035
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1036 1037
		return;
	pc = lookup_page_cgroup(page);
1038
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
1039
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1040
		return;
1041 1042
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1043
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1044 1045
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1046 1047 1048
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1049 1050
	list_add(&pc->lru, &mz->lists[lru]);
}
1051

K
KAMEZAWA Hiroyuki 已提交
1052
/*
1053 1054 1055 1056
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1057
 */
1058
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1059
{
1060 1061 1062 1063
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1075 1076 1077 1078 1079 1080 1081 1082
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1083 1084
}

1085
static void mem_cgroup_lru_add_after_commit(struct page *page)
1086 1087 1088 1089 1090
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1091 1092 1093
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1094 1095
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1096
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1097 1098 1099 1100 1101
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1102 1103 1104
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1105
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1106 1107 1108
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1109 1110
}

1111 1112 1113
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1114
	struct mem_cgroup *curr = NULL;
1115
	struct task_struct *p;
1116

1117 1118 1119 1120 1121
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1122 1123
	if (!curr)
		return 0;
1124 1125 1126 1127 1128 1129 1130
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1131 1132 1133 1134
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1135 1136 1137
	return ret;
}

1138
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1139 1140 1141
{
	unsigned long active;
	unsigned long inactive;
1142 1143
	unsigned long gb;
	unsigned long inactive_ratio;
1144

1145 1146
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1175 1176 1177 1178 1179
		return 1;

	return 0;
}

1180 1181 1182 1183 1184
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

1185 1186
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1187 1188 1189 1190

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1191 1192 1193
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1194
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1211 1212
	if (!PageCgroupUsed(pc))
		return NULL;
1213 1214
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1215
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1216 1217 1218
	return &mz->reclaim_stat;
}

1219 1220 1221 1222 1223
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1224
					int active, int file)
1225 1226 1227 1228 1229 1230
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1231
	struct page_cgroup *pc, *tmp;
1232
	int nid = zone_to_nid(z);
1233 1234
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1235
	int lru = LRU_FILE * file + active;
1236
	int ret;
1237

1238
	BUG_ON(!mem_cont);
1239
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1240
	src = &mz->lists[lru];
1241

1242 1243
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1244
		if (scan >= nr_to_scan)
1245
			break;
K
KAMEZAWA Hiroyuki 已提交
1246

1247 1248
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1249

1250
		page = lookup_cgroup_page(pc);
1251

H
Hugh Dickins 已提交
1252
		if (unlikely(!PageLRU(page)))
1253 1254
			continue;

H
Hugh Dickins 已提交
1255
		scan++;
1256 1257 1258
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1259
			list_move(&page->lru, dst);
1260
			mem_cgroup_del_lru(page);
1261
			nr_taken += hpage_nr_pages(page);
1262 1263 1264 1265 1266 1267 1268
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1269 1270 1271 1272
		}
	}

	*scanned = scan;
1273 1274 1275 1276

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1277 1278 1279
	return nr_taken;
}

1280 1281 1282
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1283
/**
1284 1285
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1286
 *
1287
 * Returns the maximum amount of memory @mem can be charged with, in
1288
 * pages.
1289
 */
1290
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1291
{
1292 1293 1294 1295 1296
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1297
	return margin >> PAGE_SHIFT;
1298 1299
}

1300
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1301 1302 1303 1304 1305 1306 1307
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1308
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1309 1310
}

1311 1312 1313
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1314 1315 1316 1317

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1318
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1319 1320 1321
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1332 1333 1334
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1335
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1336 1337 1338
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1357 1358 1359

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1360 1361
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1362
	bool ret = false;
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1397
/**
1398
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1417
	if (!memcg || !p)
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1464 1465 1466 1467 1468 1469 1470
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1471 1472 1473 1474
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1475 1476 1477
	return num;
}

D
David Rientjes 已提交
1478 1479 1480 1481 1482 1483 1484 1485
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1486 1487 1488
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1489 1490 1491 1492 1493 1494 1495 1496
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1497
/*
K
KAMEZAWA Hiroyuki 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
1547
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1548 1549 1550
		return true;
	if (noswap || !total_swap_pages)
		return false;
1551
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1552 1553 1554 1555
		return true;
	return false;

}
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1567 1568 1569 1570 1571 1572 1573
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1574 1575 1576 1577 1578 1579 1580
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1581 1582
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1583
	}
1584 1585 1586

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1659 1660 1661 1662 1663
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1664 1665 1666 1667 1668

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1669 1670
#endif

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static void __mem_cgroup_record_scanstat(unsigned long *stats,
			   struct memcg_scanrecord *rec)
{

	stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
	stats[SCAN_ANON] += rec->nr_scanned[0];
	stats[SCAN_FILE] += rec->nr_scanned[1];

	stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
	stats[ROTATE_ANON] += rec->nr_rotated[0];
	stats[ROTATE_FILE] += rec->nr_rotated[1];

	stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
	stats[FREED_ANON] += rec->nr_freed[0];
	stats[FREED_FILE] += rec->nr_freed[1];

	stats[ELAPSED] += rec->elapsed;
}

static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
{
	struct mem_cgroup *mem;
	int context = rec->context;

	if (context >= NR_SCAN_CONTEXT)
		return;

	mem = rec->mem;
	spin_lock(&mem->scanstat.lock);
	__mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
	spin_unlock(&mem->scanstat.lock);

	mem = rec->root;
	spin_lock(&mem->scanstat.lock);
	__mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
	spin_unlock(&mem->scanstat.lock);
}

K
KAMEZAWA Hiroyuki 已提交
1709 1710 1711 1712
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1713 1714
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1715 1716 1717
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1718 1719
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1720 1721
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1722
						struct zone *zone,
1723
						gfp_t gfp_mask,
1724 1725
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1726
{
K
KAMEZAWA Hiroyuki 已提交
1727 1728 1729
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1730 1731
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1732
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1733
	struct memcg_scanrecord rec;
1734
	unsigned long excess;
1735
	unsigned long scanned;
1736 1737

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1738

1739
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1740
	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1741 1742
		noswap = true;

1743 1744 1745 1746 1747 1748 1749 1750 1751
	if (shrink)
		rec.context = SCAN_BY_SHRINK;
	else if (check_soft)
		rec.context = SCAN_BY_SYSTEM;
	else
		rec.context = SCAN_BY_LIMIT;

	rec.root = root_mem;

1752
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1753
		victim = mem_cgroup_select_victim(root_mem);
1754
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1755
			loop++;
1756 1757 1758 1759 1760 1761 1762
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1763
				drain_all_stock_async(root_mem);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1775
				 * We want to do more targeted reclaim.
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1787
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1788 1789
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1790 1791
			continue;
		}
1792 1793 1794 1795 1796 1797 1798 1799
		rec.mem = victim;
		rec.nr_scanned[0] = 0;
		rec.nr_scanned[1] = 0;
		rec.nr_rotated[0] = 0;
		rec.nr_rotated[1] = 0;
		rec.nr_freed[0] = 0;
		rec.nr_freed[1] = 0;
		rec.elapsed = 0;
K
KAMEZAWA Hiroyuki 已提交
1800
		/* we use swappiness of local cgroup */
1801
		if (check_soft) {
1802
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1803 1804
				noswap, zone, &rec, &scanned);
			*total_scanned += scanned;
1805
		} else
1806
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1807 1808
						noswap, &rec);
		mem_cgroup_record_scanstat(&rec);
K
KAMEZAWA Hiroyuki 已提交
1809
		css_put(&victim->css);
1810 1811 1812 1813 1814 1815 1816
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1817
		total += ret;
1818
		if (check_soft) {
1819
			if (!res_counter_soft_limit_excess(&root_mem->res))
1820
				return total;
1821
		} else if (mem_cgroup_margin(root_mem))
1822
			return total;
1823
	}
K
KAMEZAWA Hiroyuki 已提交
1824
	return total;
1825 1826
}

K
KAMEZAWA Hiroyuki 已提交
1827 1828 1829
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1830
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1831 1832 1833
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
1834 1835 1836
	int lock_count = -1;
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		bool locked = iter->oom_lock;

		iter->oom_lock = true;
		if (lock_count == -1)
			lock_count = iter->oom_lock;
		else if (lock_count != locked) {
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			lock_count = 0;
			failed = iter;
			cond = false;
		}
K
KAMEZAWA Hiroyuki 已提交
1853
	}
K
KAMEZAWA Hiroyuki 已提交
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (!failed)
		goto done;

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
done:
	return lock_count;
1872
}
1873

1874
/*
1875
 * Has to be called with memcg_oom_lock
1876
 */
K
KAMEZAWA Hiroyuki 已提交
1877
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1878
{
K
KAMEZAWA Hiroyuki 已提交
1879 1880
	struct mem_cgroup *iter;

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	for_each_mem_cgroup_tree(iter, mem)
		iter->oom_lock = false;
	return 0;
}

static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		atomic_inc(&iter->under_oom);
}

static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900 1901 1902
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1903
	for_each_mem_cgroup_tree(iter, mem)
1904
		atomic_add_unless(&iter->under_oom, -1, 0);
1905 1906
}

1907
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1908 1909
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1946 1947
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1948
	if (mem && atomic_read(&mem->under_oom))
1949 1950 1951
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1952 1953 1954 1955
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1956
{
K
KAMEZAWA Hiroyuki 已提交
1957
	struct oom_wait_info owait;
1958
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1959

K
KAMEZAWA Hiroyuki 已提交
1960 1961 1962 1963 1964
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1965
	need_to_kill = true;
1966 1967
	mem_cgroup_mark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1968
	/* At first, try to OOM lock hierarchy under mem.*/
1969
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1970 1971 1972 1973 1974 1975
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1976 1977 1978 1979
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1980
		mem_cgroup_oom_notify(mem);
1981
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1982

1983 1984
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1985
		mem_cgroup_out_of_memory(mem, mask);
1986
	} else {
K
KAMEZAWA Hiroyuki 已提交
1987
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1988
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1989
	}
1990
	spin_lock(&memcg_oom_lock);
1991 1992
	if (locked)
		mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1993
	memcg_wakeup_oom(mem);
1994
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1995

1996 1997
	mem_cgroup_unmark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1998 1999 2000 2001 2002
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
2003 2004
}

2005 2006 2007
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
2027
 */
2028

2029 2030
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2031 2032
{
	struct mem_cgroup *mem;
2033 2034
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
2035
	unsigned long uninitialized_var(flags);
2036 2037 2038 2039

	if (unlikely(!pc))
		return;

2040
	rcu_read_lock();
2041
	mem = pc->mem_cgroup;
2042 2043 2044
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
2045
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2046
		/* take a lock against to access pc->mem_cgroup */
2047
		move_lock_page_cgroup(pc, &flags);
2048 2049 2050 2051 2052
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
2053 2054

	switch (idx) {
2055
	case MEMCG_NR_FILE_MAPPED:
2056 2057 2058
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2059
			ClearPageCgroupFileMapped(pc);
2060
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2061 2062 2063
		break;
	default:
		BUG();
2064
	}
2065

2066 2067
	this_cpu_add(mem->stat->count[idx], val);

2068 2069
out:
	if (unlikely(need_unlock))
2070
		move_unlock_page_cgroup(pc, &flags);
2071 2072
	rcu_read_unlock();
	return;
2073
}
2074
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2075

2076 2077 2078 2079
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2080
#define CHARGE_BATCH	32U
2081 2082
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2083
	unsigned int nr_pages;
2084
	struct work_struct work;
2085 2086
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2087 2088
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2089
static DEFINE_MUTEX(percpu_charge_mutex);
2090 2091

/*
2092
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2103 2104
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2118 2119 2120 2121
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2122
		if (do_swap_account)
2123 2124
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2137
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2138 2139 2140 2141
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2142
 * This will be consumed by consume_stock() function, later.
2143
 */
2144
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2145 2146 2147 2148 2149 2150 2151
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2152
	stock->nr_pages += nr_pages;
2153 2154 2155 2156 2157 2158 2159 2160 2161
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2162
static void drain_all_stock_async(struct mem_cgroup *root_mem)
2163
{
2164 2165 2166
	int cpu, curcpu;
	/*
	 * If someone calls draining, avoid adding more kworker runs.
2167
	 */
2168
	if (!mutex_trylock(&percpu_charge_mutex))
2169 2170 2171
		return;
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2172 2173 2174 2175 2176 2177 2178
	/*
	 * Get a hint for avoiding draining charges on the current cpu,
	 * which must be exhausted by our charging.  It is not required that
	 * this be a precise check, so we use raw_smp_processor_id() instead of
	 * getcpu()/putcpu().
	 */
	curcpu = raw_smp_processor_id();
2179 2180
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
		struct mem_cgroup *mem;

		if (cpu == curcpu)
			continue;

		mem = stock->cached;
		if (!mem)
			continue;
		if (mem != root_mem) {
			if (!root_mem->use_hierarchy)
				continue;
			/* check whether "mem" is under tree of "root_mem" */
			if (!css_is_ancestor(&mem->css, &root_mem->css))
				continue;
		}
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
			schedule_work_on(cpu, &stock->work);
2198 2199
	}
 	put_online_cpus();
2200
	mutex_unlock(&percpu_charge_mutex);
2201 2202 2203 2204 2205 2206 2207
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
2208
	mutex_lock(&percpu_charge_mutex);
2209
	schedule_on_each_cpu(drain_local_stock);
2210
	mutex_unlock(&percpu_charge_mutex);
2211 2212
}

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2223
		long x = per_cpu(mem->stat->count[i], cpu);
2224 2225 2226 2227

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2228 2229 2230 2231 2232 2233
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2245 2246 2247 2248
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2249 2250 2251 2252 2253
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2254
	struct mem_cgroup *iter;
2255

2256 2257 2258 2259 2260 2261
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2262
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2263
		return NOTIFY_OK;
2264 2265 2266 2267

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2268 2269 2270 2271 2272
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2283 2284
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2285
{
2286
	unsigned long csize = nr_pages * PAGE_SIZE;
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2301
		res_counter_uncharge(&mem->res, csize);
2302 2303 2304 2305
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2306
	/*
2307 2308
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2309 2310 2311 2312
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2313
	if (nr_pages == CHARGE_BATCH)
2314 2315 2316 2317 2318 2319
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2320
					      gfp_mask, flags, NULL);
2321
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2322
		return CHARGE_RETRY;
2323
	/*
2324 2325 2326 2327 2328 2329 2330
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2331
	 */
2332
	if (nr_pages == 1 && ret)
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2352 2353 2354
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2355
 */
2356
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2357
				   gfp_t gfp_mask,
2358 2359 2360
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2361
{
2362
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2363 2364 2365
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2366

K
KAMEZAWA Hiroyuki 已提交
2367 2368 2369 2370 2371 2372 2373 2374
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2375

2376
	/*
2377 2378
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2379 2380 2381
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2382 2383 2384 2385
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2386
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2387 2388 2389
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2390
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2391
			goto done;
2392 2393
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2394
		struct task_struct *p;
2395

K
KAMEZAWA Hiroyuki 已提交
2396 2397 2398
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2399 2400 2401 2402 2403 2404 2405 2406
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2407 2408
		 */
		mem = mem_cgroup_from_task(p);
2409
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2410 2411 2412
			rcu_read_unlock();
			goto done;
		}
2413
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2432

2433 2434
	do {
		bool oom_check;
2435

2436
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2437 2438
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2439
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2440
		}
2441

2442 2443 2444 2445
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2446
		}
2447

2448
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2449 2450 2451 2452
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2453
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2454 2455 2456
			css_put(&mem->css);
			mem = NULL;
			goto again;
2457
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2458
			css_put(&mem->css);
2459 2460
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2461 2462
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2463
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2464
			}
2465 2466 2467 2468
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2469
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2470
			goto bypass;
2471
		}
2472 2473
	} while (ret != CHARGE_OK);

2474 2475
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2476
	css_put(&mem->css);
2477
done:
K
KAMEZAWA Hiroyuki 已提交
2478
	*memcg = mem;
2479 2480
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2481
	*memcg = NULL;
2482
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2483 2484 2485
bypass:
	*memcg = NULL;
	return 0;
2486
}
2487

2488 2489 2490 2491 2492
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2493
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2494
				       unsigned int nr_pages)
2495 2496
{
	if (!mem_cgroup_is_root(mem)) {
2497 2498 2499
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2500
		if (do_swap_account)
2501
			res_counter_uncharge(&mem->memsw, bytes);
2502
	}
2503 2504
}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2524
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2525
{
2526
	struct mem_cgroup *mem = NULL;
2527
	struct page_cgroup *pc;
2528
	unsigned short id;
2529 2530
	swp_entry_t ent;

2531 2532 2533
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2534
	lock_page_cgroup(pc);
2535
	if (PageCgroupUsed(pc)) {
2536
		mem = pc->mem_cgroup;
2537 2538
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2539
	} else if (PageSwapCache(page)) {
2540
		ent.val = page_private(page);
2541 2542 2543 2544 2545 2546
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2547
	}
2548
	unlock_page_cgroup(pc);
2549 2550 2551
	return mem;
}

2552
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2553
				       struct page *page,
2554
				       unsigned int nr_pages,
2555
				       struct page_cgroup *pc,
2556
				       enum charge_type ctype)
2557
{
2558 2559 2560
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2561
		__mem_cgroup_cancel_charge(mem, nr_pages);
2562 2563 2564 2565 2566 2567
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2568
	pc->mem_cgroup = mem;
2569 2570 2571 2572 2573 2574 2575
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2576
	smp_wmb();
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2590

2591
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2592
	unlock_page_cgroup(pc);
2593 2594 2595 2596 2597
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2598
	memcg_check_events(mem, page);
2599
}
2600

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2615 2616
	if (mem_cgroup_disabled())
		return;
2617
	/*
2618
	 * We have no races with charge/uncharge but will have races with
2619 2620 2621 2622 2623 2624
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2635
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2636 2637
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2638 2639 2640 2641 2642
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2643
/**
2644
 * mem_cgroup_move_account - move account of the page
2645
 * @page: the page
2646
 * @nr_pages: number of regular pages (>1 for huge pages)
2647 2648 2649
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2650
 * @uncharge: whether we should call uncharge and css_put against @from.
2651 2652
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2653
 * - page is not on LRU (isolate_page() is useful.)
2654
 * - compound_lock is held when nr_pages > 1
2655
 *
2656
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2657
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2658 2659
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2660
 */
2661 2662 2663 2664 2665 2666
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2667
{
2668 2669
	unsigned long flags;
	int ret;
2670

2671
	VM_BUG_ON(from == to);
2672
	VM_BUG_ON(PageLRU(page));
2673 2674 2675 2676 2677 2678 2679
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2680
	if (nr_pages > 1 && !PageTransHuge(page))
2681 2682 2683 2684 2685 2686 2687 2688 2689
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2690

2691
	if (PageCgroupFileMapped(pc)) {
2692 2693 2694 2695 2696
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2697
	}
2698
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2699 2700
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2701
		__mem_cgroup_cancel_charge(from, nr_pages);
2702

2703
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2704
	pc->mem_cgroup = to;
2705
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2706 2707 2708
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2709
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2710
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2711
	 * status here.
2712
	 */
2713 2714 2715
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2716
	unlock_page_cgroup(pc);
2717 2718 2719
	/*
	 * check events
	 */
2720 2721
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2722
out:
2723 2724 2725 2726 2727 2728 2729
	return ret;
}

/*
 * move charges to its parent.
 */

2730 2731
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2732 2733 2734 2735 2736 2737
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2738
	unsigned int nr_pages;
2739
	unsigned long uninitialized_var(flags);
2740 2741 2742 2743 2744 2745
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2746 2747 2748 2749 2750
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2751

2752
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2753

2754
	parent = mem_cgroup_from_cont(pcg);
2755
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2756
	if (ret || !parent)
2757
		goto put_back;
2758

2759
	if (nr_pages > 1)
2760 2761
		flags = compound_lock_irqsave(page);

2762
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2763
	if (ret)
2764
		__mem_cgroup_cancel_charge(parent, nr_pages);
2765

2766
	if (nr_pages > 1)
2767
		compound_unlock_irqrestore(page, flags);
2768
put_back:
K
KAMEZAWA Hiroyuki 已提交
2769
	putback_lru_page(page);
2770
put:
2771
	put_page(page);
2772
out:
2773 2774 2775
	return ret;
}

2776 2777 2778 2779 2780 2781 2782
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2783
				gfp_t gfp_mask, enum charge_type ctype)
2784
{
2785
	struct mem_cgroup *mem = NULL;
2786
	unsigned int nr_pages = 1;
2787
	struct page_cgroup *pc;
2788
	bool oom = true;
2789
	int ret;
A
Andrea Arcangeli 已提交
2790

A
Andrea Arcangeli 已提交
2791
	if (PageTransHuge(page)) {
2792
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2793
		VM_BUG_ON(!PageTransHuge(page));
2794 2795 2796 2797 2798
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2799
	}
2800 2801

	pc = lookup_page_cgroup(page);
2802
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2803

2804
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2805
	if (ret || !mem)
2806 2807
		return ret;

2808
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2809 2810 2811
	return 0;
}

2812 2813
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2814
{
2815
	if (mem_cgroup_disabled())
2816
		return 0;
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2828
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2829
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2830 2831
}

D
Daisuke Nishimura 已提交
2832 2833 2834 2835
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2852 2853
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2854
{
2855
	struct mem_cgroup *mem = NULL;
2856 2857
	int ret;

2858
	if (mem_cgroup_disabled())
2859
		return 0;
2860 2861
	if (PageCompound(page))
		return 0;
2862 2863 2864 2865 2866 2867 2868 2869
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2870 2871
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2872 2873 2874 2875
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2876 2877 2878 2879 2880 2881
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2882 2883
			return 0;
		}
2884
		unlock_page_cgroup(pc);
2885 2886
	}

2887
	if (unlikely(!mm))
2888
		mm = &init_mm;
2889

2890 2891 2892 2893
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2894

2895 2896 2897 2898 2899 2900 2901 2902 2903
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2904 2905 2906 2907 2908 2909 2910 2911
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2912
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2913 2914

	return ret;
2915 2916
}

2917 2918 2919
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2920
 * struct page_cgroup is acquired. This refcnt will be consumed by
2921 2922
 * "commit()" or removed by "cancel()"
 */
2923 2924 2925 2926 2927
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2928
	int ret;
2929

2930 2931
	*ptr = NULL;

2932
	if (mem_cgroup_disabled())
2933 2934 2935 2936 2937 2938
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2939 2940 2941
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2942 2943
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2944
		goto charge_cur_mm;
2945
	mem = try_get_mem_cgroup_from_page(page);
2946 2947
	if (!mem)
		goto charge_cur_mm;
2948
	*ptr = mem;
2949
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2950 2951
	css_put(&mem->css);
	return ret;
2952 2953 2954
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2955
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2956 2957
}

D
Daisuke Nishimura 已提交
2958 2959 2960
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2961
{
2962
	if (mem_cgroup_disabled())
2963 2964 2965
		return;
	if (!ptr)
		return;
2966
	cgroup_exclude_rmdir(&ptr->css);
2967 2968

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2969 2970 2971
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2972 2973 2974
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2975
	 */
2976
	if (do_swap_account && PageSwapCache(page)) {
2977
		swp_entry_t ent = {.val = page_private(page)};
2978
		unsigned short id;
2979
		struct mem_cgroup *memcg;
2980 2981 2982 2983

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2984
		if (memcg) {
2985 2986 2987 2988
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2989
			if (!mem_cgroup_is_root(memcg))
2990
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2991
			mem_cgroup_swap_statistics(memcg, false);
2992 2993
			mem_cgroup_put(memcg);
		}
2994
		rcu_read_unlock();
2995
	}
2996 2997 2998 2999 3000 3001
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
3002 3003
}

D
Daisuke Nishimura 已提交
3004 3005 3006 3007 3008 3009
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

3010 3011
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
3012
	if (mem_cgroup_disabled())
3013 3014 3015
		return;
	if (!mem)
		return;
3016
	__mem_cgroup_cancel_charge(mem, 1);
3017 3018
}

3019 3020 3021
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3022 3023 3024
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3025

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
3038 3039
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3040
	 * In those cases, all pages freed continuously can be expected to be in
3041 3042 3043 3044 3045 3046 3047 3048
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3049
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3050 3051
		goto direct_uncharge;

3052 3053 3054 3055 3056 3057 3058 3059
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3060
	batch->nr_pages++;
3061
	if (uncharge_memsw)
3062
		batch->memsw_nr_pages++;
3063 3064
	return;
direct_uncharge:
3065
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3066
	if (uncharge_memsw)
3067
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3068 3069
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
3070 3071
	return;
}
3072

3073
/*
3074
 * uncharge if !page_mapped(page)
3075
 */
3076
static struct mem_cgroup *
3077
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3078
{
3079
	struct mem_cgroup *mem = NULL;
3080 3081
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3082

3083
	if (mem_cgroup_disabled())
3084
		return NULL;
3085

K
KAMEZAWA Hiroyuki 已提交
3086
	if (PageSwapCache(page))
3087
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3088

A
Andrea Arcangeli 已提交
3089
	if (PageTransHuge(page)) {
3090
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3091 3092
		VM_BUG_ON(!PageTransHuge(page));
	}
3093
	/*
3094
	 * Check if our page_cgroup is valid
3095
	 */
3096 3097
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3098
		return NULL;
3099

3100
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3101

3102 3103
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
3104 3105 3106 3107 3108
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3109
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3110 3111
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3123
	}
K
KAMEZAWA Hiroyuki 已提交
3124

3125
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3126

3127
	ClearPageCgroupUsed(pc);
3128 3129 3130 3131 3132 3133
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3134

3135
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3136 3137 3138 3139
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3140
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3141 3142 3143 3144 3145
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3146
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3147

3148
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3149 3150 3151

unlock_out:
	unlock_page_cgroup(pc);
3152
	return NULL;
3153 3154
}

3155 3156
void mem_cgroup_uncharge_page(struct page *page)
{
3157 3158 3159 3160 3161
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3162 3163 3164 3165 3166 3167
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3168
	VM_BUG_ON(page->mapping);
3169 3170 3171
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3186 3187
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3208 3209 3210 3211 3212 3213
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3214
	memcg_oom_recover(batch->memcg);
3215 3216 3217 3218
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3219
#ifdef CONFIG_SWAP
3220
/*
3221
 * called after __delete_from_swap_cache() and drop "page" account.
3222 3223
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3224 3225
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3226 3227
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3228 3229 3230 3231 3232 3233
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3234

K
KAMEZAWA Hiroyuki 已提交
3235 3236 3237 3238 3239
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3240
		swap_cgroup_record(ent, css_id(&memcg->css));
3241
}
3242
#endif
3243 3244 3245 3246 3247 3248 3249

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3250
{
3251
	struct mem_cgroup *memcg;
3252
	unsigned short id;
3253 3254 3255 3256

	if (!do_swap_account)
		return;

3257 3258 3259
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3260
	if (memcg) {
3261 3262 3263 3264
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3265
		if (!mem_cgroup_is_root(memcg))
3266
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3267
		mem_cgroup_swap_statistics(memcg, false);
3268 3269
		mem_cgroup_put(memcg);
	}
3270
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3271
}
3272 3273 3274 3275 3276 3277

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3278
 * @need_fixup: whether we should fixup res_counters and refcounts.
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3289
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3290 3291 3292 3293 3294 3295 3296 3297
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3298
		mem_cgroup_swap_statistics(to, true);
3299
		/*
3300 3301 3302 3303 3304 3305
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3306 3307
		 */
		mem_cgroup_get(to);
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3319 3320 3321 3322 3323 3324
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3325
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3326 3327 3328
{
	return -EINVAL;
}
3329
#endif
K
KAMEZAWA Hiroyuki 已提交
3330

3331
/*
3332 3333
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3334
 */
3335
int mem_cgroup_prepare_migration(struct page *page,
3336
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3337
{
3338
	struct mem_cgroup *mem = NULL;
3339
	struct page_cgroup *pc;
3340
	enum charge_type ctype;
3341
	int ret = 0;
3342

3343 3344
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3345
	VM_BUG_ON(PageTransHuge(page));
3346
	if (mem_cgroup_disabled())
3347 3348
		return 0;

3349 3350 3351
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3352 3353
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3385
	}
3386
	unlock_page_cgroup(pc);
3387 3388 3389 3390 3391 3392
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3393

A
Andrea Arcangeli 已提交
3394
	*ptr = mem;
3395
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3408
	}
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3422
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3423
	return ret;
3424
}
3425

3426
/* remove redundant charge if migration failed*/
3427
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3428
	struct page *oldpage, struct page *newpage, bool migration_ok)
3429
{
3430
	struct page *used, *unused;
3431 3432 3433 3434
	struct page_cgroup *pc;

	if (!mem)
		return;
3435
	/* blocks rmdir() */
3436
	cgroup_exclude_rmdir(&mem->css);
3437
	if (!migration_ok) {
3438 3439
		used = oldpage;
		unused = newpage;
3440
	} else {
3441
		used = newpage;
3442 3443
		unused = oldpage;
	}
3444
	/*
3445 3446 3447
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3448
	 */
3449 3450 3451 3452
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3453

3454 3455
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3456
	/*
3457 3458 3459 3460 3461 3462
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3463
	 */
3464 3465
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3466
	/*
3467 3468
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3469 3470 3471 3472
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3473
}
3474

3475
/*
3476 3477 3478 3479 3480 3481
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3482
 */
3483
int mem_cgroup_shmem_charge_fallback(struct page *page,
3484 3485
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3486
{
3487
	struct mem_cgroup *mem;
3488
	int ret;
3489

3490
	if (mem_cgroup_disabled())
3491
		return 0;
3492

3493 3494 3495
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3496

3497
	return ret;
3498 3499
}

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3546 3547
static DEFINE_MUTEX(set_limit_mutex);

3548
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3549
				unsigned long long val)
3550
{
3551
	int retry_count;
3552
	u64 memswlimit, memlimit;
3553
	int ret = 0;
3554 3555
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3556
	int enlarge;
3557 3558 3559 3560 3561 3562 3563 3564 3565

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3566

3567
	enlarge = 0;
3568
	while (retry_count) {
3569 3570 3571 3572
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3583 3584
			break;
		}
3585 3586 3587 3588 3589

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3590
		ret = res_counter_set_limit(&memcg->res, val);
3591 3592 3593 3594 3595 3596
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3597 3598 3599 3600 3601
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3602
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3603 3604
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3605 3606 3607 3608 3609 3610
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3611
	}
3612 3613
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3614

3615 3616 3617
	return ret;
}

L
Li Zefan 已提交
3618 3619
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3620
{
3621
	int retry_count;
3622
	u64 memlimit, memswlimit, oldusage, curusage;
3623 3624
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3625
	int enlarge = 0;
3626

3627 3628 3629
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3647 3648 3649
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3650
		ret = res_counter_set_limit(&memcg->memsw, val);
3651 3652 3653 3654 3655 3656
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3657 3658 3659 3660 3661
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3662
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3663
						MEM_CGROUP_RECLAIM_NOSWAP |
3664 3665
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3666
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3667
		/* Usage is reduced ? */
3668
		if (curusage >= oldusage)
3669
			retry_count--;
3670 3671
		else
			oldusage = curusage;
3672
	}
3673 3674
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3675 3676 3677
	return ret;
}

3678
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3679 3680
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3681 3682 3683 3684 3685 3686
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3687
	unsigned long long excess;
3688
	unsigned long nr_scanned;
3689 3690 3691 3692

	if (order > 0)
		return 0;

3693
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3707
		nr_scanned = 0;
3708 3709
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3710 3711
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3712
		nr_reclaimed += reclaimed;
3713
		*total_scanned += nr_scanned;
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3736
				if (next_mz == mz)
3737
					css_put(&next_mz->mem->css);
3738
				else /* next_mz == NULL or other memcg */
3739 3740 3741 3742
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3743
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3744 3745 3746 3747 3748 3749 3750 3751
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3752 3753
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3772 3773 3774 3775
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3776
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3777
				int node, int zid, enum lru_list lru)
3778
{
K
KAMEZAWA Hiroyuki 已提交
3779 3780
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3781
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3782
	unsigned long flags, loop;
3783
	struct list_head *list;
3784
	int ret = 0;
3785

K
KAMEZAWA Hiroyuki 已提交
3786 3787
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3788
	list = &mz->lists[lru];
3789

3790 3791 3792 3793 3794
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3795 3796
		struct page *page;

3797
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3798
		spin_lock_irqsave(&zone->lru_lock, flags);
3799
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3800
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3801
			break;
3802 3803 3804 3805
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3806
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3807
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3808 3809
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3810
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3811

3812
		page = lookup_cgroup_page(pc);
3813 3814

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3815
		if (ret == -ENOMEM)
3816
			break;
3817 3818 3819 3820 3821 3822 3823

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3824
	}
K
KAMEZAWA Hiroyuki 已提交
3825

3826 3827 3828
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3829 3830 3831 3832 3833 3834
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3835
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3836
{
3837 3838 3839
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3840
	struct cgroup *cgrp = mem->css.cgroup;
3841

3842
	css_get(&mem->css);
3843 3844

	shrink = 0;
3845 3846 3847
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3848
move_account:
3849
	do {
3850
		ret = -EBUSY;
3851 3852 3853 3854
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3855
			goto out;
3856 3857
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3858
		drain_all_stock_sync();
3859
		ret = 0;
3860
		mem_cgroup_start_move(mem);
3861
		for_each_node_state(node, N_HIGH_MEMORY) {
3862
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3863
				enum lru_list l;
3864 3865
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3866
							node, zid, l);
3867 3868 3869
					if (ret)
						break;
				}
3870
			}
3871 3872 3873
			if (ret)
				break;
		}
3874
		mem_cgroup_end_move(mem);
3875
		memcg_oom_recover(mem);
3876 3877 3878
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3879
		cond_resched();
3880 3881
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3882 3883 3884
out:
	css_put(&mem->css);
	return ret;
3885 3886

try_to_free:
3887 3888
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3889 3890 3891
		ret = -EBUSY;
		goto out;
	}
3892 3893
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3894 3895 3896
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
3897
		struct memcg_scanrecord rec;
3898
		int progress;
3899 3900 3901 3902 3903

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3904 3905 3906
		rec.context = SCAN_BY_SHRINK;
		rec.mem = mem;
		rec.root = mem;
K
KOSAKI Motohiro 已提交
3907
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3908
						false, &rec);
3909
		if (!progress) {
3910
			nr_retries--;
3911
			/* maybe some writeback is necessary */
3912
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3913
		}
3914 3915

	}
K
KAMEZAWA Hiroyuki 已提交
3916
	lru_add_drain();
3917
	/* try move_account...there may be some *locked* pages. */
3918
	goto move_account;
3919 3920
}

3921 3922 3923 3924 3925 3926
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3945
	 * If parent's use_hierarchy is set, we can't make any modifications
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3965

3966 3967
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3968
{
K
KAMEZAWA Hiroyuki 已提交
3969
	struct mem_cgroup *iter;
3970
	long val = 0;
3971

3972
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3973 3974 3975 3976 3977 3978
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3979 3980
}

3981 3982
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3983
	u64 val;
3984 3985 3986 3987 3988 3989 3990 3991

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3992 3993
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3994

K
KAMEZAWA Hiroyuki 已提交
3995
	if (swap)
3996
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3997 3998 3999 4000

	return val << PAGE_SHIFT;
}

4001
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
4002
{
4003
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4004
	u64 val;
4005 4006 4007 4008 4009 4010
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
4011 4012 4013
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
4014
			val = res_counter_read_u64(&mem->res, name);
4015 4016
		break;
	case _MEMSWAP:
4017 4018 4019
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
4020
			val = res_counter_read_u64(&mem->memsw, name);
4021 4022 4023 4024 4025 4026
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
4027
}
4028 4029 4030 4031
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4032 4033
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4034
{
4035
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4036
	int type, name;
4037 4038 4039
	unsigned long long val;
	int ret;

4040 4041 4042
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
4043
	case RES_LIMIT:
4044 4045 4046 4047
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4048 4049
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4050 4051 4052
		if (ret)
			break;
		if (type == _MEM)
4053
			ret = mem_cgroup_resize_limit(memcg, val);
4054 4055
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4056
		break;
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4071 4072 4073 4074 4075
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4076 4077
}

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4106
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4107 4108
{
	struct mem_cgroup *mem;
4109
	int type, name;
4110 4111

	mem = mem_cgroup_from_cont(cont);
4112 4113 4114
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4115
	case RES_MAX_USAGE:
4116 4117 4118 4119
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
4120 4121
		break;
	case RES_FAILCNT:
4122 4123 4124 4125
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
4126 4127
		break;
	}
4128

4129
	return 0;
4130 4131
}

4132 4133 4134 4135 4136 4137
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4138
#ifdef CONFIG_MMU
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4157 4158 4159 4160 4161 4162 4163
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4164

K
KAMEZAWA Hiroyuki 已提交
4165 4166 4167 4168 4169

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4170
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4171 4172
	MCS_PGPGIN,
	MCS_PGPGOUT,
4173
	MCS_SWAP,
4174 4175
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4186 4187
};

K
KAMEZAWA Hiroyuki 已提交
4188 4189 4190 4191 4192 4193
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4194
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4195 4196
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4197
	{"swap", "total_swap"},
4198 4199
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4200 4201 4202 4203 4204 4205 4206 4207
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4208 4209
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4210 4211 4212 4213
{
	s64 val;

	/* per cpu stat */
4214
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4215
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4216
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4217
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4218
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4219
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4220
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4221
	s->stat[MCS_PGPGIN] += val;
4222
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4223
	s->stat[MCS_PGPGOUT] += val;
4224
	if (do_swap_account) {
4225
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4226 4227
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4228 4229 4230 4231
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4232 4233

	/* per zone stat */
4234
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4235
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4236
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4237
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4238
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4239
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4240
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4241
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4242
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4243 4244 4245 4246 4247 4248
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4249 4250 4251 4252
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4253 4254
}

4255 4256 4257 4258 4259 4260 4261 4262 4263
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4264
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4265 4266
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4267
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4268 4269 4270 4271
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4272
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4273 4274
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4275 4276
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4277 4278 4279 4280
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4281
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4282 4283
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4284 4285
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4286 4287 4288 4289
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4290
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4291 4292
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4293 4294
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4295 4296 4297 4298 4299 4300 4301
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4302 4303
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4304 4305
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4306
	struct mcs_total_stat mystat;
4307 4308
	int i;

K
KAMEZAWA Hiroyuki 已提交
4309 4310
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4311

4312

4313 4314 4315
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4316
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4317
	}
L
Lee Schermerhorn 已提交
4318

K
KAMEZAWA Hiroyuki 已提交
4319
	/* Hierarchical information */
4320 4321 4322 4323 4324 4325 4326
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4327

K
KAMEZAWA Hiroyuki 已提交
4328 4329
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4330 4331 4332
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4333
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4334
	}
K
KAMEZAWA Hiroyuki 已提交
4335

K
KOSAKI Motohiro 已提交
4336
#ifdef CONFIG_DEBUG_VM
4337
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4365 4366 4367
	return 0;
}

K
KOSAKI Motohiro 已提交
4368 4369 4370 4371
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4372
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4373 4374 4375 4376 4377 4378 4379
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4380

K
KOSAKI Motohiro 已提交
4381 4382 4383 4384 4385 4386 4387
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4388 4389 4390

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4391 4392
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4393 4394
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4395
		return -EINVAL;
4396
	}
K
KOSAKI Motohiro 已提交
4397 4398 4399

	memcg->swappiness = val;

4400 4401
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4402 4403 4404
	return 0;
}

4405 4406 4407 4408 4409 4410 4411 4412
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4413
		t = rcu_dereference(memcg->thresholds.primary);
4414
	else
4415
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4427
	i = t->current_threshold;
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4451
	t->current_threshold = i - 1;
4452 4453 4454 4455 4456 4457
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4458 4459 4460 4461 4462 4463 4464
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4475
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4486 4487 4488 4489
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4490 4491 4492 4493
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4494 4495
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4496 4497
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4498 4499
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4500
	int i, size, ret;
4501 4502 4503 4504 4505 4506

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4507

4508
	if (type == _MEM)
4509
		thresholds = &memcg->thresholds;
4510
	else if (type == _MEMSWAP)
4511
		thresholds = &memcg->memsw_thresholds;
4512 4513 4514 4515 4516 4517
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4518
	if (thresholds->primary)
4519 4520
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4521
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4522 4523

	/* Allocate memory for new array of thresholds */
4524
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4525
			GFP_KERNEL);
4526
	if (!new) {
4527 4528 4529
		ret = -ENOMEM;
		goto unlock;
	}
4530
	new->size = size;
4531 4532

	/* Copy thresholds (if any) to new array */
4533 4534
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4535
				sizeof(struct mem_cgroup_threshold));
4536 4537
	}

4538
	/* Add new threshold */
4539 4540
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4541 4542

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4543
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4544 4545 4546
			compare_thresholds, NULL);

	/* Find current threshold */
4547
	new->current_threshold = -1;
4548
	for (i = 0; i < size; i++) {
4549
		if (new->entries[i].threshold < usage) {
4550
			/*
4551 4552
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4553 4554
			 * it here.
			 */
4555
			++new->current_threshold;
4556 4557 4558
		}
	}

4559 4560 4561 4562 4563
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4564

4565
	/* To be sure that nobody uses thresholds */
4566 4567 4568 4569 4570 4571 4572 4573
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4574
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4575
	struct cftype *cft, struct eventfd_ctx *eventfd)
4576 4577
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4578 4579
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4580 4581
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4582
	int i, j, size;
4583 4584 4585

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4586
		thresholds = &memcg->thresholds;
4587
	else if (type == _MEMSWAP)
4588
		thresholds = &memcg->memsw_thresholds;
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4604 4605 4606
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4607 4608 4609
			size++;
	}

4610
	new = thresholds->spare;
4611

4612 4613
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4614 4615
		kfree(new);
		new = NULL;
4616
		goto swap_buffers;
4617 4618
	}

4619
	new->size = size;
4620 4621

	/* Copy thresholds and find current threshold */
4622 4623 4624
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4625 4626
			continue;

4627 4628
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4629
			/*
4630
			 * new->current_threshold will not be used
4631 4632 4633
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4634
			++new->current_threshold;
4635 4636 4637 4638
		}
		j++;
	}

4639
swap_buffers:
4640 4641 4642
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4643

4644
	/* To be sure that nobody uses thresholds */
4645 4646 4647 4648
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4649

K
KAMEZAWA Hiroyuki 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4662
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4663 4664 4665 4666 4667

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4668
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4669
		eventfd_signal(eventfd, 1);
4670
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4671 4672 4673 4674

	return 0;
}

4675
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4676 4677 4678 4679 4680 4681 4682 4683
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4684
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4685 4686 4687 4688 4689 4690 4691 4692

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4693
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4694 4695
}

4696 4697 4698 4699 4700 4701 4702
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

4703
	if (atomic_read(&mem->under_oom))
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4730 4731
	if (!val)
		memcg_oom_recover(mem);
4732 4733 4734 4735
	cgroup_unlock();
	return 0;
}

4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
				struct cftype *cft,
				struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	char string[64];
	int i;

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_LIMIT);
		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_LIMIT][i]);
	}

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_SYSTEM);
		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
	}

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_LIMIT);
		strcat(string, SCANSTAT_WORD_HIERARCHY);
		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
	}
	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_SYSTEM);
		strcat(string, SCANSTAT_WORD_HIERARCHY);
		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
	}
	return 0;
}

static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
				unsigned int event)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	spin_lock(&mem->scanstat.lock);
	memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
	memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
	spin_unlock(&mem->scanstat.lock);
	return 0;
}


B
Balbir Singh 已提交
4800 4801
static struct cftype mem_cgroup_files[] = {
	{
4802
		.name = "usage_in_bytes",
4803
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4804
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4805 4806
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4807
	},
4808 4809
	{
		.name = "max_usage_in_bytes",
4810
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4811
		.trigger = mem_cgroup_reset,
4812 4813
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4814
	{
4815
		.name = "limit_in_bytes",
4816
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4817
		.write_string = mem_cgroup_write,
4818
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4819
	},
4820 4821 4822 4823 4824 4825
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4826 4827
	{
		.name = "failcnt",
4828
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4829
		.trigger = mem_cgroup_reset,
4830
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4831
	},
4832 4833
	{
		.name = "stat",
4834
		.read_map = mem_control_stat_show,
4835
	},
4836 4837 4838 4839
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4840 4841 4842 4843 4844
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4845 4846 4847 4848 4849
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4850 4851 4852 4853 4854
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4855 4856
	{
		.name = "oom_control",
4857 4858
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4859 4860 4861 4862
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4863 4864 4865 4866
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4867
		.mode = S_IRUGO,
4868 4869
	},
#endif
4870 4871 4872 4873 4874
	{
		.name = "vmscan_stat",
		.read_map = mem_cgroup_vmscan_stat_read,
		.trigger = mem_cgroup_reset_vmscan_stat,
	},
B
Balbir Singh 已提交
4875 4876
};

4877 4878 4879 4880 4881 4882
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4883 4884
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4920 4921 4922
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4923
	struct mem_cgroup_per_zone *mz;
4924
	enum lru_list l;
4925
	int zone, tmp = node;
4926 4927 4928 4929 4930 4931 4932 4933
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4934 4935
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4936
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4937 4938
	if (!pn)
		return 1;
4939

4940
	mem->info.nodeinfo[node] = pn;
4941 4942
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4943 4944
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4945
		mz->usage_in_excess = 0;
4946 4947
		mz->on_tree = false;
		mz->mem = mem;
4948
	}
4949 4950 4951
	return 0;
}

4952 4953 4954 4955 4956
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4957 4958 4959
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4960
	int size = sizeof(struct mem_cgroup);
4961

4962
	/* Can be very big if MAX_NUMNODES is very big */
4963
	if (size < PAGE_SIZE)
4964
		mem = kzalloc(size, GFP_KERNEL);
4965
	else
4966
		mem = vzalloc(size);
4967

4968 4969 4970
	if (!mem)
		return NULL;

4971
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4972 4973
	if (!mem->stat)
		goto out_free;
4974
	spin_lock_init(&mem->pcp_counter_lock);
4975
	return mem;
4976 4977 4978 4979 4980 4981 4982

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4983 4984
}

4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4996
static void __mem_cgroup_free(struct mem_cgroup *mem)
4997
{
K
KAMEZAWA Hiroyuki 已提交
4998 4999
	int node;

5000
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
5001 5002
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
5003 5004 5005
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

5006 5007
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
5008 5009 5010 5011 5012
		kfree(mem);
	else
		vfree(mem);
}

5013 5014 5015 5016 5017
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

5018
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
5019
{
5020
	if (atomic_sub_and_test(count, &mem->refcnt)) {
5021
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
5022
		__mem_cgroup_free(mem);
5023 5024 5025
		if (parent)
			mem_cgroup_put(parent);
	}
5026 5027
}

5028 5029 5030 5031 5032
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

5033 5034 5035 5036 5037 5038 5039 5040 5041
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
5042

5043 5044 5045
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
5046
	if (!mem_cgroup_disabled() && really_do_swap_account)
5047 5048 5049 5050 5051 5052 5053 5054
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
5080
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
5081 5082
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
5083
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
5084
	long error = -ENOMEM;
5085
	int node;
B
Balbir Singh 已提交
5086

5087 5088
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
5089
		return ERR_PTR(error);
5090

5091 5092 5093
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
5094

5095
	/* root ? */
5096
	if (cont->parent == NULL) {
5097
		int cpu;
5098
		enable_swap_cgroup();
5099
		parent = NULL;
5100
		root_mem_cgroup = mem;
5101 5102
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5103 5104 5105 5106 5107
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5108
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5109
	} else {
5110
		parent = mem_cgroup_from_cont(cont->parent);
5111
		mem->use_hierarchy = parent->use_hierarchy;
5112
		mem->oom_kill_disable = parent->oom_kill_disable;
5113
	}
5114

5115 5116 5117
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
5118 5119 5120 5121 5122 5123 5124
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5125 5126 5127 5128
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
5129
	mem->last_scanned_child = 0;
5130
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
5131
	INIT_LIST_HEAD(&mem->oom_notify);
5132

K
KOSAKI Motohiro 已提交
5133
	if (parent)
5134
		mem->swappiness = mem_cgroup_swappiness(parent);
5135
	atomic_set(&mem->refcnt, 1);
5136
	mem->move_charge_at_immigrate = 0;
5137
	mutex_init(&mem->thresholds_lock);
5138
	spin_lock_init(&mem->scanstat.lock);
B
Balbir Singh 已提交
5139
	return &mem->css;
5140
free_out:
5141
	__mem_cgroup_free(mem);
5142
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
5143
	return ERR_PTR(error);
B
Balbir Singh 已提交
5144 5145
}

5146
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5147 5148 5149
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5150 5151

	return mem_cgroup_force_empty(mem, false);
5152 5153
}

B
Balbir Singh 已提交
5154 5155 5156
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5157 5158 5159
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
5160 5161 5162 5163 5164
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5165 5166 5167 5168 5169 5170 5171 5172
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
5173 5174
}

5175
#ifdef CONFIG_MMU
5176
/* Handlers for move charge at task migration. */
5177 5178
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5179
{
5180 5181
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5182 5183
	struct mem_cgroup *mem = mc.to;

5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5219
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5220 5221 5222 5223 5224
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5225 5226 5227 5228 5229 5230 5231 5232
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5233
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5234 5235 5236 5237 5238 5239
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5240 5241 5242
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5243 5244 5245 5246 5247
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5248
	swp_entry_t	ent;
5249 5250 5251 5252 5253
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5254
	MC_TARGET_SWAP,
5255 5256
};

D
Daisuke Nishimura 已提交
5257 5258
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5259
{
D
Daisuke Nishimura 已提交
5260
	struct page *page = vm_normal_page(vma, addr, ptent);
5261

D
Daisuke Nishimura 已提交
5262 5263 5264 5265 5266 5267
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5268 5269
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5288 5289
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5290
		return NULL;
5291
	}
D
Daisuke Nishimura 已提交
5292 5293 5294 5295 5296 5297
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5343 5344
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5345 5346 5347

	if (!page && !ent.val)
		return 0;
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5363 5364
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5365 5366 5367 5368
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5381 5382
	split_huge_page_pmd(walk->mm, pmd);

5383 5384 5385 5386 5387 5388 5389
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5390 5391 5392
	return 0;
}

5393 5394 5395 5396 5397
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5398
	down_read(&mm->mmap_sem);
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5410
	up_read(&mm->mmap_sem);
5411 5412 5413 5414 5415 5416 5417 5418 5419

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5420 5421 5422 5423 5424
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5425 5426
}

5427 5428
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5429
{
5430 5431 5432
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5433
	/* we must uncharge all the leftover precharges from mc.to */
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5445
	}
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5480
	spin_lock(&mc.lock);
5481 5482
	mc.from = NULL;
	mc.to = NULL;
5483
	spin_unlock(&mc.lock);
5484
	mem_cgroup_end_move(from);
5485 5486
}

5487 5488
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5489
				struct task_struct *p)
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5504 5505 5506 5507
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5508
			VM_BUG_ON(mc.moved_charge);
5509
			VM_BUG_ON(mc.moved_swap);
5510
			mem_cgroup_start_move(from);
5511
			spin_lock(&mc.lock);
5512 5513
			mc.from = from;
			mc.to = mem;
5514
			spin_unlock(&mc.lock);
5515
			/* We set mc.moving_task later */
5516 5517 5518 5519

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5520 5521
		}
		mmput(mm);
5522 5523 5524 5525 5526 5527
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5528
				struct task_struct *p)
5529
{
5530
	mem_cgroup_clear_mc();
5531 5532
}

5533 5534 5535
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5536
{
5537 5538 5539 5540 5541
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5542
	split_huge_page_pmd(walk->mm, pmd);
5543 5544 5545 5546 5547 5548 5549 5550
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5551
		swp_entry_t ent;
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5563 5564
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5565
				mc.precharge--;
5566 5567
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5568 5569 5570 5571 5572
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5573 5574
		case MC_TARGET_SWAP:
			ent = target.ent;
5575 5576
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5577
				mc.precharge--;
5578 5579 5580
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5581
			break;
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5596
		ret = mem_cgroup_do_precharge(1);
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5640
	up_read(&mm->mmap_sem);
5641 5642
}

B
Balbir Singh 已提交
5643 5644 5645
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5646
				struct task_struct *p)
B
Balbir Singh 已提交
5647
{
5648
	struct mm_struct *mm = get_task_mm(p);
5649 5650

	if (mm) {
5651 5652 5653
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5654 5655
		mmput(mm);
	}
5656 5657
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5658
}
5659 5660 5661
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5662
				struct task_struct *p)
5663 5664 5665 5666 5667
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5668
				struct task_struct *p)
5669 5670 5671 5672 5673
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5674
				struct task_struct *p)
5675 5676 5677
{
}
#endif
B
Balbir Singh 已提交
5678

B
Balbir Singh 已提交
5679 5680 5681 5682
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5683
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5684 5685
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5686 5687
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5688
	.attach = mem_cgroup_move_task,
5689
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5690
	.use_id = 1,
B
Balbir Singh 已提交
5691
};
5692 5693

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5694 5695 5696
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5697
	if (!strcmp(s, "1"))
5698
		really_do_swap_account = 1;
5699
	else if (!strcmp(s, "0"))
5700 5701 5702
		really_do_swap_account = 0;
	return 1;
}
5703
__setup("swapaccount=", enable_swap_account);
5704 5705

#endif