memcontrol.c 136.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75 76
#else
#define do_swap_account		(0)
#endif


77 78 79 80 81 82 83 84
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90 91 92
	MEM_CGROUP_STAT_NSTATS,
};

93 94 95 96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
	MEM_CGROUP_EVENTS_NSTATS,
};
99 100 101 102 103 104 105 106 107 108 109 110 111
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
112

113
struct mem_cgroup_stat_cpu {
114
	long count[MEM_CGROUP_STAT_NSTATS];
115
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
116
	unsigned long targets[MEM_CGROUP_NTARGETS];
117 118
};

119 120 121 122
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
123 124 125
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
126 127
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
128 129

	struct zone_reclaim_stat reclaim_stat;
130 131 132 133
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
134 135
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
136 137 138 139 140 141 142 143 144 145 146 147
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

168 169 170 171 172
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
173
/* For threshold */
174 175
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
176
	int current_threshold;
177 178 179 180 181
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
182 183 184 185 186 187 188 189 190 191 192 193

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
194 195 196 197 198
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
199 200

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
201
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
202

B
Balbir Singh 已提交
203 204 205 206 207 208 209
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
210 211 212
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
213 214 215 216 217 218 219
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
220 221 222 223
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
224 225 226 227
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
228
	struct mem_cgroup_lru_info info;
229
	/*
230
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
231
	 * reclaimed from.
232
	 */
K
KAMEZAWA Hiroyuki 已提交
233
	int last_scanned_child;
234 235 236 237 238
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	unsigned long   next_scan_node_update;
#endif
239 240 241 242
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
243
	atomic_t	oom_lock;
244
	atomic_t	refcnt;
245

K
KOSAKI Motohiro 已提交
246
	unsigned int	swappiness;
247 248
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
249

250 251 252
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

253 254 255 256
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
257
	struct mem_cgroup_thresholds thresholds;
258

259
	/* thresholds for mem+swap usage. RCU-protected */
260
	struct mem_cgroup_thresholds memsw_thresholds;
261

K
KAMEZAWA Hiroyuki 已提交
262 263 264
	/* For oom notifier event fd */
	struct list_head oom_notify;

265 266 267 268 269
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
270
	/*
271
	 * percpu counter.
272
	 */
273
	struct mem_cgroup_stat_cpu *stat;
274 275 276 277 278 279
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
280 281
};

282 283 284 285 286 287
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
288
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
289
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
290 291 292
	NR_MOVE_TYPE,
};

293 294
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
295
	spinlock_t	  lock; /* for from, to */
296 297 298
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
299
	unsigned long moved_charge;
300
	unsigned long moved_swap;
301 302 303
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
304
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
305 306
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
307

D
Daisuke Nishimura 已提交
308 309 310 311 312 313
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

314 315 316 317 318 319
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

320 321 322 323 324 325 326
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

327 328 329
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
330
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
331
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
332
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
333
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
334 335 336
	NR_CHARGE_TYPE,
};

337 338 339
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
340
#define _OOM_TYPE		(2)
341 342 343
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
344 345
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
346

347 348 349 350 351 352 353
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 355
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356

357 358
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
359
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360
static void drain_all_stock_async(void);
361

362 363 364 365 366 367
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

368 369 370 371 372
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

373
static struct mem_cgroup_per_zone *
374
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
375
{
376 377
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
398
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
399
				struct mem_cgroup_per_zone *mz,
400 401
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
402 403 404 405 406 407 408 409
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

410 411 412
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
429 430 431 432 433 434 435 436 437 438 439 440 441
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

442 443 444 445 446 447
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
448
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
449 450 451 452 453 454
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
455
	unsigned long long excess;
456 457
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
458 459
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
460 461 462
	mctz = soft_limit_tree_from_page(page);

	/*
463 464
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
465
	 */
466 467
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
468
		excess = res_counter_soft_limit_excess(&mem->res);
469 470 471 472
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
473
		if (excess || mz->on_tree) {
474 475 476 477 478
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
479 480
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
481
			 */
482
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
483 484
			spin_unlock(&mctz->lock);
		}
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

503 504 505 506
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
507
	struct mem_cgroup_per_zone *mz;
508 509

retry:
510
	mz = NULL;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
559 560
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
561
{
562
	long val = 0;
563 564
	int cpu;

565 566
	get_online_cpus();
	for_each_online_cpu(cpu)
567
		val += per_cpu(mem->stat->count[idx], cpu);
568 569 570 571 572 573
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
574 575 576
	return val;
}

577
static long mem_cgroup_local_usage(struct mem_cgroup *mem)
578
{
579
	long ret;
580 581 582 583 584 585

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

586 587 588 589
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
590
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
591 592
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

609
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
610
					 bool file, int nr_pages)
611
{
612 613
	preempt_disable();

614 615
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
616
	else
617
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
618

619 620
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
621
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
622
	else {
623
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
624 625
		nr_pages = -nr_pages; /* for event */
	}
626

627
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
628

629
	preempt_enable();
630 631
}

632 633 634 635 636 637 638 639 640 641 642 643 644
static unsigned long
mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
{
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
		total += MEM_CGROUP_ZSTAT(mz, idx);
	}
	return total;
}
K
KAMEZAWA Hiroyuki 已提交
645
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
646
					enum lru_list idx)
647
{
648
	int nid;
649 650 651
	u64 total = 0;

	for_each_online_node(nid)
652
		total += mem_cgroup_get_zonestat_node(mem, nid, idx);
653
	return total;
654 655
}

656 657 658 659 660 661 662 663 664 665 666
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
667
{
668
	unsigned long val, next;
669

670
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
671

672 673 674 675 676 677 678 679 680 681 682 683
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
684 685 686 687 688 689 690 691 692
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
693
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
694
		mem_cgroup_threshold(mem);
695 696 697
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_SOFTLIMIT))){
698
			mem_cgroup_update_tree(mem, page);
699 700 701
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_SOFTLIMIT);
		}
702 703 704
	}
}

705
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
706 707 708 709 710 711
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

712
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
713
{
714 715 716 717 718 719 720 721
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

722 723 724 725
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

726 727 728
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
729 730 731

	if (!mm)
		return NULL;
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
747 748
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
749
{
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
772 773 774 775 776 777 778 779 780
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
781 782
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
783
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
784

K
KAMEZAWA Hiroyuki 已提交
785
	css_put(&iter->css);
786 787
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
788
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
789

790 791 792
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
793 794
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
795
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
796 797 798

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
799
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
800
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
801
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
802
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
803
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
804
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
805

K
KAMEZAWA Hiroyuki 已提交
806
	return iter;
K
KAMEZAWA Hiroyuki 已提交
807
}
K
KAMEZAWA Hiroyuki 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

821 822 823
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
824

825 826 827 828 829
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
843

K
KAMEZAWA Hiroyuki 已提交
844 845 846 847
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
848

849
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
850 851 852
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
853
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
854
		return;
855
	VM_BUG_ON(!pc->mem_cgroup);
856 857 858 859
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
860
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
861 862
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
863 864 865
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
866
	list_del_init(&pc->lru);
867 868
}

K
KAMEZAWA Hiroyuki 已提交
869
void mem_cgroup_del_lru(struct page *page)
870
{
K
KAMEZAWA Hiroyuki 已提交
871 872
	mem_cgroup_del_lru_list(page, page_lru(page));
}
873

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
896
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
897 898 899
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
900 901 902 903
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
904

905
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
906
		return;
907

K
KAMEZAWA Hiroyuki 已提交
908
	pc = lookup_page_cgroup(page);
909
	/* unused or root page is not rotated. */
910 911 912 913 914
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
915
		return;
916
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
917
	list_move(&pc->lru, &mz->lists[lru]);
918 919
}

K
KAMEZAWA Hiroyuki 已提交
920
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
921
{
K
KAMEZAWA Hiroyuki 已提交
922 923
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
924

925
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
926 927
		return;
	pc = lookup_page_cgroup(page);
928
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
929
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
930
		return;
931 932
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
933
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
934 935
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
936 937 938
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
939 940
	list_add(&pc->lru, &mz->lists[lru]);
}
941

K
KAMEZAWA Hiroyuki 已提交
942
/*
943 944 945 946
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
947
 */
948
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
949
{
950 951 952 953
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

954 955 956 957 958 959 960 961 962 963 964
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

965 966 967 968 969 970 971 972
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
973 974
}

975
static void mem_cgroup_lru_add_after_commit(struct page *page)
976 977 978 979 980
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

981 982 983
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
984 985
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
986
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
987 988 989 990 991
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
992 993 994
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
995
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
996 997 998
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
999 1000
}

1001 1002 1003
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1004
	struct mem_cgroup *curr = NULL;
1005
	struct task_struct *p;
1006

1007 1008 1009 1010 1011
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1012 1013
	if (!curr)
		return 0;
1014 1015 1016 1017 1018 1019 1020
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1021 1022 1023 1024
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1025 1026 1027
	return ret;
}

1028
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1029 1030 1031
{
	unsigned long active;
	unsigned long inactive;
1032 1033
	unsigned long gb;
	unsigned long inactive_ratio;
1034

K
KAMEZAWA Hiroyuki 已提交
1035 1036
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1065 1066 1067 1068 1069
		return 1;

	return 0;
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1081 1082 1083 1084
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1085
	int nid = zone_to_nid(zone);
1086 1087 1088 1089 1090 1091
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1092 1093 1094
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1095
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1112 1113
	if (!PageCgroupUsed(pc))
		return NULL;
1114 1115
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1116
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1117 1118 1119
	return &mz->reclaim_stat;
}

1120 1121 1122 1123 1124
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1125
					int active, int file)
1126 1127 1128 1129 1130 1131
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1132
	struct page_cgroup *pc, *tmp;
1133
	int nid = zone_to_nid(z);
1134 1135
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1136
	int lru = LRU_FILE * file + active;
1137
	int ret;
1138

1139
	BUG_ON(!mem_cont);
1140
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1141
	src = &mz->lists[lru];
1142

1143 1144
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1145
		if (scan >= nr_to_scan)
1146
			break;
K
KAMEZAWA Hiroyuki 已提交
1147

1148 1149
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1150

1151
		page = lookup_cgroup_page(pc);
1152

H
Hugh Dickins 已提交
1153
		if (unlikely(!PageLRU(page)))
1154 1155
			continue;

H
Hugh Dickins 已提交
1156
		scan++;
1157 1158 1159
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1160
			list_move(&page->lru, dst);
1161
			mem_cgroup_del_lru(page);
1162
			nr_taken += hpage_nr_pages(page);
1163 1164 1165 1166 1167 1168 1169
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1170 1171 1172 1173
		}
	}

	*scanned = scan;
1174 1175 1176 1177

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1178 1179 1180
	return nr_taken;
}

1181 1182 1183
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1184
/**
1185 1186
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1187
 *
1188
 * Returns the maximum amount of memory @mem can be charged with, in
1189
 * pages.
1190
 */
1191
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1192
{
1193 1194 1195 1196 1197
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1198
	return margin >> PAGE_SHIFT;
1199 1200
}

K
KOSAKI Motohiro 已提交
1201 1202 1203 1204 1205 1206 1207 1208
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1209
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1210 1211
}

1212 1213 1214
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1215 1216 1217 1218

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1219
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1220 1221 1222
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1233 1234 1235
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1236
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1237 1238 1239
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1258 1259 1260

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1261 1262
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1263
	bool ret = false;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1298
/**
1299
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1318
	if (!memcg || !p)
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1365 1366 1367 1368 1369 1370 1371
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1372 1373 1374 1375
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1376 1377 1378
	return num;
}

D
David Rientjes 已提交
1379 1380 1381 1382 1383 1384 1385 1386
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1387 1388 1389
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1390 1391 1392 1393 1394 1395 1396 1397
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1398
/*
K
KAMEZAWA Hiroyuki 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;

	if (time_after(mem->next_scan_node_update, jiffies))
		return;

	mem->next_scan_node_update = jiffies + 10*HZ;
	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

		if (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_FILE) ||
		    mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_FILE))
			continue;

		if (total_swap_pages &&
		    (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_ANON) ||
		     mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_ANON)))
			continue;
		node_clear(nid, mem->scan_nodes);
	}
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
#endif

K
KAMEZAWA Hiroyuki 已提交
1510 1511 1512 1513
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1514 1515
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1516 1517 1518
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1519 1520
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1521 1522
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1523
						struct zone *zone,
1524
						gfp_t gfp_mask,
1525 1526
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1527
{
K
KAMEZAWA Hiroyuki 已提交
1528 1529 1530
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1531 1532
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1533
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1534
	unsigned long excess;
1535
	unsigned long nr_scanned;
1536 1537

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1538

1539 1540 1541 1542
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1543
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1544
		victim = mem_cgroup_select_victim(root_mem);
1545
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1546
			loop++;
1547 1548
			if (loop >= 1)
				drain_all_stock_async();
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1560
				 * We want to do more targeted reclaim.
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1572
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1573 1574
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1575 1576
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1577
		/* we use swappiness of local cgroup */
1578
		if (check_soft) {
1579
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1580 1581 1582 1583
				noswap, get_swappiness(victim), zone,
				&nr_scanned);
			*total_scanned += nr_scanned;
		} else
1584 1585
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1586
		css_put(&victim->css);
1587 1588 1589 1590 1591 1592 1593
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1594
		total += ret;
1595
		if (check_soft) {
1596
			if (!res_counter_soft_limit_excess(&root_mem->res))
1597
				return total;
1598
		} else if (mem_cgroup_margin(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1599
			return 1 + total;
1600
	}
K
KAMEZAWA Hiroyuki 已提交
1601
	return total;
1602 1603
}

K
KAMEZAWA Hiroyuki 已提交
1604 1605 1606 1607 1608 1609
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1610 1611
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1612

K
KAMEZAWA Hiroyuki 已提交
1613 1614 1615 1616
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1617 1618 1619 1620

	if (lock_count == 1)
		return true;
	return false;
1621
}
1622

K
KAMEZAWA Hiroyuki 已提交
1623
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1624
{
K
KAMEZAWA Hiroyuki 已提交
1625 1626
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1627 1628 1629 1630 1631
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1632 1633
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1634 1635 1636
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1637 1638 1639 1640

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1677 1678
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1679
	if (mem && atomic_read(&mem->oom_lock))
1680 1681 1682
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1683 1684 1685 1686
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1687
{
K
KAMEZAWA Hiroyuki 已提交
1688
	struct oom_wait_info owait;
1689
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1690

K
KAMEZAWA Hiroyuki 已提交
1691 1692 1693 1694 1695
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1696
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1697 1698 1699 1700 1701 1702 1703 1704
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1705 1706 1707 1708
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1709
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1710 1711
	mutex_unlock(&memcg_oom_mutex);

1712 1713
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1714
		mem_cgroup_out_of_memory(mem, mask);
1715
	} else {
K
KAMEZAWA Hiroyuki 已提交
1716
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1717
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1718 1719 1720
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1721
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1722 1723 1724 1725 1726 1727 1728
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1729 1730
}

1731 1732 1733
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1753
 */
1754

1755 1756
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1757 1758
{
	struct mem_cgroup *mem;
1759 1760
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1761
	unsigned long uninitialized_var(flags);
1762 1763 1764 1765

	if (unlikely(!pc))
		return;

1766
	rcu_read_lock();
1767
	mem = pc->mem_cgroup;
1768 1769 1770
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1771
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1772
		/* take a lock against to access pc->mem_cgroup */
1773
		move_lock_page_cgroup(pc, &flags);
1774 1775 1776 1777 1778
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1779 1780

	switch (idx) {
1781
	case MEMCG_NR_FILE_MAPPED:
1782 1783 1784
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1785
			ClearPageCgroupFileMapped(pc);
1786
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1787 1788 1789
		break;
	default:
		BUG();
1790
	}
1791

1792 1793
	this_cpu_add(mem->stat->count[idx], val);

1794 1795
out:
	if (unlikely(need_unlock))
1796
		move_unlock_page_cgroup(pc, &flags);
1797 1798
	rcu_read_unlock();
	return;
1799
}
1800
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1801

1802 1803 1804 1805
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1806
#define CHARGE_BATCH	32U
1807 1808
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1809
	unsigned int nr_pages;
1810 1811 1812 1813 1814 1815
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
1816
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1827 1828
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1842 1843 1844 1845
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1846
		if (do_swap_account)
1847 1848
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1865
 * This will be consumed by consume_stock() function, later.
1866
 */
1867
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1868 1869 1870 1871 1872 1873 1874
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
1875
	stock->nr_pages += nr_pages;
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1927
		long x = per_cpu(mem->stat->count[i], cpu);
1928 1929 1930 1931

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1932 1933 1934 1935 1936 1937
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1949 1950 1951 1952
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1953 1954 1955 1956 1957
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1958
	struct mem_cgroup *iter;
1959

1960 1961 1962 1963 1964 1965
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1966
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1967
		return NOTIFY_OK;
1968 1969 1970 1971

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1972 1973 1974 1975 1976
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

1987 1988
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
1989
{
1990
	unsigned long csize = nr_pages * PAGE_SIZE;
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2005
		res_counter_uncharge(&mem->res, csize);
2006 2007 2008 2009
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2010
	/*
2011 2012
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2013 2014 2015 2016
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2017
	if (nr_pages == CHARGE_BATCH)
2018 2019 2020 2021 2022 2023
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2024
					      gfp_mask, flags, NULL);
2025
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2026
		return CHARGE_RETRY;
2027
	/*
2028 2029 2030 2031 2032 2033 2034
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2035
	 */
2036
	if (nr_pages == 1 && ret)
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2056 2057 2058
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2059
 */
2060
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2061
				   gfp_t gfp_mask,
2062 2063 2064
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2065
{
2066
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2067 2068 2069
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2070

K
KAMEZAWA Hiroyuki 已提交
2071 2072 2073 2074 2075 2076 2077 2078
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2079

2080
	/*
2081 2082
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2083 2084 2085
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2086 2087 2088 2089
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2090
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2091 2092 2093
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2094
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2095
			goto done;
2096 2097
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2098
		struct task_struct *p;
2099

K
KAMEZAWA Hiroyuki 已提交
2100 2101 2102
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2103 2104 2105 2106 2107 2108 2109 2110
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2111 2112
		 */
		mem = mem_cgroup_from_task(p);
2113
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2114 2115 2116
			rcu_read_unlock();
			goto done;
		}
2117
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2136

2137 2138
	do {
		bool oom_check;
2139

2140
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2141 2142
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2143
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2144
		}
2145

2146 2147 2148 2149
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2150
		}
2151

2152
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2153 2154 2155 2156
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2157
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2158 2159 2160
			css_put(&mem->css);
			mem = NULL;
			goto again;
2161
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2162
			css_put(&mem->css);
2163 2164
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2165 2166
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2167
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2168
			}
2169 2170 2171 2172
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2173
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2174
			goto bypass;
2175
		}
2176 2177
	} while (ret != CHARGE_OK);

2178 2179
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2180
	css_put(&mem->css);
2181
done:
K
KAMEZAWA Hiroyuki 已提交
2182
	*memcg = mem;
2183 2184
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2185
	*memcg = NULL;
2186
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2187 2188 2189
bypass:
	*memcg = NULL;
	return 0;
2190
}
2191

2192 2193 2194 2195 2196
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2197
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2198
				       unsigned int nr_pages)
2199 2200
{
	if (!mem_cgroup_is_root(mem)) {
2201 2202 2203
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2204
		if (do_swap_account)
2205
			res_counter_uncharge(&mem->memsw, bytes);
2206
	}
2207 2208
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2228
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2229
{
2230
	struct mem_cgroup *mem = NULL;
2231
	struct page_cgroup *pc;
2232
	unsigned short id;
2233 2234
	swp_entry_t ent;

2235 2236 2237
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2238
	lock_page_cgroup(pc);
2239
	if (PageCgroupUsed(pc)) {
2240
		mem = pc->mem_cgroup;
2241 2242
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2243
	} else if (PageSwapCache(page)) {
2244
		ent.val = page_private(page);
2245 2246 2247 2248 2249 2250
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2251
	}
2252
	unlock_page_cgroup(pc);
2253 2254 2255
	return mem;
}

2256
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2257
				       struct page *page,
2258
				       unsigned int nr_pages,
2259
				       struct page_cgroup *pc,
2260
				       enum charge_type ctype)
2261
{
2262 2263 2264
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2265
		__mem_cgroup_cancel_charge(mem, nr_pages);
2266 2267 2268 2269 2270 2271
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2272
	pc->mem_cgroup = mem;
2273 2274 2275 2276 2277 2278 2279
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2280
	smp_wmb();
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2294

2295
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2296
	unlock_page_cgroup(pc);
2297 2298 2299 2300 2301
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2302
	memcg_check_events(mem, page);
2303
}
2304

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2319 2320
	if (mem_cgroup_disabled())
		return;
2321
	/*
2322
	 * We have no races with charge/uncharge but will have races with
2323 2324 2325 2326 2327 2328
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2339
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2340 2341
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2342 2343 2344 2345 2346
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2347
/**
2348
 * mem_cgroup_move_account - move account of the page
2349
 * @page: the page
2350
 * @nr_pages: number of regular pages (>1 for huge pages)
2351 2352 2353
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2354
 * @uncharge: whether we should call uncharge and css_put against @from.
2355 2356
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2357
 * - page is not on LRU (isolate_page() is useful.)
2358
 * - compound_lock is held when nr_pages > 1
2359
 *
2360
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2361
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2362 2363
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2364
 */
2365 2366 2367 2368 2369 2370
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2371
{
2372 2373
	unsigned long flags;
	int ret;
2374

2375
	VM_BUG_ON(from == to);
2376
	VM_BUG_ON(PageLRU(page));
2377 2378 2379 2380 2381 2382 2383
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2384
	if (nr_pages > 1 && !PageTransHuge(page))
2385 2386 2387 2388 2389 2390 2391 2392 2393
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2394

2395
	if (PageCgroupFileMapped(pc)) {
2396 2397 2398 2399 2400
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2401
	}
2402
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2403 2404
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2405
		__mem_cgroup_cancel_charge(from, nr_pages);
2406

2407
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2408
	pc->mem_cgroup = to;
2409
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2410 2411 2412
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2413
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2414
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2415
	 * status here.
2416
	 */
2417 2418 2419
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2420
	unlock_page_cgroup(pc);
2421 2422 2423
	/*
	 * check events
	 */
2424 2425
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2426
out:
2427 2428 2429 2430 2431 2432 2433
	return ret;
}

/*
 * move charges to its parent.
 */

2434 2435
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2436 2437 2438 2439 2440 2441
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2442
	unsigned int nr_pages;
2443
	unsigned long uninitialized_var(flags);
2444 2445 2446 2447 2448 2449
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2450 2451 2452 2453 2454
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2455

2456
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2457

2458
	parent = mem_cgroup_from_cont(pcg);
2459
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2460
	if (ret || !parent)
2461
		goto put_back;
2462

2463
	if (nr_pages > 1)
2464 2465
		flags = compound_lock_irqsave(page);

2466
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2467
	if (ret)
2468
		__mem_cgroup_cancel_charge(parent, nr_pages);
2469

2470
	if (nr_pages > 1)
2471
		compound_unlock_irqrestore(page, flags);
2472
put_back:
K
KAMEZAWA Hiroyuki 已提交
2473
	putback_lru_page(page);
2474
put:
2475
	put_page(page);
2476
out:
2477 2478 2479
	return ret;
}

2480 2481 2482 2483 2484 2485 2486
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2487
				gfp_t gfp_mask, enum charge_type ctype)
2488
{
2489
	struct mem_cgroup *mem = NULL;
2490
	unsigned int nr_pages = 1;
2491
	struct page_cgroup *pc;
2492
	bool oom = true;
2493
	int ret;
A
Andrea Arcangeli 已提交
2494

A
Andrea Arcangeli 已提交
2495
	if (PageTransHuge(page)) {
2496
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2497
		VM_BUG_ON(!PageTransHuge(page));
2498 2499 2500 2501 2502
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2503
	}
2504 2505

	pc = lookup_page_cgroup(page);
2506
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2507

2508
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2509
	if (ret || !mem)
2510 2511
		return ret;

2512
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2513 2514 2515
	return 0;
}

2516 2517
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2518
{
2519
	if (mem_cgroup_disabled())
2520
		return 0;
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2532
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2533
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2534 2535
}

D
Daisuke Nishimura 已提交
2536 2537 2538 2539
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2556 2557
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2558
{
2559
	struct mem_cgroup *mem = NULL;
2560 2561
	int ret;

2562
	if (mem_cgroup_disabled())
2563
		return 0;
2564 2565
	if (PageCompound(page))
		return 0;
2566 2567 2568 2569 2570 2571 2572 2573
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2574 2575
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2576 2577 2578 2579
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2580 2581 2582 2583 2584 2585
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2586 2587
			return 0;
		}
2588
		unlock_page_cgroup(pc);
2589 2590
	}

2591
	if (unlikely(!mm))
2592
		mm = &init_mm;
2593

2594 2595 2596 2597
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2598

2599 2600 2601 2602 2603 2604 2605 2606 2607
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2608 2609 2610 2611 2612 2613 2614 2615
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2616
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2617 2618

	return ret;
2619 2620
}

2621 2622 2623
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2624
 * struct page_cgroup is acquired. This refcnt will be consumed by
2625 2626
 * "commit()" or removed by "cancel()"
 */
2627 2628 2629 2630 2631
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2632
	int ret;
2633

2634 2635
	*ptr = NULL;

2636
	if (mem_cgroup_disabled())
2637 2638 2639 2640 2641 2642
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2643 2644 2645
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2646 2647
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2648
		goto charge_cur_mm;
2649
	mem = try_get_mem_cgroup_from_page(page);
2650 2651
	if (!mem)
		goto charge_cur_mm;
2652
	*ptr = mem;
2653
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2654 2655
	css_put(&mem->css);
	return ret;
2656 2657 2658
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2659
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2660 2661
}

D
Daisuke Nishimura 已提交
2662 2663 2664
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2665
{
2666
	if (mem_cgroup_disabled())
2667 2668 2669
		return;
	if (!ptr)
		return;
2670
	cgroup_exclude_rmdir(&ptr->css);
2671 2672

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2673 2674 2675
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2676 2677 2678
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2679
	 */
2680
	if (do_swap_account && PageSwapCache(page)) {
2681
		swp_entry_t ent = {.val = page_private(page)};
2682
		unsigned short id;
2683
		struct mem_cgroup *memcg;
2684 2685 2686 2687

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2688
		if (memcg) {
2689 2690 2691 2692
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2693
			if (!mem_cgroup_is_root(memcg))
2694
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2695
			mem_cgroup_swap_statistics(memcg, false);
2696 2697
			mem_cgroup_put(memcg);
		}
2698
		rcu_read_unlock();
2699
	}
2700 2701 2702 2703 2704 2705
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2706 2707
}

D
Daisuke Nishimura 已提交
2708 2709 2710 2711 2712 2713
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2714 2715
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2716
	if (mem_cgroup_disabled())
2717 2718 2719
		return;
	if (!mem)
		return;
2720
	__mem_cgroup_cancel_charge(mem, 1);
2721 2722
}

2723 2724 2725
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2726 2727 2728
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2729

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2742 2743
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2744
	 * In those cases, all pages freed continuously can be expected to be in
2745 2746 2747 2748 2749 2750 2751 2752
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2753
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2754 2755
		goto direct_uncharge;

2756 2757 2758 2759 2760 2761 2762 2763
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2764
	batch->nr_pages++;
2765
	if (uncharge_memsw)
2766
		batch->memsw_nr_pages++;
2767 2768
	return;
direct_uncharge:
2769
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2770
	if (uncharge_memsw)
2771
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2772 2773
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2774 2775
	return;
}
2776

2777
/*
2778
 * uncharge if !page_mapped(page)
2779
 */
2780
static struct mem_cgroup *
2781
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2782
{
2783
	struct mem_cgroup *mem = NULL;
2784 2785
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2786

2787
	if (mem_cgroup_disabled())
2788
		return NULL;
2789

K
KAMEZAWA Hiroyuki 已提交
2790
	if (PageSwapCache(page))
2791
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2792

A
Andrea Arcangeli 已提交
2793
	if (PageTransHuge(page)) {
2794
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2795 2796
		VM_BUG_ON(!PageTransHuge(page));
	}
2797
	/*
2798
	 * Check if our page_cgroup is valid
2799
	 */
2800 2801
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2802
		return NULL;
2803

2804
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2805

2806 2807
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2808 2809 2810 2811 2812
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2813
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2814 2815
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2827
	}
K
KAMEZAWA Hiroyuki 已提交
2828

2829
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2830

2831
	ClearPageCgroupUsed(pc);
2832 2833 2834 2835 2836 2837
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2838

2839
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2840 2841 2842 2843
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2844
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2845 2846 2847 2848 2849
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
2850
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2851

2852
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2853 2854 2855

unlock_out:
	unlock_page_cgroup(pc);
2856
	return NULL;
2857 2858
}

2859 2860
void mem_cgroup_uncharge_page(struct page *page)
{
2861 2862 2863 2864 2865
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2866 2867 2868 2869 2870 2871
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2872
	VM_BUG_ON(page->mapping);
2873 2874 2875
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
2890 2891
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
2912 2913 2914 2915 2916 2917
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
2918
	memcg_oom_recover(batch->memcg);
2919 2920 2921 2922
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2923
#ifdef CONFIG_SWAP
2924
/*
2925
 * called after __delete_from_swap_cache() and drop "page" account.
2926 2927
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2928 2929
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2930 2931
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2932 2933 2934 2935 2936 2937
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2938

K
KAMEZAWA Hiroyuki 已提交
2939 2940 2941 2942 2943
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2944
		swap_cgroup_record(ent, css_id(&memcg->css));
2945
}
2946
#endif
2947 2948 2949 2950 2951 2952 2953

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2954
{
2955
	struct mem_cgroup *memcg;
2956
	unsigned short id;
2957 2958 2959 2960

	if (!do_swap_account)
		return;

2961 2962 2963
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2964
	if (memcg) {
2965 2966 2967 2968
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2969
		if (!mem_cgroup_is_root(memcg))
2970
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2971
		mem_cgroup_swap_statistics(memcg, false);
2972 2973
		mem_cgroup_put(memcg);
	}
2974
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2975
}
2976 2977 2978 2979 2980 2981

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2982
 * @need_fixup: whether we should fixup res_counters and refcounts.
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2993
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2994 2995 2996 2997 2998 2999 3000 3001
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3002
		mem_cgroup_swap_statistics(to, true);
3003
		/*
3004 3005 3006 3007 3008 3009
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3010 3011
		 */
		mem_cgroup_get(to);
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3023 3024 3025 3026 3027 3028
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3029
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3030 3031 3032
{
	return -EINVAL;
}
3033
#endif
K
KAMEZAWA Hiroyuki 已提交
3034

3035
/*
3036 3037
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3038
 */
3039
int mem_cgroup_prepare_migration(struct page *page,
3040
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3041
{
3042
	struct mem_cgroup *mem = NULL;
3043
	struct page_cgroup *pc;
3044
	enum charge_type ctype;
3045
	int ret = 0;
3046

3047 3048
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3049
	VM_BUG_ON(PageTransHuge(page));
3050
	if (mem_cgroup_disabled())
3051 3052
		return 0;

3053 3054 3055
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3056 3057
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3089
	}
3090
	unlock_page_cgroup(pc);
3091 3092 3093 3094 3095 3096
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3097

A
Andrea Arcangeli 已提交
3098
	*ptr = mem;
3099
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3112
	}
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3126
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3127
	return ret;
3128
}
3129

3130
/* remove redundant charge if migration failed*/
3131
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3132
	struct page *oldpage, struct page *newpage, bool migration_ok)
3133
{
3134
	struct page *used, *unused;
3135 3136 3137 3138
	struct page_cgroup *pc;

	if (!mem)
		return;
3139
	/* blocks rmdir() */
3140
	cgroup_exclude_rmdir(&mem->css);
3141
	if (!migration_ok) {
3142 3143
		used = oldpage;
		unused = newpage;
3144
	} else {
3145
		used = newpage;
3146 3147
		unused = oldpage;
	}
3148
	/*
3149 3150 3151
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3152
	 */
3153 3154 3155 3156
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3157

3158 3159
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3160
	/*
3161 3162 3163 3164 3165 3166
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3167
	 */
3168 3169
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3170
	/*
3171 3172
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3173 3174 3175 3176
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3177
}
3178

3179
/*
3180 3181 3182 3183 3184 3185
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3186
 */
3187
int mem_cgroup_shmem_charge_fallback(struct page *page,
3188 3189
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3190
{
3191
	struct mem_cgroup *mem;
3192
	int ret;
3193

3194
	if (mem_cgroup_disabled())
3195
		return 0;
3196

3197 3198 3199
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3200

3201
	return ret;
3202 3203
}

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3250 3251
static DEFINE_MUTEX(set_limit_mutex);

3252
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3253
				unsigned long long val)
3254
{
3255
	int retry_count;
3256
	u64 memswlimit, memlimit;
3257
	int ret = 0;
3258 3259
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3260
	int enlarge;
3261 3262 3263 3264 3265 3266 3267 3268 3269

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3270

3271
	enlarge = 0;
3272
	while (retry_count) {
3273 3274 3275 3276
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3287 3288
			break;
		}
3289 3290 3291 3292 3293

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3294
		ret = res_counter_set_limit(&memcg->res, val);
3295 3296 3297 3298 3299 3300
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3301 3302 3303 3304 3305
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3306
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3307 3308
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3309 3310 3311 3312 3313 3314
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3315
	}
3316 3317
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3318

3319 3320 3321
	return ret;
}

L
Li Zefan 已提交
3322 3323
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3324
{
3325
	int retry_count;
3326
	u64 memlimit, memswlimit, oldusage, curusage;
3327 3328
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3329
	int enlarge = 0;
3330

3331 3332 3333
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3351 3352 3353
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3354
		ret = res_counter_set_limit(&memcg->memsw, val);
3355 3356 3357 3358 3359 3360
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3361 3362 3363 3364 3365
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3366
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3367
						MEM_CGROUP_RECLAIM_NOSWAP |
3368 3369
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3370
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3371
		/* Usage is reduced ? */
3372
		if (curusage >= oldusage)
3373
			retry_count--;
3374 3375
		else
			oldusage = curusage;
3376
	}
3377 3378
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3379 3380 3381
	return ret;
}

3382
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3383 3384
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3385 3386 3387 3388 3389 3390
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3391
	unsigned long long excess;
3392
	unsigned long nr_scanned;
3393 3394 3395 3396

	if (order > 0)
		return 0;

3397
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3411
		nr_scanned = 0;
3412 3413
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3414 3415
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3416
		nr_reclaimed += reclaimed;
3417
		*total_scanned += nr_scanned;
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3440
				if (next_mz == mz)
3441
					css_put(&next_mz->mem->css);
3442
				else /* next_mz == NULL or other memcg */
3443 3444 3445 3446
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3447
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3448 3449 3450 3451 3452 3453 3454 3455
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3456 3457
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3476 3477 3478 3479
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3480
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3481
				int node, int zid, enum lru_list lru)
3482
{
K
KAMEZAWA Hiroyuki 已提交
3483 3484
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3485
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3486
	unsigned long flags, loop;
3487
	struct list_head *list;
3488
	int ret = 0;
3489

K
KAMEZAWA Hiroyuki 已提交
3490 3491
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3492
	list = &mz->lists[lru];
3493

3494 3495 3496 3497 3498
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3499 3500
		struct page *page;

3501
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3502
		spin_lock_irqsave(&zone->lru_lock, flags);
3503
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3504
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3505
			break;
3506 3507 3508 3509
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3510
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3511
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3512 3513
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3514
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3515

3516
		page = lookup_cgroup_page(pc);
3517 3518

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3519
		if (ret == -ENOMEM)
3520
			break;
3521 3522 3523 3524 3525 3526 3527

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3528
	}
K
KAMEZAWA Hiroyuki 已提交
3529

3530 3531 3532
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3533 3534 3535 3536 3537 3538
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3539
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3540
{
3541 3542 3543
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3544
	struct cgroup *cgrp = mem->css.cgroup;
3545

3546
	css_get(&mem->css);
3547 3548

	shrink = 0;
3549 3550 3551
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3552
move_account:
3553
	do {
3554
		ret = -EBUSY;
3555 3556 3557 3558
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3559
			goto out;
3560 3561
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3562
		drain_all_stock_sync();
3563
		ret = 0;
3564
		mem_cgroup_start_move(mem);
3565
		for_each_node_state(node, N_HIGH_MEMORY) {
3566
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3567
				enum lru_list l;
3568 3569
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3570
							node, zid, l);
3571 3572 3573
					if (ret)
						break;
				}
3574
			}
3575 3576 3577
			if (ret)
				break;
		}
3578
		mem_cgroup_end_move(mem);
3579
		memcg_oom_recover(mem);
3580 3581 3582
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3583
		cond_resched();
3584 3585
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3586 3587 3588
out:
	css_put(&mem->css);
	return ret;
3589 3590

try_to_free:
3591 3592
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3593 3594 3595
		ret = -EBUSY;
		goto out;
	}
3596 3597
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3598 3599 3600 3601
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3602 3603 3604 3605 3606

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3607 3608
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3609
		if (!progress) {
3610
			nr_retries--;
3611
			/* maybe some writeback is necessary */
3612
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3613
		}
3614 3615

	}
K
KAMEZAWA Hiroyuki 已提交
3616
	lru_add_drain();
3617
	/* try move_account...there may be some *locked* pages. */
3618
	goto move_account;
3619 3620
}

3621 3622 3623 3624 3625 3626
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3645
	 * If parent's use_hierarchy is set, we can't make any modifications
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3665

3666 3667
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3668
{
K
KAMEZAWA Hiroyuki 已提交
3669
	struct mem_cgroup *iter;
3670
	long val = 0;
3671

3672
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3673 3674 3675 3676 3677 3678
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3679 3680
}

3681 3682
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3683
	u64 val;
3684 3685 3686 3687 3688 3689 3690 3691

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3692 3693
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3694

K
KAMEZAWA Hiroyuki 已提交
3695
	if (swap)
3696
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3697 3698 3699 3700

	return val << PAGE_SHIFT;
}

3701
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3702
{
3703
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3704
	u64 val;
3705 3706 3707 3708 3709 3710
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3711 3712 3713
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3714
			val = res_counter_read_u64(&mem->res, name);
3715 3716
		break;
	case _MEMSWAP:
3717 3718 3719
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3720
			val = res_counter_read_u64(&mem->memsw, name);
3721 3722 3723 3724 3725 3726
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3727
}
3728 3729 3730 3731
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3732 3733
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3734
{
3735
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3736
	int type, name;
3737 3738 3739
	unsigned long long val;
	int ret;

3740 3741 3742
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3743
	case RES_LIMIT:
3744 3745 3746 3747
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3748 3749
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3750 3751 3752
		if (ret)
			break;
		if (type == _MEM)
3753
			ret = mem_cgroup_resize_limit(memcg, val);
3754 3755
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3756
		break;
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3771 3772 3773 3774 3775
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3776 3777
}

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3806
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3807 3808
{
	struct mem_cgroup *mem;
3809
	int type, name;
3810 3811

	mem = mem_cgroup_from_cont(cont);
3812 3813 3814
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3815
	case RES_MAX_USAGE:
3816 3817 3818 3819
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3820 3821
		break;
	case RES_FAILCNT:
3822 3823 3824 3825
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3826 3827
		break;
	}
3828

3829
	return 0;
3830 3831
}

3832 3833 3834 3835 3836 3837
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3838
#ifdef CONFIG_MMU
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3857 3858 3859 3860 3861 3862 3863
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3864

K
KAMEZAWA Hiroyuki 已提交
3865 3866 3867 3868 3869

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3870
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3871 3872
	MCS_PGPGIN,
	MCS_PGPGOUT,
3873
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3884 3885
};

K
KAMEZAWA Hiroyuki 已提交
3886 3887 3888 3889 3890 3891
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3892
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3893 3894
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3895
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3896 3897 3898 3899 3900 3901 3902 3903
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3904 3905
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3906 3907 3908 3909
{
	s64 val;

	/* per cpu stat */
3910
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3911
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3912
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3913
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3914
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3915
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3916
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
3917
	s->stat[MCS_PGPGIN] += val;
3918
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
3919
	s->stat[MCS_PGPGOUT] += val;
3920
	if (do_swap_account) {
3921
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3922 3923
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3941 3942 3943 3944
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3945 3946
}

3947 3948
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3949 3950
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3951
	struct mcs_total_stat mystat;
3952 3953
	int i;

K
KAMEZAWA Hiroyuki 已提交
3954 3955
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3956

3957 3958 3959
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3960
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3961
	}
L
Lee Schermerhorn 已提交
3962

K
KAMEZAWA Hiroyuki 已提交
3963
	/* Hierarchical information */
3964 3965 3966 3967 3968 3969 3970
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3971

K
KAMEZAWA Hiroyuki 已提交
3972 3973
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3974 3975 3976
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3977
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3978
	}
K
KAMEZAWA Hiroyuki 已提交
3979

K
KOSAKI Motohiro 已提交
3980
#ifdef CONFIG_DEBUG_VM
3981
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4009 4010 4011
	return 0;
}

K
KOSAKI Motohiro 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4024

K
KOSAKI Motohiro 已提交
4025 4026 4027 4028 4029 4030 4031
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4032 4033 4034

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4035 4036
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4037 4038
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4039
		return -EINVAL;
4040
	}
K
KOSAKI Motohiro 已提交
4041 4042 4043

	memcg->swappiness = val;

4044 4045
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4046 4047 4048
	return 0;
}

4049 4050 4051 4052 4053 4054 4055 4056
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4057
		t = rcu_dereference(memcg->thresholds.primary);
4058
	else
4059
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4071
	i = t->current_threshold;
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4095
	t->current_threshold = i - 1;
4096 4097 4098 4099 4100 4101
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4102 4103 4104 4105 4106 4107 4108
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4119
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4130 4131 4132 4133
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4134 4135 4136 4137
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4138 4139
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4140 4141
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4142 4143
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4144
	int i, size, ret;
4145 4146 4147 4148 4149 4150

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4151

4152
	if (type == _MEM)
4153
		thresholds = &memcg->thresholds;
4154
	else if (type == _MEMSWAP)
4155
		thresholds = &memcg->memsw_thresholds;
4156 4157 4158 4159 4160 4161
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4162
	if (thresholds->primary)
4163 4164
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4165
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4166 4167

	/* Allocate memory for new array of thresholds */
4168
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4169
			GFP_KERNEL);
4170
	if (!new) {
4171 4172 4173
		ret = -ENOMEM;
		goto unlock;
	}
4174
	new->size = size;
4175 4176

	/* Copy thresholds (if any) to new array */
4177 4178
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4179
				sizeof(struct mem_cgroup_threshold));
4180 4181
	}

4182
	/* Add new threshold */
4183 4184
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4185 4186

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4187
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4188 4189 4190
			compare_thresholds, NULL);

	/* Find current threshold */
4191
	new->current_threshold = -1;
4192
	for (i = 0; i < size; i++) {
4193
		if (new->entries[i].threshold < usage) {
4194
			/*
4195 4196
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4197 4198
			 * it here.
			 */
4199
			++new->current_threshold;
4200 4201 4202
		}
	}

4203 4204 4205 4206 4207
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4208

4209
	/* To be sure that nobody uses thresholds */
4210 4211 4212 4213 4214 4215 4216 4217
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4218
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4219
	struct cftype *cft, struct eventfd_ctx *eventfd)
4220 4221
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4222 4223
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4224 4225
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4226
	int i, j, size;
4227 4228 4229

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4230
		thresholds = &memcg->thresholds;
4231
	else if (type == _MEMSWAP)
4232
		thresholds = &memcg->memsw_thresholds;
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4248 4249 4250
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4251 4252 4253
			size++;
	}

4254
	new = thresholds->spare;
4255

4256 4257
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4258 4259
		kfree(new);
		new = NULL;
4260
		goto swap_buffers;
4261 4262
	}

4263
	new->size = size;
4264 4265

	/* Copy thresholds and find current threshold */
4266 4267 4268
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4269 4270
			continue;

4271 4272
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4273
			/*
4274
			 * new->current_threshold will not be used
4275 4276 4277
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4278
			++new->current_threshold;
4279 4280 4281 4282
		}
		j++;
	}

4283
swap_buffers:
4284 4285 4286
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4287

4288
	/* To be sure that nobody uses thresholds */
4289 4290 4291 4292
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4293

K
KAMEZAWA Hiroyuki 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4319
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4374 4375
	if (!val)
		memcg_oom_recover(mem);
4376 4377 4378 4379
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4380 4381
static struct cftype mem_cgroup_files[] = {
	{
4382
		.name = "usage_in_bytes",
4383
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4384
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4385 4386
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4387
	},
4388 4389
	{
		.name = "max_usage_in_bytes",
4390
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4391
		.trigger = mem_cgroup_reset,
4392 4393
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4394
	{
4395
		.name = "limit_in_bytes",
4396
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4397
		.write_string = mem_cgroup_write,
4398
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4399
	},
4400 4401 4402 4403 4404 4405
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4406 4407
	{
		.name = "failcnt",
4408
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4409
		.trigger = mem_cgroup_reset,
4410
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4411
	},
4412 4413
	{
		.name = "stat",
4414
		.read_map = mem_control_stat_show,
4415
	},
4416 4417 4418 4419
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4420 4421 4422 4423 4424
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4425 4426 4427 4428 4429
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4430 4431 4432 4433 4434
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4435 4436
	{
		.name = "oom_control",
4437 4438
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4439 4440 4441 4442
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4443 4444
};

4445 4446 4447 4448 4449 4450
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4451 4452
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4488 4489 4490
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4491
	struct mem_cgroup_per_zone *mz;
4492
	enum lru_list l;
4493
	int zone, tmp = node;
4494 4495 4496 4497 4498 4499 4500 4501
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4502 4503
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4504
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4505 4506
	if (!pn)
		return 1;
4507

4508
	mem->info.nodeinfo[node] = pn;
4509 4510
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4511 4512
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4513
		mz->usage_in_excess = 0;
4514 4515
		mz->on_tree = false;
		mz->mem = mem;
4516
	}
4517 4518 4519
	return 0;
}

4520 4521 4522 4523 4524
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4525 4526 4527
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4528
	int size = sizeof(struct mem_cgroup);
4529

4530
	/* Can be very big if MAX_NUMNODES is very big */
4531
	if (size < PAGE_SIZE)
4532
		mem = kzalloc(size, GFP_KERNEL);
4533
	else
4534
		mem = vzalloc(size);
4535

4536 4537 4538
	if (!mem)
		return NULL;

4539
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4540 4541
	if (!mem->stat)
		goto out_free;
4542
	spin_lock_init(&mem->pcp_counter_lock);
4543
	return mem;
4544 4545 4546 4547 4548 4549 4550

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4551 4552
}

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4564
static void __mem_cgroup_free(struct mem_cgroup *mem)
4565
{
K
KAMEZAWA Hiroyuki 已提交
4566 4567
	int node;

4568
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4569 4570
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4571 4572 4573
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4574 4575
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4576 4577 4578 4579 4580
		kfree(mem);
	else
		vfree(mem);
}

4581 4582 4583 4584 4585
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4586
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4587
{
4588
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4589
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4590
		__mem_cgroup_free(mem);
4591 4592 4593
		if (parent)
			mem_cgroup_put(parent);
	}
4594 4595
}

4596 4597 4598 4599 4600
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4601 4602 4603 4604 4605 4606 4607 4608 4609
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4610

4611 4612 4613
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4614
	if (!mem_cgroup_disabled() && really_do_swap_account)
4615 4616 4617 4618 4619 4620 4621 4622
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4648
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4649 4650
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4651
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4652
	long error = -ENOMEM;
4653
	int node;
B
Balbir Singh 已提交
4654

4655 4656
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4657
		return ERR_PTR(error);
4658

4659 4660 4661
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4662

4663
	/* root ? */
4664
	if (cont->parent == NULL) {
4665
		int cpu;
4666
		enable_swap_cgroup();
4667
		parent = NULL;
4668
		root_mem_cgroup = mem;
4669 4670
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4671 4672 4673 4674 4675
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4676
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4677
	} else {
4678
		parent = mem_cgroup_from_cont(cont->parent);
4679
		mem->use_hierarchy = parent->use_hierarchy;
4680
		mem->oom_kill_disable = parent->oom_kill_disable;
4681
	}
4682

4683 4684 4685
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4686 4687 4688 4689 4690 4691 4692
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4693 4694 4695 4696
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4697
	mem->last_scanned_child = 0;
4698
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
4699
	INIT_LIST_HEAD(&mem->oom_notify);
4700

K
KOSAKI Motohiro 已提交
4701 4702
	if (parent)
		mem->swappiness = get_swappiness(parent);
4703
	atomic_set(&mem->refcnt, 1);
4704
	mem->move_charge_at_immigrate = 0;
4705
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4706
	return &mem->css;
4707
free_out:
4708
	__mem_cgroup_free(mem);
4709
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4710
	return ERR_PTR(error);
B
Balbir Singh 已提交
4711 4712
}

4713
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4714 4715 4716
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4717 4718

	return mem_cgroup_force_empty(mem, false);
4719 4720
}

B
Balbir Singh 已提交
4721 4722 4723
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4724 4725 4726
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4727 4728 4729 4730 4731
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4732 4733 4734 4735 4736 4737 4738 4739
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4740 4741
}

4742
#ifdef CONFIG_MMU
4743
/* Handlers for move charge at task migration. */
4744 4745
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4746
{
4747 4748
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4749 4750
	struct mem_cgroup *mem = mc.to;

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4786
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4787 4788 4789 4790 4791
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4792 4793 4794 4795 4796 4797 4798 4799
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4800
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4801 4802 4803 4804 4805 4806
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4807 4808 4809
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4810 4811 4812 4813 4814
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4815
	swp_entry_t	ent;
4816 4817 4818 4819 4820
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4821
	MC_TARGET_SWAP,
4822 4823
};

D
Daisuke Nishimura 已提交
4824 4825
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4826
{
D
Daisuke Nishimura 已提交
4827
	struct page *page = vm_normal_page(vma, addr, ptent);
4828

D
Daisuke Nishimura 已提交
4829 4830 4831 4832 4833 4834
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4835 4836
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4855 4856
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4857
		return NULL;
4858
	}
D
Daisuke Nishimura 已提交
4859 4860 4861 4862 4863 4864
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4910 4911
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4912 4913 4914

	if (!page && !ent.val)
		return 0;
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4930 4931
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4932 4933 4934 4935
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4948 4949
	split_huge_page_pmd(walk->mm, pmd);

4950 4951 4952 4953 4954 4955 4956
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4957 4958 4959
	return 0;
}

4960 4961 4962 4963 4964
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4965
	down_read(&mm->mmap_sem);
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4977
	up_read(&mm->mmap_sem);
4978 4979 4980 4981 4982 4983 4984 4985 4986

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4987 4988 4989 4990 4991
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4992 4993
}

4994 4995
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4996
{
4997 4998 4999
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5000
	/* we must uncharge all the leftover precharges from mc.to */
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5012
	}
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5047
	spin_lock(&mc.lock);
5048 5049
	mc.from = NULL;
	mc.to = NULL;
5050
	spin_unlock(&mc.lock);
5051
	mem_cgroup_end_move(from);
5052 5053
}

5054 5055
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5056
				struct task_struct *p)
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5071 5072 5073 5074
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5075
			VM_BUG_ON(mc.moved_charge);
5076
			VM_BUG_ON(mc.moved_swap);
5077
			mem_cgroup_start_move(from);
5078
			spin_lock(&mc.lock);
5079 5080
			mc.from = from;
			mc.to = mem;
5081
			spin_unlock(&mc.lock);
5082
			/* We set mc.moving_task later */
5083 5084 5085 5086

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5087 5088
		}
		mmput(mm);
5089 5090 5091 5092 5093 5094
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5095
				struct task_struct *p)
5096
{
5097
	mem_cgroup_clear_mc();
5098 5099
}

5100 5101 5102
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5103
{
5104 5105 5106 5107 5108
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5109
	split_huge_page_pmd(walk->mm, pmd);
5110 5111 5112 5113 5114 5115 5116 5117
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5118
		swp_entry_t ent;
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5130 5131
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5132
				mc.precharge--;
5133 5134
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5135 5136 5137 5138 5139
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5140 5141
		case MC_TARGET_SWAP:
			ent = target.ent;
5142 5143
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5144
				mc.precharge--;
5145 5146 5147
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5148
			break;
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5163
		ret = mem_cgroup_do_precharge(1);
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5207
	up_read(&mm->mmap_sem);
5208 5209
}

B
Balbir Singh 已提交
5210 5211 5212
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5213
				struct task_struct *p)
B
Balbir Singh 已提交
5214
{
5215 5216 5217
	struct mm_struct *mm;

	if (!mc.to)
5218 5219 5220
		/* no need to move charge */
		return;

5221 5222 5223 5224 5225
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
5226
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5227
}
5228 5229 5230
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5231
				struct task_struct *p)
5232 5233 5234 5235 5236
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5237
				struct task_struct *p)
5238 5239 5240 5241 5242
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5243
				struct task_struct *p)
5244 5245 5246
{
}
#endif
B
Balbir Singh 已提交
5247

B
Balbir Singh 已提交
5248 5249 5250 5251
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5252
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5253 5254
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5255 5256
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5257
	.attach = mem_cgroup_move_task,
5258
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5259
	.use_id = 1,
B
Balbir Singh 已提交
5260
};
5261 5262

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5263 5264 5265
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5266
	if (!strcmp(s, "1"))
5267
		really_do_swap_account = 1;
5268
	else if (!strcmp(s, "0"))
5269 5270 5271
		really_do_swap_account = 0;
	return 1;
}
5272
__setup("swapaccount=", enable_swap_account);
5273 5274

#endif