memcontrol.c 128.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221

K
KOSAKI Motohiro 已提交
222 223 224 225 226
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

227
	/*
228
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
229
	 * reclaimed from.
230
	 */
K
KAMEZAWA Hiroyuki 已提交
231
	int last_scanned_child;
232 233 234 235
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
236
	atomic_t	oom_lock;
237
	atomic_t	refcnt;
238

K
KOSAKI Motohiro 已提交
239
	unsigned int	swappiness;
240 241
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
242

243 244 245
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

246 247 248 249
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
250
	struct mem_cgroup_thresholds thresholds;
251

252
	/* thresholds for mem+swap usage. RCU-protected */
253
	struct mem_cgroup_thresholds memsw_thresholds;
254

K
KAMEZAWA Hiroyuki 已提交
255 256 257
	/* For oom notifier event fd */
	struct list_head oom_notify;

258 259 260 261 262
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
263
	/*
264
	 * percpu counter.
265
	 */
266
	struct mem_cgroup_stat_cpu *stat;
267 268 269 270 271 272
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
273 274
};

275 276 277 278 279 280
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
281
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 284 285
	NR_MOVE_TYPE,
};

286 287
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
288
	spinlock_t	  lock; /* for from, to */
289 290 291
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
292
	unsigned long moved_charge;
293
	unsigned long moved_swap;
294 295 296
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
297
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 299
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
300

D
Daisuke Nishimura 已提交
301 302 303 304 305 306
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

307 308 309 310 311 312
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

313 314 315 316 317 318 319
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

320 321 322
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
325
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
326
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 328 329
	NR_CHARGE_TYPE,
};

330 331 332 333
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
334 335
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
336

337 338 339
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
340
#define _OOM_TYPE		(2)
341 342 343
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
344 345
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
346

347 348 349 350 351 352 353
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 355
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356

357 358
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
359
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360
static void drain_all_stock_async(void);
361

362 363 364 365 366 367
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

368 369 370 371 372
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
402
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403
				struct mem_cgroup_per_zone *mz,
404 405
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
406 407 408 409 410 411 412 413
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

414 415 416
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
433 434 435 436 437 438 439 440 441 442 443 444 445
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

446 447 448 449 450 451
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
452
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453 454 455 456 457 458
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
459
	unsigned long long excess;
460 461
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
462 463
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
464 465 466
	mctz = soft_limit_tree_from_page(page);

	/*
467 468
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
469
	 */
470 471
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472
		excess = res_counter_soft_limit_excess(&mem->res);
473 474 475 476
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
477
		if (excess || mz->on_tree) {
478 479 480 481 482
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
483 484
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
485
			 */
486
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 488
			spin_unlock(&mctz->lock);
		}
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

507 508 509 510 511 512 513 514 515
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
516
	struct mem_cgroup_per_zone *mz;
517 518

retry:
519
	mz = NULL;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
568 569 570 571 572 573
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

574 575
	get_online_cpus();
	for_each_online_cpu(cpu)
576
		val += per_cpu(mem->stat->count[idx], cpu);
577 578 579 580 581 582
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
583 584 585 586 587 588 589 590 591 592 593 594
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

595 596 597 598
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
599
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 601
}

602
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603
					 bool file, int nr_pages)
604
{
605 606
	preempt_disable();

607 608
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609
	else
610
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611

612 613
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
614
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615
	else
616
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 618

	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619

620
	preempt_enable();
621 622
}

K
KAMEZAWA Hiroyuki 已提交
623
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624
					enum lru_list idx)
625 626 627 628 629 630 631 632 633 634 635
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
636 637
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

661
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
662 663 664 665 666 667
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

668
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669
{
670 671 672 673 674 675 676 677
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

678 679 680 681
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

682 683 684
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
685 686 687

	if (!mm)
		return NULL;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
703 704
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
705
{
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
728 729 730 731 732 733 734 735 736
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
737 738
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
739
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
740

K
KAMEZAWA Hiroyuki 已提交
741
	css_put(&iter->css);
742 743
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
744
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
745

746 747 748
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
749 750
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
751
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
752 753 754

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
755
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
756
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
757
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
758
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
759
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
760
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
761

K
KAMEZAWA Hiroyuki 已提交
762
	return iter;
K
KAMEZAWA Hiroyuki 已提交
763
}
K
KAMEZAWA Hiroyuki 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

777 778 779
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
780

781 782 783 784 785
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
799

K
KAMEZAWA Hiroyuki 已提交
800 801 802 803
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
804

805
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
806 807 808
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
809
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
810
		return;
811
	VM_BUG_ON(!pc->mem_cgroup);
812 813 814 815
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
816
	mz = page_cgroup_zoneinfo(pc);
817
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
818 819 820
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
821
	list_del_init(&pc->lru);
822 823
}

K
KAMEZAWA Hiroyuki 已提交
824
void mem_cgroup_del_lru(struct page *page)
825
{
K
KAMEZAWA Hiroyuki 已提交
826 827
	mem_cgroup_del_lru_list(page, page_lru(page));
}
828

K
KAMEZAWA Hiroyuki 已提交
829 830 831 832
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
833

834
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
835
		return;
836

K
KAMEZAWA Hiroyuki 已提交
837
	pc = lookup_page_cgroup(page);
838 839 840 841
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
842
	smp_rmb();
843 844
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
845 846 847
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
848 849
}

K
KAMEZAWA Hiroyuki 已提交
850
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851
{
K
KAMEZAWA Hiroyuki 已提交
852 853
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
854

855
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
856 857
		return;
	pc = lookup_page_cgroup(page);
858
	VM_BUG_ON(PageCgroupAcctLRU(pc));
859 860 861 862
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
863 864
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
865
		return;
866

K
KAMEZAWA Hiroyuki 已提交
867
	mz = page_cgroup_zoneinfo(pc);
868
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
869 870 871
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
872 873
	list_add(&pc->lru, &mz->lists[lru]);
}
874

K
KAMEZAWA Hiroyuki 已提交
875
/*
876 877 878 879 880
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
881
 */
882
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
883
{
884 885 886 887 888 889 890 891 892 893 894 895
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
896 897
}

898 899 900 901 902 903 904 905
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
906
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
907 908 909 910 911
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
912 913 914
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
915
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
916 917 918
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
919 920
}

921 922 923
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
924
	struct mem_cgroup *curr = NULL;
925
	struct task_struct *p;
926

927 928 929 930 931
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
932 933
	if (!curr)
		return 0;
934 935 936 937 938 939 940
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
941 942 943 944
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
945 946 947
	return ret;
}

948
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
949 950 951
{
	unsigned long active;
	unsigned long inactive;
952 953
	unsigned long gb;
	unsigned long inactive_ratio;
954

K
KAMEZAWA Hiroyuki 已提交
955 956
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
957

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
985 986 987 988 989
		return 1;

	return 0;
}

990 991 992 993 994 995 996 997 998 999 1000
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1001 1002 1003 1004
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1005
	int nid = zone_to_nid(zone);
1006 1007 1008 1009 1010 1011
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1012 1013 1014
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1015
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1032 1033 1034 1035 1036 1037 1038 1039
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
1040 1041 1042 1043 1044 1045 1046
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1047 1048 1049 1050 1051
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1052
					int active, int file)
1053 1054 1055 1056 1057 1058
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1059
	struct page_cgroup *pc, *tmp;
1060
	int nid = zone_to_nid(z);
1061 1062
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1063
	int lru = LRU_FILE * file + active;
1064
	int ret;
1065

1066
	BUG_ON(!mem_cont);
1067
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1068
	src = &mz->lists[lru];
1069

1070 1071
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1072
		if (scan >= nr_to_scan)
1073
			break;
K
KAMEZAWA Hiroyuki 已提交
1074 1075

		page = pc->page;
1076 1077
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1078
		if (unlikely(!PageLRU(page)))
1079 1080
			continue;

H
Hugh Dickins 已提交
1081
		scan++;
1082 1083 1084
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1085
			list_move(&page->lru, dst);
1086
			mem_cgroup_del_lru(page);
1087
			nr_taken += hpage_nr_pages(page);
1088 1089 1090 1091 1092 1093 1094
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1095 1096 1097 1098
		}
	}

	*scanned = scan;
1099 1100 1101 1102

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1103 1104 1105
	return nr_taken;
}

1106 1107 1108
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1137 1138 1139
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1140 1141 1142 1143

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1144
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1145 1146 1147
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1158 1159 1160
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1161
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1162 1163 1164
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1183 1184 1185

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1186 1187
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1188
	bool ret = false;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1223
/**
1224
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1243
	if (!memcg || !p)
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1290 1291 1292 1293 1294 1295 1296
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1297 1298 1299 1300
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1301 1302 1303
	return num;
}

D
David Rientjes 已提交
1304 1305 1306 1307 1308 1309 1310 1311
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1312 1313 1314
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1315 1316 1317 1318 1319 1320 1321 1322
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1323
/*
K
KAMEZAWA Hiroyuki 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1366 1367
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1368 1369 1370
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1371 1372
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1373 1374
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1375
						struct zone *zone,
1376 1377
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1378
{
K
KAMEZAWA Hiroyuki 已提交
1379 1380 1381
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1382 1383
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1384 1385
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1386

1387 1388 1389 1390
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1391
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1392
		victim = mem_cgroup_select_victim(root_mem);
1393
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1394
			loop++;
1395 1396
			if (loop >= 1)
				drain_all_stock_async();
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1420
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1421 1422
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1423 1424
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1425
		/* we use swappiness of local cgroup */
1426 1427
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1428
				noswap, get_swappiness(victim), zone);
1429 1430 1431
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1432
		css_put(&victim->css);
1433 1434 1435 1436 1437 1438 1439
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1440
		total += ret;
1441 1442 1443 1444
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1445
			return 1 + total;
1446
	}
K
KAMEZAWA Hiroyuki 已提交
1447
	return total;
1448 1449
}

K
KAMEZAWA Hiroyuki 已提交
1450 1451 1452 1453 1454 1455
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1456 1457
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1458

K
KAMEZAWA Hiroyuki 已提交
1459 1460 1461 1462
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1463 1464 1465 1466

	if (lock_count == 1)
		return true;
	return false;
1467
}
1468

K
KAMEZAWA Hiroyuki 已提交
1469
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1470
{
K
KAMEZAWA Hiroyuki 已提交
1471 1472
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1473 1474 1475 1476 1477
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1478 1479
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1480 1481 1482
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1483 1484 1485 1486

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1523 1524
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1525
	if (mem && atomic_read(&mem->oom_lock))
1526 1527 1528
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1529 1530 1531 1532
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1533
{
K
KAMEZAWA Hiroyuki 已提交
1534
	struct oom_wait_info owait;
1535
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1536

K
KAMEZAWA Hiroyuki 已提交
1537 1538 1539 1540 1541
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1542
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1543 1544 1545 1546 1547 1548 1549 1550
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1551 1552 1553 1554
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1555
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1556 1557
	mutex_unlock(&memcg_oom_mutex);

1558 1559
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1560
		mem_cgroup_out_of_memory(mem, mask);
1561
	} else {
K
KAMEZAWA Hiroyuki 已提交
1562
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1563
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1564 1565 1566
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1567
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1568 1569 1570 1571 1572 1573 1574
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1575 1576
}

1577 1578 1579
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1599
 */
1600

1601 1602
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1603 1604
{
	struct mem_cgroup *mem;
1605 1606
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1607
	unsigned long uninitialized_var(flags);
1608 1609 1610 1611

	if (unlikely(!pc))
		return;

1612
	rcu_read_lock();
1613
	mem = pc->mem_cgroup;
1614 1615 1616 1617 1618
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
	if (unlikely(mem_cgroup_stealed(mem))) {
		/* take a lock against to access pc->mem_cgroup */
1619
		move_lock_page_cgroup(pc, &flags);
1620 1621 1622 1623 1624
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1625 1626

	switch (idx) {
1627
	case MEMCG_NR_FILE_MAPPED:
1628 1629 1630
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1631
			ClearPageCgroupFileMapped(pc);
1632
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1633 1634 1635
		break;
	default:
		BUG();
1636
	}
1637

1638 1639
	this_cpu_add(mem->stat->count[idx], val);

1640 1641
out:
	if (unlikely(need_unlock))
1642
		move_unlock_page_cgroup(pc, &flags);
1643 1644
	rcu_read_unlock();
	return;
1645
}
1646
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1647

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1709
 * This will be consumed by consume_stock() function, later.
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1787 1788 1789 1790
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1791 1792 1793 1794 1795
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1796
	struct mem_cgroup *iter;
1797

1798 1799 1800 1801 1802 1803
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1804
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1805
		return NOTIFY_OK;
1806 1807 1808 1809

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1810 1811 1812 1813 1814
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1882 1883 1884
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1885
 */
1886
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
1887 1888 1889
				   gfp_t gfp_mask,
				   struct mem_cgroup **memcg, bool oom,
				   int page_size)
1890
{
1891 1892 1893
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
A
Andrea Arcangeli 已提交
1894
	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1895

K
KAMEZAWA Hiroyuki 已提交
1896 1897 1898 1899 1900 1901 1902 1903
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1904

1905
	/*
1906 1907
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1908 1909 1910
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1911 1912 1913 1914
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1915
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1916 1917 1918
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
A
Andrea Arcangeli 已提交
1919
		if (page_size == PAGE_SIZE && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
1920
			goto done;
1921 1922
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1923
		struct task_struct *p;
1924

K
KAMEZAWA Hiroyuki 已提交
1925 1926 1927
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1928 1929 1930 1931 1932 1933 1934 1935
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1936 1937
		 */
		mem = mem_cgroup_from_task(p);
1938
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1939 1940 1941
			rcu_read_unlock();
			goto done;
		}
A
Andrea Arcangeli 已提交
1942
		if (page_size == PAGE_SIZE && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1961

1962 1963
	do {
		bool oom_check;
1964

1965
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1966 1967
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1968
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1969
		}
1970

1971 1972 1973 1974
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1975
		}
1976

1977
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1978

1979 1980 1981 1982
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
A
Andrea Arcangeli 已提交
1983
			csize = page_size;
K
KAMEZAWA Hiroyuki 已提交
1984 1985 1986
			css_put(&mem->css);
			mem = NULL;
			goto again;
1987
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1988
			css_put(&mem->css);
1989 1990
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1991 1992
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1993
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
1994
			}
1995 1996 1997 1998
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
1999
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2000
			goto bypass;
2001
		}
2002 2003
	} while (ret != CHARGE_OK);

A
Andrea Arcangeli 已提交
2004 2005
	if (csize > page_size)
		refill_stock(mem, csize - page_size);
K
KAMEZAWA Hiroyuki 已提交
2006
	css_put(&mem->css);
2007
done:
K
KAMEZAWA Hiroyuki 已提交
2008
	*memcg = mem;
2009 2010
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2011
	*memcg = NULL;
2012
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2013 2014 2015
bypass:
	*memcg = NULL;
	return 0;
2016
}
2017

2018 2019 2020 2021 2022
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2023 2024
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2025 2026
{
	if (!mem_cgroup_is_root(mem)) {
2027
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2028
		if (do_swap_account)
2029
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2030
	}
2031 2032
}

A
Andrea Arcangeli 已提交
2033 2034
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
				     int page_size)
2035
{
A
Andrea Arcangeli 已提交
2036
	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2037 2038
}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2058
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2059
{
2060
	struct mem_cgroup *mem = NULL;
2061
	struct page_cgroup *pc;
2062
	unsigned short id;
2063 2064
	swp_entry_t ent;

2065 2066 2067
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2068
	lock_page_cgroup(pc);
2069
	if (PageCgroupUsed(pc)) {
2070
		mem = pc->mem_cgroup;
2071 2072
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2073
	} else if (PageSwapCache(page)) {
2074
		ent.val = page_private(page);
2075 2076 2077 2078 2079 2080
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2081
	}
2082
	unlock_page_cgroup(pc);
2083 2084 2085
	return mem;
}

2086
/*
2087
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2088 2089
 * USED state. If already USED, uncharge and return.
 */
2090 2091 2092
static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 enum charge_type ctype)
2093
{
2094
	pc->mem_cgroup = mem;
2095 2096 2097 2098 2099 2100 2101
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2102
	smp_wmb();
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2116

2117
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), 1);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
}

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				       struct page_cgroup *pc,
				       enum charge_type ctype,
				       int page_size)
{
	int i;
	int count = page_size >> PAGE_SHIFT;

	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		mem_cgroup_cancel_charge(mem, page_size);
		return;
	}

	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
	for (i = 0; i < count; i++)
		____mem_cgroup_commit_charge(mem, pc + i, ctype);
2145 2146

	unlock_page_cgroup(pc);
2147 2148 2149 2150 2151
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2152
	memcg_check_events(mem, pc->page);
2153
}
2154

2155
/**
2156
 * __mem_cgroup_move_account - move account of the page
2157 2158 2159
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2160
 * @uncharge: whether we should call uncharge and css_put against @from.
2161 2162
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2163
 * - page is not on LRU (isolate_page() is useful.)
2164
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2165
 *
2166 2167 2168 2169
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2170 2171
 */

2172
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2173
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2174 2175
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2176
	VM_BUG_ON(PageLRU(pc->page));
2177
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2178 2179
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2180

2181
	if (PageCgroupFileMapped(pc)) {
2182 2183 2184 2185 2186
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2187
	}
2188
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -1);
2189 2190
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
A
Andrea Arcangeli 已提交
2191
		mem_cgroup_cancel_charge(from, PAGE_SIZE);
2192

2193
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2194
	pc->mem_cgroup = to;
2195
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), 1);
2196 2197 2198
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2199 2200 2201
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2202
	 */
2203 2204 2205 2206 2207 2208 2209
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2210
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2211 2212
{
	int ret = -EINVAL;
2213 2214
	unsigned long flags;

2215 2216
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2217
		move_lock_page_cgroup(pc, &flags);
2218
		__mem_cgroup_move_account(pc, from, to, uncharge);
2219
		move_unlock_page_cgroup(pc, &flags);
2220 2221 2222
		ret = 0;
	}
	unlock_page_cgroup(pc);
2223 2224 2225 2226 2227
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2239
	struct page *page = pc->page;
2240 2241 2242 2243 2244 2245 2246 2247 2248
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2249 2250 2251 2252 2253
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
2254

2255
	parent = mem_cgroup_from_cont(pcg);
A
Andrea Arcangeli 已提交
2256 2257
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
				      PAGE_SIZE);
2258
	if (ret || !parent)
2259
		goto put_back;
2260

2261 2262
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
A
Andrea Arcangeli 已提交
2263
		mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2264
put_back:
K
KAMEZAWA Hiroyuki 已提交
2265
	putback_lru_page(page);
2266
put:
2267
	put_page(page);
2268
out:
2269 2270 2271
	return ret;
}

2272 2273 2274 2275 2276 2277 2278
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2279
				gfp_t gfp_mask, enum charge_type ctype)
2280
{
2281
	struct mem_cgroup *mem = NULL;
2282 2283
	struct page_cgroup *pc;
	int ret;
A
Andrea Arcangeli 已提交
2284 2285
	int page_size = PAGE_SIZE;

A
Andrea Arcangeli 已提交
2286
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2287
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2288 2289
		VM_BUG_ON(!PageTransHuge(page));
	}
2290 2291 2292 2293 2294 2295 2296

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

A
Andrea Arcangeli 已提交
2297
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2298
	if (ret || !mem)
2299 2300
		return ret;

A
Andrea Arcangeli 已提交
2301
	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2302 2303 2304
	return 0;
}

2305 2306
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2307
{
2308
	if (mem_cgroup_disabled())
2309
		return 0;
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2321
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2322
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2323 2324
}

D
Daisuke Nishimura 已提交
2325 2326 2327 2328
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2329 2330
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2331
{
2332 2333
	int ret;

2334
	if (mem_cgroup_disabled())
2335
		return 0;
2336 2337
	if (PageCompound(page))
		return 0;
2338 2339 2340 2341 2342 2343 2344 2345
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2346 2347
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2348 2349 2350 2351
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2352 2353 2354 2355 2356 2357
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2358 2359
			return 0;
		}
2360
		unlock_page_cgroup(pc);
2361 2362
	}

2363
	if (unlikely(!mm))
2364
		mm = &init_mm;
2365

2366 2367
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2368
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2369

D
Daisuke Nishimura 已提交
2370 2371
	/* shmem */
	if (PageSwapCache(page)) {
2372 2373
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2374 2375 2376 2377 2378 2379
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2380
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2381 2382

	return ret;
2383 2384
}

2385 2386 2387
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2388
 * struct page_cgroup is acquired. This refcnt will be consumed by
2389 2390
 * "commit()" or removed by "cancel()"
 */
2391 2392 2393 2394 2395
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2396
	int ret;
2397

2398
	if (mem_cgroup_disabled())
2399 2400 2401 2402 2403 2404
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2405 2406 2407
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2408 2409
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2410
		goto charge_cur_mm;
2411
	mem = try_get_mem_cgroup_from_page(page);
2412 2413
	if (!mem)
		goto charge_cur_mm;
2414
	*ptr = mem;
A
Andrea Arcangeli 已提交
2415
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2416 2417
	css_put(&mem->css);
	return ret;
2418 2419 2420
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
A
Andrea Arcangeli 已提交
2421
	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2422 2423
}

D
Daisuke Nishimura 已提交
2424 2425 2426
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2427 2428 2429
{
	struct page_cgroup *pc;

2430
	if (mem_cgroup_disabled())
2431 2432 2433
		return;
	if (!ptr)
		return;
2434
	cgroup_exclude_rmdir(&ptr->css);
2435
	pc = lookup_page_cgroup(page);
2436
	mem_cgroup_lru_del_before_commit_swapcache(page);
A
Andrea Arcangeli 已提交
2437
	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2438
	mem_cgroup_lru_add_after_commit_swapcache(page);
2439 2440 2441
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2442 2443 2444
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2445
	 */
2446
	if (do_swap_account && PageSwapCache(page)) {
2447
		swp_entry_t ent = {.val = page_private(page)};
2448
		unsigned short id;
2449
		struct mem_cgroup *memcg;
2450 2451 2452 2453

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2454
		if (memcg) {
2455 2456 2457 2458
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2459
			if (!mem_cgroup_is_root(memcg))
2460
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2461
			mem_cgroup_swap_statistics(memcg, false);
2462 2463
			mem_cgroup_put(memcg);
		}
2464
		rcu_read_unlock();
2465
	}
2466 2467 2468 2469 2470 2471
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2472 2473
}

D
Daisuke Nishimura 已提交
2474 2475 2476 2477 2478 2479
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2480 2481
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2482
	if (mem_cgroup_disabled())
2483 2484 2485
		return;
	if (!mem)
		return;
A
Andrea Arcangeli 已提交
2486
	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2487 2488
}

2489
static void
A
Andrea Arcangeli 已提交
2490 2491
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
	      int page_size)
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

A
Andrea Arcangeli 已提交
2518 2519 2520
	if (page_size != PAGE_SIZE)
		goto direct_uncharge;

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
A
Andrea Arcangeli 已提交
2534
	res_counter_uncharge(&mem->res, page_size);
2535
	if (uncharge_memsw)
A
Andrea Arcangeli 已提交
2536
		res_counter_uncharge(&mem->memsw, page_size);
2537 2538
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2539 2540
	return;
}
2541

2542
/*
2543
 * uncharge if !page_mapped(page)
2544
 */
2545
static struct mem_cgroup *
2546
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2547
{
2548 2549
	int i;
	int count;
H
Hugh Dickins 已提交
2550
	struct page_cgroup *pc;
2551
	struct mem_cgroup *mem = NULL;
A
Andrea Arcangeli 已提交
2552
	int page_size = PAGE_SIZE;
2553

2554
	if (mem_cgroup_disabled())
2555
		return NULL;
2556

K
KAMEZAWA Hiroyuki 已提交
2557
	if (PageSwapCache(page))
2558
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2559

A
Andrea Arcangeli 已提交
2560
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2561
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2562 2563
		VM_BUG_ON(!PageTransHuge(page));
	}
A
Andrea Arcangeli 已提交
2564

2565
	count = page_size >> PAGE_SHIFT;
2566
	/*
2567
	 * Check if our page_cgroup is valid
2568
	 */
2569 2570
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2571
		return NULL;
2572

2573
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2574

2575 2576
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2577 2578 2579 2580 2581
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2582
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2583 2584
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2596
	}
K
KAMEZAWA Hiroyuki 已提交
2597

2598
	for (i = 0; i < count; i++)
2599
		mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -1);
K
KAMEZAWA Hiroyuki 已提交
2600

2601
	ClearPageCgroupUsed(pc);
2602 2603 2604 2605 2606 2607
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2608

2609
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2610 2611 2612 2613
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2614
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2615 2616 2617 2618 2619
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
A
Andrea Arcangeli 已提交
2620
		__do_uncharge(mem, ctype, page_size);
2621

2622
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2623 2624 2625

unlock_out:
	unlock_page_cgroup(pc);
2626
	return NULL;
2627 2628
}

2629 2630
void mem_cgroup_uncharge_page(struct page *page)
{
2631 2632 2633 2634 2635
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2636 2637 2638 2639 2640 2641
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2642
	VM_BUG_ON(page->mapping);
2643 2644 2645
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2686
	memcg_oom_recover(batch->memcg);
2687 2688 2689 2690
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2691
#ifdef CONFIG_SWAP
2692
/*
2693
 * called after __delete_from_swap_cache() and drop "page" account.
2694 2695
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2696 2697
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2698 2699
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2700 2701 2702 2703 2704 2705
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2706

K
KAMEZAWA Hiroyuki 已提交
2707 2708 2709 2710 2711
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2712
		swap_cgroup_record(ent, css_id(&memcg->css));
2713
}
2714
#endif
2715 2716 2717 2718 2719 2720 2721

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2722
{
2723
	struct mem_cgroup *memcg;
2724
	unsigned short id;
2725 2726 2727 2728

	if (!do_swap_account)
		return;

2729 2730 2731
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2732
	if (memcg) {
2733 2734 2735 2736
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2737
		if (!mem_cgroup_is_root(memcg))
2738
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2739
		mem_cgroup_swap_statistics(memcg, false);
2740 2741
		mem_cgroup_put(memcg);
	}
2742
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2743
}
2744 2745 2746 2747 2748 2749

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2750
 * @need_fixup: whether we should fixup res_counters and refcounts.
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2761
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2762 2763 2764 2765 2766 2767 2768 2769
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2770
		mem_cgroup_swap_statistics(to, true);
2771
		/*
2772 2773 2774 2775 2776 2777
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2778 2779
		 */
		mem_cgroup_get(to);
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2791 2792 2793 2794 2795 2796
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2797
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2798 2799 2800
{
	return -EINVAL;
}
2801
#endif
K
KAMEZAWA Hiroyuki 已提交
2802

2803
/*
2804 2805
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2806
 */
2807 2808
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2809 2810
{
	struct page_cgroup *pc;
2811
	struct mem_cgroup *mem = NULL;
2812
	enum charge_type ctype;
2813
	int ret = 0;
2814

A
Andrea Arcangeli 已提交
2815
	VM_BUG_ON(PageTransHuge(page));
2816
	if (mem_cgroup_disabled())
2817 2818
		return 0;

2819 2820 2821
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2822 2823
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2855
	}
2856
	unlock_page_cgroup(pc);
2857 2858 2859 2860 2861 2862
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2863

A
Andrea Arcangeli 已提交
2864
	*ptr = mem;
A
Andrea Arcangeli 已提交
2865
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2878
	}
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
A
Andrea Arcangeli 已提交
2892
	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2893
	return ret;
2894
}
2895

2896
/* remove redundant charge if migration failed*/
2897
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2898
	struct page *oldpage, struct page *newpage, bool migration_ok)
2899
{
2900
	struct page *used, *unused;
2901 2902 2903 2904
	struct page_cgroup *pc;

	if (!mem)
		return;
2905
	/* blocks rmdir() */
2906
	cgroup_exclude_rmdir(&mem->css);
2907
	if (!migration_ok) {
2908 2909
		used = oldpage;
		unused = newpage;
2910
	} else {
2911
		used = newpage;
2912 2913
		unused = oldpage;
	}
2914
	/*
2915 2916 2917
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2918
	 */
2919 2920 2921 2922
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2923

2924 2925
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2926
	/*
2927 2928 2929 2930 2931 2932
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2933
	 */
2934 2935
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2936
	/*
2937 2938
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2939 2940 2941 2942
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2943
}
2944

2945
/*
2946 2947 2948 2949 2950 2951
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2952
 */
2953
int mem_cgroup_shmem_charge_fallback(struct page *page,
2954 2955
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2956
{
2957
	struct mem_cgroup *mem = NULL;
2958
	int ret;
2959

2960
	if (mem_cgroup_disabled())
2961
		return 0;
2962

2963 2964 2965
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2966

2967
	return ret;
2968 2969
}

2970 2971
static DEFINE_MUTEX(set_limit_mutex);

2972
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2973
				unsigned long long val)
2974
{
2975
	int retry_count;
2976
	u64 memswlimit, memlimit;
2977
	int ret = 0;
2978 2979
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2980
	int enlarge;
2981 2982 2983 2984 2985 2986 2987 2988 2989

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2990

2991
	enlarge = 0;
2992
	while (retry_count) {
2993 2994 2995 2996
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3007 3008
			break;
		}
3009 3010 3011 3012 3013

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3014
		ret = res_counter_set_limit(&memcg->res, val);
3015 3016 3017 3018 3019 3020
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3021 3022 3023 3024 3025
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3026
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3027
						MEM_CGROUP_RECLAIM_SHRINK);
3028 3029 3030 3031 3032 3033
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3034
	}
3035 3036
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3037

3038 3039 3040
	return ret;
}

L
Li Zefan 已提交
3041 3042
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3043
{
3044
	int retry_count;
3045
	u64 memlimit, memswlimit, oldusage, curusage;
3046 3047
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3048
	int enlarge = 0;
3049

3050 3051 3052
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3070 3071 3072
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3073
		ret = res_counter_set_limit(&memcg->memsw, val);
3074 3075 3076 3077 3078 3079
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3080 3081 3082 3083 3084
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3085
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3086 3087
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3088
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3089
		/* Usage is reduced ? */
3090
		if (curusage >= oldusage)
3091
			retry_count--;
3092 3093
		else
			oldusage = curusage;
3094
	}
3095 3096
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3097 3098 3099
	return ret;
}

3100
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3101
					    gfp_t gfp_mask)
3102 3103 3104 3105 3106 3107
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3108
	unsigned long long excess;
3109 3110 3111 3112

	if (order > 0)
		return 0;

3113
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3161
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3162 3163 3164 3165 3166 3167 3168 3169
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3170 3171
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3190 3191 3192 3193
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3194
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3195
				int node, int zid, enum lru_list lru)
3196
{
K
KAMEZAWA Hiroyuki 已提交
3197 3198
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3199
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3200
	unsigned long flags, loop;
3201
	struct list_head *list;
3202
	int ret = 0;
3203

K
KAMEZAWA Hiroyuki 已提交
3204 3205
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3206
	list = &mz->lists[lru];
3207

3208 3209 3210 3211 3212 3213
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3214
		spin_lock_irqsave(&zone->lru_lock, flags);
3215
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3216
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3217
			break;
3218 3219 3220 3221
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3222
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3223
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3224 3225
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3226
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3227

K
KAMEZAWA Hiroyuki 已提交
3228
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3229
		if (ret == -ENOMEM)
3230
			break;
3231 3232 3233 3234 3235 3236 3237

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3238
	}
K
KAMEZAWA Hiroyuki 已提交
3239

3240 3241 3242
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3243 3244 3245 3246 3247 3248
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3249
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3250
{
3251 3252 3253
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3254
	struct cgroup *cgrp = mem->css.cgroup;
3255

3256
	css_get(&mem->css);
3257 3258

	shrink = 0;
3259 3260 3261
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3262
move_account:
3263
	do {
3264
		ret = -EBUSY;
3265 3266 3267 3268
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3269
			goto out;
3270 3271
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3272
		drain_all_stock_sync();
3273
		ret = 0;
3274
		mem_cgroup_start_move(mem);
3275
		for_each_node_state(node, N_HIGH_MEMORY) {
3276
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3277
				enum lru_list l;
3278 3279
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3280
							node, zid, l);
3281 3282 3283
					if (ret)
						break;
				}
3284
			}
3285 3286 3287
			if (ret)
				break;
		}
3288
		mem_cgroup_end_move(mem);
3289
		memcg_oom_recover(mem);
3290 3291 3292
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3293
		cond_resched();
3294 3295
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3296 3297 3298
out:
	css_put(&mem->css);
	return ret;
3299 3300

try_to_free:
3301 3302
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3303 3304 3305
		ret = -EBUSY;
		goto out;
	}
3306 3307
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3308 3309 3310 3311
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3312 3313 3314 3315 3316

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3317 3318
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3319
		if (!progress) {
3320
			nr_retries--;
3321
			/* maybe some writeback is necessary */
3322
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3323
		}
3324 3325

	}
K
KAMEZAWA Hiroyuki 已提交
3326
	lru_add_drain();
3327
	/* try move_account...there may be some *locked* pages. */
3328
	goto move_account;
3329 3330
}

3331 3332 3333 3334 3335 3336
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3355
	 * If parent's use_hierarchy is set, we can't make any modifications
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3375

K
KAMEZAWA Hiroyuki 已提交
3376 3377
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3378
{
K
KAMEZAWA Hiroyuki 已提交
3379 3380
	struct mem_cgroup *iter;
	s64 val = 0;
3381

K
KAMEZAWA Hiroyuki 已提交
3382 3383 3384 3385 3386 3387 3388
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3389 3390
}

3391 3392
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3393
	u64 val;
3394 3395 3396 3397 3398 3399 3400 3401

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3402 3403
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3404

K
KAMEZAWA Hiroyuki 已提交
3405 3406 3407
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3408 3409 3410 3411

	return val << PAGE_SHIFT;
}

3412
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3413
{
3414
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3415
	u64 val;
3416 3417 3418 3419 3420 3421
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3422 3423 3424
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3425
			val = res_counter_read_u64(&mem->res, name);
3426 3427
		break;
	case _MEMSWAP:
3428 3429 3430
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3431
			val = res_counter_read_u64(&mem->memsw, name);
3432 3433 3434 3435 3436 3437
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3438
}
3439 3440 3441 3442
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3443 3444
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3445
{
3446
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3447
	int type, name;
3448 3449 3450
	unsigned long long val;
	int ret;

3451 3452 3453
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3454
	case RES_LIMIT:
3455 3456 3457 3458
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3459 3460
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3461 3462 3463
		if (ret)
			break;
		if (type == _MEM)
3464
			ret = mem_cgroup_resize_limit(memcg, val);
3465 3466
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3467
		break;
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3482 3483 3484 3485 3486
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3487 3488
}

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3517
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3518 3519
{
	struct mem_cgroup *mem;
3520
	int type, name;
3521 3522

	mem = mem_cgroup_from_cont(cont);
3523 3524 3525
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3526
	case RES_MAX_USAGE:
3527 3528 3529 3530
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3531 3532
		break;
	case RES_FAILCNT:
3533 3534 3535 3536
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3537 3538
		break;
	}
3539

3540
	return 0;
3541 3542
}

3543 3544 3545 3546 3547 3548
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3549
#ifdef CONFIG_MMU
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3568 3569 3570 3571 3572 3573 3574
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3575

K
KAMEZAWA Hiroyuki 已提交
3576 3577 3578 3579 3580

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3581
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3582 3583
	MCS_PGPGIN,
	MCS_PGPGOUT,
3584
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3595 3596
};

K
KAMEZAWA Hiroyuki 已提交
3597 3598 3599 3600 3601 3602
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3603
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3604 3605
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3606
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3607 3608 3609 3610 3611 3612 3613 3614
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3615 3616
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3617 3618 3619 3620
{
	s64 val;

	/* per cpu stat */
3621
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3622
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3623
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3624
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3625
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3626
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3627
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3628
	s->stat[MCS_PGPGIN] += val;
3629
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3630
	s->stat[MCS_PGPGOUT] += val;
3631
	if (do_swap_account) {
3632
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3633 3634
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3652 3653 3654 3655
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3656 3657
}

3658 3659
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3660 3661
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3662
	struct mcs_total_stat mystat;
3663 3664
	int i;

K
KAMEZAWA Hiroyuki 已提交
3665 3666
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3667

3668 3669 3670
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3671
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3672
	}
L
Lee Schermerhorn 已提交
3673

K
KAMEZAWA Hiroyuki 已提交
3674
	/* Hierarchical information */
3675 3676 3677 3678 3679 3680 3681
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3682

K
KAMEZAWA Hiroyuki 已提交
3683 3684
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3685 3686 3687
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3688
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3689
	}
K
KAMEZAWA Hiroyuki 已提交
3690

K
KOSAKI Motohiro 已提交
3691
#ifdef CONFIG_DEBUG_VM
3692
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3720 3721 3722
	return 0;
}

K
KOSAKI Motohiro 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3735

K
KOSAKI Motohiro 已提交
3736 3737 3738 3739 3740 3741 3742
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3743 3744 3745

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3746 3747
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3748 3749
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3750
		return -EINVAL;
3751
	}
K
KOSAKI Motohiro 已提交
3752 3753 3754 3755 3756

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3757 3758
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3759 3760 3761
	return 0;
}

3762 3763 3764 3765 3766 3767 3768 3769
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3770
		t = rcu_dereference(memcg->thresholds.primary);
3771
	else
3772
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3784
	i = t->current_threshold;
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3808
	t->current_threshold = i - 1;
3809 3810 3811 3812 3813 3814
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3815 3816 3817 3818 3819 3820 3821
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3832
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3843 3844 3845 3846
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3847 3848 3849 3850
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3851 3852
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3853 3854
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3855 3856
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3857
	int i, size, ret;
3858 3859 3860 3861 3862 3863

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3864

3865
	if (type == _MEM)
3866
		thresholds = &memcg->thresholds;
3867
	else if (type == _MEMSWAP)
3868
		thresholds = &memcg->memsw_thresholds;
3869 3870 3871 3872 3873 3874
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3875
	if (thresholds->primary)
3876 3877
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3878
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3879 3880

	/* Allocate memory for new array of thresholds */
3881
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3882
			GFP_KERNEL);
3883
	if (!new) {
3884 3885 3886
		ret = -ENOMEM;
		goto unlock;
	}
3887
	new->size = size;
3888 3889

	/* Copy thresholds (if any) to new array */
3890 3891
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3892
				sizeof(struct mem_cgroup_threshold));
3893 3894
	}

3895
	/* Add new threshold */
3896 3897
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3898 3899

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3900
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3901 3902 3903
			compare_thresholds, NULL);

	/* Find current threshold */
3904
	new->current_threshold = -1;
3905
	for (i = 0; i < size; i++) {
3906
		if (new->entries[i].threshold < usage) {
3907
			/*
3908 3909
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3910 3911
			 * it here.
			 */
3912
			++new->current_threshold;
3913 3914 3915
		}
	}

3916 3917 3918 3919 3920
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3921

3922
	/* To be sure that nobody uses thresholds */
3923 3924 3925 3926 3927 3928 3929 3930
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3931
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3932
	struct cftype *cft, struct eventfd_ctx *eventfd)
3933 3934
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3935 3936
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3937 3938
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3939
	int i, j, size;
3940 3941 3942

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3943
		thresholds = &memcg->thresholds;
3944
	else if (type == _MEMSWAP)
3945
		thresholds = &memcg->memsw_thresholds;
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3961 3962 3963
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3964 3965 3966
			size++;
	}

3967
	new = thresholds->spare;
3968

3969 3970
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3971 3972
		kfree(new);
		new = NULL;
3973
		goto swap_buffers;
3974 3975
	}

3976
	new->size = size;
3977 3978

	/* Copy thresholds and find current threshold */
3979 3980 3981
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3982 3983
			continue;

3984 3985
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3986
			/*
3987
			 * new->current_threshold will not be used
3988 3989 3990
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3991
			++new->current_threshold;
3992 3993 3994 3995
		}
		j++;
	}

3996
swap_buffers:
3997 3998 3999
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4000

4001
	/* To be sure that nobody uses thresholds */
4002 4003 4004 4005
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4006

K
KAMEZAWA Hiroyuki 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4032
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4087 4088
	if (!val)
		memcg_oom_recover(mem);
4089 4090 4091 4092
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4093 4094
static struct cftype mem_cgroup_files[] = {
	{
4095
		.name = "usage_in_bytes",
4096
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4097
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4098 4099
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4100
	},
4101 4102
	{
		.name = "max_usage_in_bytes",
4103
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4104
		.trigger = mem_cgroup_reset,
4105 4106
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4107
	{
4108
		.name = "limit_in_bytes",
4109
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4110
		.write_string = mem_cgroup_write,
4111
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4112
	},
4113 4114 4115 4116 4117 4118
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4119 4120
	{
		.name = "failcnt",
4121
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4122
		.trigger = mem_cgroup_reset,
4123
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4124
	},
4125 4126
	{
		.name = "stat",
4127
		.read_map = mem_control_stat_show,
4128
	},
4129 4130 4131 4132
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4133 4134 4135 4136 4137
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4138 4139 4140 4141 4142
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4143 4144 4145 4146 4147
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4148 4149
	{
		.name = "oom_control",
4150 4151
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4152 4153 4154 4155
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4156 4157
};

4158 4159 4160 4161 4162 4163
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4164 4165
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4201 4202 4203
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4204
	struct mem_cgroup_per_zone *mz;
4205
	enum lru_list l;
4206
	int zone, tmp = node;
4207 4208 4209 4210 4211 4212 4213 4214
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4215 4216
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4217
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4218 4219
	if (!pn)
		return 1;
4220

4221
	mem->info.nodeinfo[node] = pn;
4222 4223
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4224 4225
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4226
		mz->usage_in_excess = 0;
4227 4228
		mz->on_tree = false;
		mz->mem = mem;
4229
	}
4230 4231 4232
	return 0;
}

4233 4234 4235 4236 4237
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4238 4239 4240
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4241
	int size = sizeof(struct mem_cgroup);
4242

4243
	/* Can be very big if MAX_NUMNODES is very big */
4244
	if (size < PAGE_SIZE)
4245
		mem = kzalloc(size, GFP_KERNEL);
4246
	else
4247
		mem = vzalloc(size);
4248

4249 4250 4251
	if (!mem)
		return NULL;

4252
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4253 4254
	if (!mem->stat)
		goto out_free;
4255
	spin_lock_init(&mem->pcp_counter_lock);
4256
	return mem;
4257 4258 4259 4260 4261 4262 4263

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4264 4265
}

4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4277
static void __mem_cgroup_free(struct mem_cgroup *mem)
4278
{
K
KAMEZAWA Hiroyuki 已提交
4279 4280
	int node;

4281
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4282 4283
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4284 4285 4286
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4287 4288
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4289 4290 4291 4292 4293
		kfree(mem);
	else
		vfree(mem);
}

4294 4295 4296 4297 4298
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4299
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4300
{
4301
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4302
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4303
		__mem_cgroup_free(mem);
4304 4305 4306
		if (parent)
			mem_cgroup_put(parent);
	}
4307 4308
}

4309 4310 4311 4312 4313
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4314 4315 4316 4317 4318 4319 4320 4321 4322
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4323

4324 4325 4326
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4327
	if (!mem_cgroup_disabled() && really_do_swap_account)
4328 4329 4330 4331 4332 4333 4334 4335
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4361
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4362 4363
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4364
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4365
	long error = -ENOMEM;
4366
	int node;
B
Balbir Singh 已提交
4367

4368 4369
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4370
		return ERR_PTR(error);
4371

4372 4373 4374
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4375

4376
	/* root ? */
4377
	if (cont->parent == NULL) {
4378
		int cpu;
4379
		enable_swap_cgroup();
4380
		parent = NULL;
4381
		root_mem_cgroup = mem;
4382 4383
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4384 4385 4386 4387 4388
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4389
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4390
	} else {
4391
		parent = mem_cgroup_from_cont(cont->parent);
4392
		mem->use_hierarchy = parent->use_hierarchy;
4393
		mem->oom_kill_disable = parent->oom_kill_disable;
4394
	}
4395

4396 4397 4398
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4399 4400 4401 4402 4403 4404 4405
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4406 4407 4408 4409
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4410
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4411
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4412
	INIT_LIST_HEAD(&mem->oom_notify);
4413

K
KOSAKI Motohiro 已提交
4414 4415
	if (parent)
		mem->swappiness = get_swappiness(parent);
4416
	atomic_set(&mem->refcnt, 1);
4417
	mem->move_charge_at_immigrate = 0;
4418
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4419
	return &mem->css;
4420
free_out:
4421
	__mem_cgroup_free(mem);
4422
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4423
	return ERR_PTR(error);
B
Balbir Singh 已提交
4424 4425
}

4426
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4427 4428 4429
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4430 4431

	return mem_cgroup_force_empty(mem, false);
4432 4433
}

B
Balbir Singh 已提交
4434 4435 4436
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4437 4438 4439
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4440 4441 4442 4443 4444
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4445 4446 4447 4448 4449 4450 4451 4452
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4453 4454
}

4455
#ifdef CONFIG_MMU
4456
/* Handlers for move charge at task migration. */
4457 4458
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4459
{
4460 4461
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4462 4463
	struct mem_cgroup *mem = mc.to;

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
A
Andrea Arcangeli 已提交
4499 4500
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
					      PAGE_SIZE);
4501 4502 4503 4504 4505
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4506 4507 4508 4509 4510 4511 4512 4513
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4514
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4515 4516 4517 4518 4519 4520
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4521 4522 4523
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4524 4525 4526 4527 4528
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4529
	swp_entry_t	ent;
4530 4531 4532 4533 4534
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4535
	MC_TARGET_SWAP,
4536 4537
};

D
Daisuke Nishimura 已提交
4538 4539
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4540
{
D
Daisuke Nishimura 已提交
4541
	struct page *page = vm_normal_page(vma, addr, ptent);
4542

D
Daisuke Nishimura 已提交
4543 4544 4545 4546 4547 4548
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4549 4550
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4569 4570
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4571
		return NULL;
4572
	}
D
Daisuke Nishimura 已提交
4573 4574 4575 4576 4577 4578
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4624 4625
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4626 4627 4628

	if (!page && !ent.val)
		return 0;
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4644 4645
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4646 4647 4648 4649
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

A
Andrea Arcangeli 已提交
4662
	VM_BUG_ON(pmd_trans_huge(*pmd));
4663 4664 4665 4666 4667 4668 4669
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4670 4671 4672
	return 0;
}

4673 4674 4675 4676 4677
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4678
	down_read(&mm->mmap_sem);
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4690
	up_read(&mm->mmap_sem);
4691 4692 4693 4694 4695 4696 4697 4698 4699

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4700 4701 4702 4703 4704
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4705 4706
}

4707 4708
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4709
{
4710 4711 4712
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4713
	/* we must uncharge all the leftover precharges from mc.to */
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4725
	}
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4760
	spin_lock(&mc.lock);
4761 4762
	mc.from = NULL;
	mc.to = NULL;
4763
	spin_unlock(&mc.lock);
4764
	mem_cgroup_end_move(from);
4765 4766
}

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4785 4786 4787 4788
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4789
			VM_BUG_ON(mc.moved_charge);
4790
			VM_BUG_ON(mc.moved_swap);
4791
			mem_cgroup_start_move(from);
4792
			spin_lock(&mc.lock);
4793 4794
			mc.from = from;
			mc.to = mem;
4795
			spin_unlock(&mc.lock);
4796
			/* We set mc.moving_task later */
4797 4798 4799 4800

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4801 4802
		}
		mmput(mm);
4803 4804 4805 4806 4807 4808 4809 4810 4811
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4812
	mem_cgroup_clear_mc();
4813 4814
}

4815 4816 4817
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4818
{
4819 4820 4821 4822 4823 4824
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
A
Andrea Arcangeli 已提交
4825
	VM_BUG_ON(pmd_trans_huge(*pmd));
4826 4827 4828 4829 4830 4831 4832
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4833
		swp_entry_t ent;
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4845 4846
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4847
				mc.precharge--;
4848 4849
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4850 4851 4852 4853 4854
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4855 4856
		case MC_TARGET_SWAP:
			ent = target.ent;
4857 4858
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4859
				mc.precharge--;
4860 4861 4862
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4863
			break;
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4878
		ret = mem_cgroup_do_precharge(1);
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
4922
	up_read(&mm->mmap_sem);
4923 4924
}

B
Balbir Singh 已提交
4925 4926 4927
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4928 4929
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4930
{
4931 4932 4933
	struct mm_struct *mm;

	if (!mc.to)
4934 4935 4936
		/* no need to move charge */
		return;

4937 4938 4939 4940 4941
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
4942
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4943
}
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4966

B
Balbir Singh 已提交
4967 4968 4969 4970
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4971
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4972 4973
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4974 4975
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4976
	.attach = mem_cgroup_move_task,
4977
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4978
	.use_id = 1,
B
Balbir Singh 已提交
4979
};
4980 4981

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
	if (!s || !strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
4992 4993 4994

static int __init disable_swap_account(char *s)
{
4995
	enable_swap_account("0");
4996 4997 4998 4999
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif