memcontrol.c 79.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/limits.h>
31
#include <linux/mutex.h>
32
#include <linux/rbtree.h>
33
#include <linux/slab.h>
34 35 36
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
37
#include <linux/seq_file.h>
38
#include <linux/vmalloc.h>
39
#include <linux/mm_inline.h>
40
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include "internal.h"
B
Balbir Singh 已提交
42

43 44
#include <asm/uaccess.h>

45 46
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
47
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
48

49
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
50
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51 52 53 54 55 56
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

57
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
58
#define SOFTLIMIT_EVENTS_THRESH (1000)
59

60 61 62 63 64 65 66 67
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68 69
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
70 71
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74 75 76 77 78 79 80 81 82

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
83
	struct mem_cgroup_stat_cpu cpustat[0];
84 85
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	stat->count[idx] = 0;
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

100 101 102
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
103
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104 105
		enum mem_cgroup_stat_index idx, int val)
{
106
	stat->count[idx] += val;
107 108 109 110 111 112 113 114 115 116 117 118
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
119 120 121 122 123 124 125 126 127
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

128 129 130 131
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
132 133 134
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
135 136
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
137 138

	struct zone_reclaim_stat reclaim_stat;
139 140 141 142
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
143 144
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
145 146 147 148 149 150 151 152 153 154 155 156
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

B
Balbir Singh 已提交
177 178 179 180 181 182 183
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
184 185 186
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
187 188 189 190 191 192 193
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
194 195 196 197
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
198 199 200 201
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
202
	struct mem_cgroup_lru_info info;
203

K
KOSAKI Motohiro 已提交
204 205 206 207 208
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

209
	int	prev_priority;	/* for recording reclaim priority */
210 211

	/*
212
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
213
	 * reclaimed from.
214
	 */
K
KAMEZAWA Hiroyuki 已提交
215
	int last_scanned_child;
216 217 218 219
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
220
	unsigned long	last_oom_jiffies;
221
	atomic_t	refcnt;
222

K
KOSAKI Motohiro 已提交
223 224
	unsigned int	swappiness;

225 226 227
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

228
	/*
229
	 * statistics. This must be placed at the end of memcg.
230 231
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
232 233
};

234 235 236 237 238 239 240
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

241 242 243
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
244
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
245
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
246
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
247
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
248 249 250
	NR_CHARGE_TYPE,
};

251 252 253 254
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
255 256
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
257

258 259 260 261 262 263 264
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

265 266 267 268 269 270 271
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272 273
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
274

275 276
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
277
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
314
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
315
				struct mem_cgroup_per_zone *mz,
316 317
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
318 319 320 321 322 323 324 325
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

326 327 328
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
345 346 347 348 349 350 351 352 353 354 355 356 357
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

358 359 360 361 362 363
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
364
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
388
	unsigned long long excess;
389 390
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
391 392
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
393 394 395
	mctz = soft_limit_tree_from_page(page);

	/*
396 397
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
398
	 */
399 400
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
401
		excess = res_counter_soft_limit_excess(&mem->res);
402 403 404 405
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
406
		if (excess || mz->on_tree) {
407 408 409 410 411
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
412 413
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
414
			 */
415
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
416 417
			spin_unlock(&mctz->lock);
		}
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

436 437 438 439 440 441 442 443 444
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
445
	struct mem_cgroup_per_zone *mz;
446 447

retry:
448
	mz = NULL;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

478 479 480 481 482 483 484 485 486 487 488 489 490
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu = get_cpu();

	cpustat = &stat->cpustat[cpu];
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
	put_cpu();
}

491 492 493
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
494
{
495
	int val = (charge) ? 1 : -1;
496
	struct mem_cgroup_stat *stat = &mem->stat;
497
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
498
	int cpu = get_cpu();
499

K
KAMEZAWA Hiroyuki 已提交
500
	cpustat = &stat->cpustat[cpu];
501
	if (PageCgroupCache(pc))
502
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
503
	else
504
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
505 506

	if (charge)
507
		__mem_cgroup_stat_add_safe(cpustat,
508 509
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
510
		__mem_cgroup_stat_add_safe(cpustat,
511
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
512
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
K
KAMEZAWA Hiroyuki 已提交
513
	put_cpu();
514 515
}

K
KAMEZAWA Hiroyuki 已提交
516
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
517
					enum lru_list idx)
518 519 520 521 522 523 524 525 526 527 528
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
529 530
}

531
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
532 533 534 535 536 537
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

538
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
539
{
540 541 542 543 544 545 546 547
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

548 549 550 551
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

552 553 554
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
555 556 557

	if (!mm)
		return NULL;
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

608 609 610 611 612
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
626

K
KAMEZAWA Hiroyuki 已提交
627 628 629 630
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
631

632
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
633 634 635
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
636
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
637
		return;
638
	VM_BUG_ON(!pc->mem_cgroup);
639 640 641 642
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
643
	mz = page_cgroup_zoneinfo(pc);
644
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
645 646 647
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
648 649
	list_del_init(&pc->lru);
	return;
650 651
}

K
KAMEZAWA Hiroyuki 已提交
652
void mem_cgroup_del_lru(struct page *page)
653
{
K
KAMEZAWA Hiroyuki 已提交
654 655
	mem_cgroup_del_lru_list(page, page_lru(page));
}
656

K
KAMEZAWA Hiroyuki 已提交
657 658 659 660
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
661

662
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
663
		return;
664

K
KAMEZAWA Hiroyuki 已提交
665
	pc = lookup_page_cgroup(page);
666 667 668 669
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
670
	smp_rmb();
671 672
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
673 674 675
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
676 677
}

K
KAMEZAWA Hiroyuki 已提交
678
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
679
{
K
KAMEZAWA Hiroyuki 已提交
680 681
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
682

683
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
684 685
		return;
	pc = lookup_page_cgroup(page);
686
	VM_BUG_ON(PageCgroupAcctLRU(pc));
687 688 689 690
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
691 692
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
693
		return;
694

K
KAMEZAWA Hiroyuki 已提交
695
	mz = page_cgroup_zoneinfo(pc);
696
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
697 698 699
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
700 701
	list_add(&pc->lru, &mz->lists[lru]);
}
702

K
KAMEZAWA Hiroyuki 已提交
703
/*
704 705 706 707 708
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
709
 */
710
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
711
{
712 713 714 715 716 717 718 719 720 721 722 723
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
724 725
}

726 727 728 729 730 731 732 733
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
734
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
735 736 737 738 739
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
740 741 742
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
743
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
744 745 746
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
747 748
}

749 750 751
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
752
	struct mem_cgroup *curr = NULL;
753 754

	task_lock(task);
755 756 757
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
758
	task_unlock(task);
759 760 761 762 763 764 765
	if (!curr)
		return 0;
	if (curr->use_hierarchy)
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
766 767 768
	return ret;
}

769 770 771 772 773
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
774 775 776 777 778 779 780
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
781 782 783 784
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
785
	spin_lock(&mem->reclaim_param_lock);
786 787
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
788
	spin_unlock(&mem->reclaim_param_lock);
789 790 791 792
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
793
	spin_lock(&mem->reclaim_param_lock);
794
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
795
	spin_unlock(&mem->reclaim_param_lock);
796 797
}

798
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
799 800 801
{
	unsigned long active;
	unsigned long inactive;
802 803
	unsigned long gb;
	unsigned long inactive_ratio;
804

K
KAMEZAWA Hiroyuki 已提交
805 806
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
807

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
835 836 837 838 839
		return 1;

	return 0;
}

840 841 842 843 844 845 846 847 848 849 850
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

851 852 853 854 855 856 857 858 859 860 861
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
882 883 884 885 886 887 888 889
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
890 891 892 893 894 895 896
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

897 898 899 900 901
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
902
					int active, int file)
903 904 905 906 907 908
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
909
	struct page_cgroup *pc, *tmp;
910 911 912
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
913
	int lru = LRU_FILE * file + active;
914
	int ret;
915

916
	BUG_ON(!mem_cont);
917
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
918
	src = &mz->lists[lru];
919

920 921
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
922
		if (scan >= nr_to_scan)
923
			break;
K
KAMEZAWA Hiroyuki 已提交
924 925

		page = pc->page;
926 927
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
928
		if (unlikely(!PageLRU(page)))
929 930
			continue;

H
Hugh Dickins 已提交
931
		scan++;
932 933 934
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
935
			list_move(&page->lru, dst);
936
			mem_cgroup_del_lru(page);
937
			nr_taken++;
938 939 940 941 942 943 944
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
945 946 947 948 949 950 951
		}
	}

	*scanned = scan;
	return nr_taken;
}

952 953 954
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

955 956 957 958 959 960 961 962 963 964 965 966
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

983 984 985 986 987 988
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

	if (!memcg)
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1068
/*
K
KAMEZAWA Hiroyuki 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1111 1112
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1113 1114 1115
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1116 1117
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1118 1119
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1120
						struct zone *zone,
1121 1122
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1123
{
K
KAMEZAWA Hiroyuki 已提交
1124 1125 1126
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1127 1128
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1129 1130
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1131

1132 1133 1134 1135
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1136
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1137
		victim = mem_cgroup_select_victim(root_mem);
1138
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1139
			loop++;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1163 1164 1165
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1166 1167
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1168
		/* we use swappiness of local cgroup */
1169 1170 1171 1172 1173 1174 1175
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1176
		css_put(&victim->css);
1177 1178 1179 1180 1181 1182 1183
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1184
		total += ret;
1185 1186 1187 1188
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1189
			return 1 + total;
1190
	}
K
KAMEZAWA Hiroyuki 已提交
1191
	return total;
1192 1193
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	if (!page_is_file_cache(page))
		return;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
done:
	unlock_page_cgroup(pc);
}
1260

1261 1262 1263
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1264
 */
1265
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1266
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1267
			bool oom, struct page *page)
1268
{
1269
	struct mem_cgroup *mem, *mem_over_limit;
1270
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1271
	struct res_counter *fail_res;
1272 1273 1274 1275 1276 1277 1278

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1279
	/*
1280 1281
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1282 1283 1284
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1285 1286 1287
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1288
		*memcg = mem;
1289
	} else {
1290
		css_get(&mem->css);
1291
	}
1292 1293 1294
	if (unlikely(!mem))
		return 0;

1295
	VM_BUG_ON(css_is_removed(&mem->css));
1296

1297
	while (1) {
1298
		int ret = 0;
1299
		unsigned long flags = 0;
1300

1301 1302
		if (mem_cgroup_is_root(mem))
			goto done;
1303
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
1304 1305 1306
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1307
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1308
							&fail_res);
1309 1310 1311
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1312
			res_counter_uncharge(&mem->res, PAGE_SIZE);
1313
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1314 1315 1316 1317 1318 1319 1320
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1321
		if (!(gfp_mask & __GFP_WAIT))
1322
			goto nomem;
1323

1324 1325
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1326 1327
		if (ret)
			continue;
1328 1329

		/*
1330 1331 1332 1333 1334
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1335
		 *
1336
		 */
1337 1338
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1339 1340

		if (!nr_retries--) {
1341
			if (oom) {
1342
				mutex_lock(&memcg_tasklist);
1343
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1344
				mutex_unlock(&memcg_tasklist);
1345
				record_last_oom(mem_over_limit);
1346
			}
1347
			goto nomem;
1348
		}
1349
	}
1350
	/*
1351 1352
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
1353
	 */
1354 1355
	if (mem_cgroup_soft_limit_check(mem))
		mem_cgroup_update_tree(mem, page);
1356
done:
1357 1358 1359 1360 1361
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1382
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1383
{
1384
	struct mem_cgroup *mem = NULL;
1385
	struct page_cgroup *pc;
1386
	unsigned short id;
1387 1388
	swp_entry_t ent;

1389 1390 1391
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1392
	lock_page_cgroup(pc);
1393
	if (PageCgroupUsed(pc)) {
1394
		mem = pc->mem_cgroup;
1395 1396
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1397
	} else if (PageSwapCache(page)) {
1398
		ent.val = page_private(page);
1399 1400 1401 1402 1403 1404
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1405
	}
1406
	unlock_page_cgroup(pc);
1407 1408 1409
	return mem;
}

1410
/*
1411
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1422 1423 1424 1425

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1426
		if (!mem_cgroup_is_root(mem)) {
1427
			res_counter_uncharge(&mem->res, PAGE_SIZE);
1428
			if (do_swap_account)
1429
				res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1430
		}
1431
		css_put(&mem->css);
1432
		return;
1433
	}
1434

1435
	pc->mem_cgroup = mem;
1436 1437 1438 1439 1440 1441 1442
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1443
	smp_wmb();
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1457

K
KAMEZAWA Hiroyuki 已提交
1458
	mem_cgroup_charge_statistics(mem, pc, true);
1459 1460

	unlock_page_cgroup(pc);
1461
}
1462

1463 1464 1465 1466 1467 1468 1469
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1470
 * - page is not on LRU (isolate_page() is useful.)
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;
1485 1486 1487 1488
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1489 1490

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1491
	VM_BUG_ON(PageLRU(pc->page));
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

1507
	if (!mem_cgroup_is_root(from))
1508
		res_counter_uncharge(&from->res, PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
1509
	mem_cgroup_charge_statistics(from, pc, false);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	page = pc->page;
	if (page_is_file_cache(page) && page_mapped(page)) {
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						1);
	}

1527
	if (do_swap_account && !mem_cgroup_is_root(from))
1528
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1529 1530 1531
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1532 1533 1534
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	ret = 0;
1535 1536
out:
	unlock_page_cgroup(pc);
1537 1538 1539 1540 1541 1542
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
	 * this function is just force_empty() and it's garanteed that
	 * "to" is never removed. So, we don't check rmdir status here.
	 */
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1554
	struct page *page = pc->page;
1555 1556 1557 1558 1559 1560 1561 1562 1563
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1564

1565 1566
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1567

1568
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1569
	if (ret || !parent)
1570 1571
		return ret;

1572 1573 1574 1575
	if (!get_page_unless_zero(page)) {
		ret = -EBUSY;
		goto uncharge;
	}
K
KAMEZAWA Hiroyuki 已提交
1576 1577 1578 1579 1580

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1581 1582 1583

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1584 1585 1586
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
1587 1588
		/* drop extra refcnt by try_charge() */
		css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1589
		return 0;
1590
	}
1591

K
KAMEZAWA Hiroyuki 已提交
1592
cancel:
1593 1594 1595 1596 1597
	put_page(page);
uncharge:
	/* drop extra refcnt by try_charge() */
	css_put(&parent->css);
	/* uncharge if move fails */
1598
	if (!mem_cgroup_is_root(parent)) {
1599
		res_counter_uncharge(&parent->res, PAGE_SIZE);
1600
		if (do_swap_account)
1601
			res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1602
	}
1603 1604 1605
	return ret;
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1627
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1628
	if (ret || !mem)
1629 1630 1631
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1632 1633 1634
	return 0;
}

1635 1636
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1637
{
1638
	if (mem_cgroup_disabled())
1639
		return 0;
1640 1641
	if (PageCompound(page))
		return 0;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1653
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1654
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1655 1656
}

D
Daisuke Nishimura 已提交
1657 1658 1659 1660
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1661 1662
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1663
{
1664 1665 1666
	struct mem_cgroup *mem = NULL;
	int ret;

1667
	if (mem_cgroup_disabled())
1668
		return 0;
1669 1670
	if (PageCompound(page))
		return 0;
1671 1672 1673 1674 1675 1676 1677 1678
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1679 1680
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1681 1682 1683 1684
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1685 1686 1687 1688 1689 1690 1691

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1692 1693
			return 0;
		}
1694
		unlock_page_cgroup(pc);
1695 1696
	}

1697
	if (unlikely(!mm && !mem))
1698
		mm = &init_mm;
1699

1700 1701
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1702
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1703

D
Daisuke Nishimura 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1713 1714

	return ret;
1715 1716
}

1717 1718 1719
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
1720
 * struct page_cgroup is acquired. This refcnt will be consumed by
1721 1722
 * "commit()" or removed by "cancel()"
 */
1723 1724 1725 1726 1727
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1728
	int ret;
1729

1730
	if (mem_cgroup_disabled())
1731 1732 1733 1734 1735 1736
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
1737 1738 1739
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
1740 1741
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
1742
		goto charge_cur_mm;
1743
	mem = try_get_mem_cgroup_from_page(page);
1744 1745
	if (!mem)
		goto charge_cur_mm;
1746
	*ptr = mem;
1747
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1748 1749 1750
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1751 1752 1753
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1754
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1755 1756
}

D
Daisuke Nishimura 已提交
1757 1758 1759
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1760 1761 1762
{
	struct page_cgroup *pc;

1763
	if (mem_cgroup_disabled())
1764 1765 1766
		return;
	if (!ptr)
		return;
1767
	cgroup_exclude_rmdir(&ptr->css);
1768
	pc = lookup_page_cgroup(page);
1769
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1770
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1771
	mem_cgroup_lru_add_after_commit_swapcache(page);
1772 1773 1774
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1775 1776 1777
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1778
	 */
1779
	if (do_swap_account && PageSwapCache(page)) {
1780
		swp_entry_t ent = {.val = page_private(page)};
1781
		unsigned short id;
1782
		struct mem_cgroup *memcg;
1783 1784 1785 1786

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1787
		if (memcg) {
1788 1789 1790 1791
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1792
			if (!mem_cgroup_is_root(memcg))
1793
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1794
			mem_cgroup_swap_statistics(memcg, false);
1795 1796
			mem_cgroup_put(memcg);
		}
1797
		rcu_read_unlock();
1798
	}
1799 1800 1801 1802 1803 1804
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
1805 1806
}

D
Daisuke Nishimura 已提交
1807 1808 1809 1810 1811 1812
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

1813 1814
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1815
	if (mem_cgroup_disabled())
1816 1817 1818
		return;
	if (!mem)
		return;
1819
	if (!mem_cgroup_is_root(mem)) {
1820
		res_counter_uncharge(&mem->res, PAGE_SIZE);
1821
		if (do_swap_account)
1822
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1823
	}
1824 1825 1826 1827
	css_put(&mem->css);
}


1828
/*
1829
 * uncharge if !page_mapped(page)
1830
 */
1831
static struct mem_cgroup *
1832
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1833
{
H
Hugh Dickins 已提交
1834
	struct page_cgroup *pc;
1835
	struct mem_cgroup *mem = NULL;
1836
	struct mem_cgroup_per_zone *mz;
1837

1838
	if (mem_cgroup_disabled())
1839
		return NULL;
1840

K
KAMEZAWA Hiroyuki 已提交
1841
	if (PageSwapCache(page))
1842
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1843

1844
	/*
1845
	 * Check if our page_cgroup is valid
1846
	 */
1847 1848
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1849
		return NULL;
1850

1851
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1852

1853 1854
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1855 1856 1857 1858 1859
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
1860
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1873
	}
K
KAMEZAWA Hiroyuki 已提交
1874

1875
	if (!mem_cgroup_is_root(mem)) {
1876
		res_counter_uncharge(&mem->res, PAGE_SIZE);
1877 1878
		if (do_swap_account &&
				(ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1879
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1880 1881 1882
	}
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
1883
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
1884

1885
	ClearPageCgroupUsed(pc);
1886 1887 1888 1889 1890 1891
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1892

1893
	mz = page_cgroup_zoneinfo(pc);
1894
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1895

1896
	if (mem_cgroup_soft_limit_check(mem))
1897
		mem_cgroup_update_tree(mem, page);
K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1901

1902
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1903 1904 1905

unlock_out:
	unlock_page_cgroup(pc);
1906
	return NULL;
1907 1908
}

1909 1910
void mem_cgroup_uncharge_page(struct page *page)
{
1911 1912 1913 1914 1915
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1916 1917 1918 1919 1920 1921
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1922
	VM_BUG_ON(page->mapping);
1923 1924 1925
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1926
#ifdef CONFIG_SWAP
1927
/*
1928
 * called after __delete_from_swap_cache() and drop "page" account.
1929 1930
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
1931 1932
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1933 1934
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1935 1936 1937 1938 1939 1940
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
1941 1942

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
1943
	if (do_swap_account && swapout && memcg) {
1944
		swap_cgroup_record(ent, css_id(&memcg->css));
1945 1946
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1947
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
1948
		css_put(&memcg->css);
1949
}
1950
#endif
1951 1952 1953 1954 1955 1956 1957

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1958
{
1959
	struct mem_cgroup *memcg;
1960
	unsigned short id;
1961 1962 1963 1964

	if (!do_swap_account)
		return;

1965 1966 1967
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
1968
	if (memcg) {
1969 1970 1971 1972
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
1973
		if (!mem_cgroup_is_root(memcg))
1974
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1975
		mem_cgroup_swap_statistics(memcg, false);
1976 1977
		mem_cgroup_put(memcg);
	}
1978
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
1979
}
1980
#endif
K
KAMEZAWA Hiroyuki 已提交
1981

1982
/*
1983 1984
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1985
 */
1986
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1987 1988
{
	struct page_cgroup *pc;
1989 1990
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1991

1992
	if (mem_cgroup_disabled())
1993 1994
		return 0;

1995 1996 1997
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1998 1999 2000
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2001
	unlock_page_cgroup(pc);
2002

2003
	if (mem) {
2004 2005
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
2006 2007
		css_put(&mem->css);
	}
2008
	*ptr = mem;
2009
	return ret;
2010
}
2011

2012
/* remove redundant charge if migration failed*/
2013 2014
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2015
{
2016 2017 2018 2019 2020 2021
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2022
	cgroup_exclude_rmdir(&mem->css);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2040
	if (unused)
2041 2042 2043
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2044
	/*
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2059
	 */
2060 2061
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2062 2063 2064 2065 2066 2067
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2068
}
2069

2070
/*
2071 2072 2073 2074 2075 2076
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2077
 */
2078
int mem_cgroup_shmem_charge_fallback(struct page *page,
2079 2080
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2081
{
2082
	struct mem_cgroup *mem = NULL;
2083
	int ret;
2084

2085
	if (mem_cgroup_disabled())
2086
		return 0;
2087

2088 2089 2090
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2091

2092
	return ret;
2093 2094
}

2095 2096
static DEFINE_MUTEX(set_limit_mutex);

2097
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2098
				unsigned long long val)
2099
{
2100
	int retry_count;
2101
	int progress;
2102
	u64 memswlimit;
2103
	int ret = 0;
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2115

2116
	while (retry_count) {
2117 2118 2119 2120
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2131 2132
			break;
		}
2133
		ret = res_counter_set_limit(&memcg->res, val);
2134 2135 2136 2137 2138 2139
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2140 2141 2142 2143 2144
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2145 2146 2147
		progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
						GFP_KERNEL,
						MEM_CGROUP_RECLAIM_SHRINK);
2148 2149 2150 2151 2152 2153
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2154
	}
2155

2156 2157 2158
	return ret;
}

L
Li Zefan 已提交
2159 2160
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2161
{
2162
	int retry_count;
2163
	u64 memlimit, oldusage, curusage;
2164 2165
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2166

2167 2168 2169
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2188 2189 2190 2191 2192 2193
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2194 2195 2196 2197 2198
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2199
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2200 2201
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2202
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2203
		/* Usage is reduced ? */
2204
		if (curusage >= oldusage)
2205
			retry_count--;
2206 2207
		else
			oldusage = curusage;
2208 2209 2210 2211
	}
	return ret;
}

2212 2213 2214 2215 2216 2217 2218 2219 2220
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2221
	unsigned long long excess;
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2274
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2275 2276 2277 2278 2279 2280 2281 2282
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2283 2284
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2303 2304 2305 2306
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2307
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2308
				int node, int zid, enum lru_list lru)
2309
{
K
KAMEZAWA Hiroyuki 已提交
2310 2311
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2312
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2313
	unsigned long flags, loop;
2314
	struct list_head *list;
2315
	int ret = 0;
2316

K
KAMEZAWA Hiroyuki 已提交
2317 2318
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2319
	list = &mz->lists[lru];
2320

2321 2322 2323 2324 2325 2326
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2327
		spin_lock_irqsave(&zone->lru_lock, flags);
2328
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2329
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2330
			break;
2331 2332 2333 2334 2335
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
2336
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2337 2338
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2339
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2340

K
KAMEZAWA Hiroyuki 已提交
2341
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2342
		if (ret == -ENOMEM)
2343
			break;
2344 2345 2346 2347 2348 2349 2350

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2351
	}
K
KAMEZAWA Hiroyuki 已提交
2352

2353 2354 2355
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2356 2357 2358 2359 2360 2361
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2362
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2363
{
2364 2365 2366
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2367
	struct cgroup *cgrp = mem->css.cgroup;
2368

2369
	css_get(&mem->css);
2370 2371

	shrink = 0;
2372 2373 2374
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2375
move_account:
2376
	while (mem->res.usage > 0) {
2377
		ret = -EBUSY;
2378 2379 2380 2381
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2382
			goto out;
2383 2384
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2385
		ret = 0;
2386
		for_each_node_state(node, N_HIGH_MEMORY) {
2387
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2388
				enum lru_list l;
2389 2390
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2391
							node, zid, l);
2392 2393 2394
					if (ret)
						break;
				}
2395
			}
2396 2397 2398 2399 2400 2401
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2402
		cond_resched();
2403 2404 2405 2406 2407
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
2408 2409

try_to_free:
2410 2411
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2412 2413 2414
		ret = -EBUSY;
		goto out;
	}
2415 2416
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2417 2418 2419 2420
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2421 2422 2423 2424 2425

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2426 2427
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2428
		if (!progress) {
2429
			nr_retries--;
2430
			/* maybe some writeback is necessary */
2431
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2432
		}
2433 2434

	}
K
KAMEZAWA Hiroyuki 已提交
2435
	lru_add_drain();
2436 2437 2438 2439 2440
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
2441 2442
}

2443 2444 2445 2446 2447 2448
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2467
	 * If parent's use_hierarchy is set, we can't make any modifications
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2511
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2512
{
2513
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2514
	u64 idx_val, val;
2515 2516 2517 2518 2519 2520
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->res, name);
2531 2532
		break;
	case _MEMSWAP:
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->memsw, name);
2545 2546 2547 2548 2549 2550
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2551
}
2552 2553 2554 2555
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2556 2557
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2558
{
2559
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2560
	int type, name;
2561 2562 2563
	unsigned long long val;
	int ret;

2564 2565 2566
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2567
	case RES_LIMIT:
2568 2569 2570 2571
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2572 2573
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2574 2575 2576
		if (ret)
			break;
		if (type == _MEM)
2577
			ret = mem_cgroup_resize_limit(memcg, val);
2578 2579
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2580
		break;
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2595 2596 2597 2598 2599
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2630
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2631 2632
{
	struct mem_cgroup *mem;
2633
	int type, name;
2634 2635

	mem = mem_cgroup_from_cont(cont);
2636 2637 2638
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2639
	case RES_MAX_USAGE:
2640 2641 2642 2643
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2644 2645
		break;
	case RES_FAILCNT:
2646 2647 2648 2649
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2650 2651
		break;
	}
2652

2653
	return 0;
2654 2655
}

K
KAMEZAWA Hiroyuki 已提交
2656 2657 2658 2659 2660

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
2661
	MCS_MAPPED_FILE,
K
KAMEZAWA Hiroyuki 已提交
2662 2663
	MCS_PGPGIN,
	MCS_PGPGOUT,
2664
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2675 2676
};

K
KAMEZAWA Hiroyuki 已提交
2677 2678 2679 2680 2681 2682
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
2683
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
2684 2685
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
2686
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
2705 2706
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2707 2708 2709 2710
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;
2711 2712 2713 2714
	if (do_swap_account) {
		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2736 2737
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2738 2739
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2740
	struct mcs_total_stat mystat;
2741 2742
	int i;

K
KAMEZAWA Hiroyuki 已提交
2743 2744
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2745

2746 2747 2748
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
2749
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2750
	}
L
Lee Schermerhorn 已提交
2751

K
KAMEZAWA Hiroyuki 已提交
2752
	/* Hierarchical information */
2753 2754 2755 2756 2757 2758 2759
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
2760

K
KAMEZAWA Hiroyuki 已提交
2761 2762
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
2763 2764 2765
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
2766
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2767
	}
K
KAMEZAWA Hiroyuki 已提交
2768

K
KOSAKI Motohiro 已提交
2769
#ifdef CONFIG_DEBUG_VM
2770
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

2798 2799 2800
	return 0;
}

K
KOSAKI Motohiro 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
2813

K
KOSAKI Motohiro 已提交
2814 2815 2816 2817 2818 2819 2820
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
2821 2822 2823

	cgroup_lock();

K
KOSAKI Motohiro 已提交
2824 2825
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
2826 2827
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
2828
		return -EINVAL;
2829
	}
K
KOSAKI Motohiro 已提交
2830 2831 2832 2833 2834

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

2835 2836
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
2837 2838 2839
	return 0;
}

2840

B
Balbir Singh 已提交
2841 2842
static struct cftype mem_cgroup_files[] = {
	{
2843
		.name = "usage_in_bytes",
2844
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2845
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2846
	},
2847 2848
	{
		.name = "max_usage_in_bytes",
2849
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2850
		.trigger = mem_cgroup_reset,
2851 2852
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2853
	{
2854
		.name = "limit_in_bytes",
2855
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2856
		.write_string = mem_cgroup_write,
2857
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2858
	},
2859 2860 2861 2862 2863 2864
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2865 2866
	{
		.name = "failcnt",
2867
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2868
		.trigger = mem_cgroup_reset,
2869
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2870
	},
2871 2872
	{
		.name = "stat",
2873
		.read_map = mem_control_stat_show,
2874
	},
2875 2876 2877 2878
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2879 2880 2881 2882 2883
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2884 2885 2886 2887 2888
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2889 2890
};

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2932 2933 2934
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2935
	struct mem_cgroup_per_zone *mz;
2936
	enum lru_list l;
2937
	int zone, tmp = node;
2938 2939 2940 2941 2942 2943 2944 2945
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2946 2947 2948
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2949 2950
	if (!pn)
		return 1;
2951

2952 2953
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2954 2955 2956

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2957 2958
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2959
		mz->usage_in_excess = 0;
2960 2961
		mz->on_tree = false;
		mz->mem = mem;
2962
	}
2963 2964 2965
	return 0;
}

2966 2967 2968 2969 2970
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2971 2972 2973 2974 2975 2976
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2977 2978 2979
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2980
	int size = mem_cgroup_size();
2981

2982 2983
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
2984
	else
2985
		mem = vmalloc(size);
2986 2987

	if (mem)
2988
		memset(mem, 0, size);
2989 2990 2991
	return mem;
}

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3003
static void __mem_cgroup_free(struct mem_cgroup *mem)
3004
{
K
KAMEZAWA Hiroyuki 已提交
3005 3006
	int node;

3007
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3008 3009
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3010 3011 3012
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3013
	if (mem_cgroup_size() < PAGE_SIZE)
3014 3015 3016 3017 3018
		kfree(mem);
	else
		vfree(mem);
}

3019 3020 3021 3022 3023 3024 3025
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
3026 3027
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3028
		__mem_cgroup_free(mem);
3029 3030 3031
		if (parent)
			mem_cgroup_put(parent);
	}
3032 3033
}

3034 3035 3036 3037 3038 3039 3040 3041 3042
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3043

3044 3045 3046
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3047
	if (!mem_cgroup_disabled() && really_do_swap_account)
3048 3049 3050 3051 3052 3053 3054 3055
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3081
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3082 3083
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3084
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3085
	long error = -ENOMEM;
3086
	int node;
B
Balbir Singh 已提交
3087

3088 3089
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3090
		return ERR_PTR(error);
3091

3092 3093 3094
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3095

3096
	/* root ? */
3097
	if (cont->parent == NULL) {
3098
		enable_swap_cgroup();
3099
		parent = NULL;
3100
		root_mem_cgroup = mem;
3101 3102 3103
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;

3104
	} else {
3105
		parent = mem_cgroup_from_cont(cont->parent);
3106 3107
		mem->use_hierarchy = parent->use_hierarchy;
	}
3108

3109 3110 3111
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3112 3113 3114 3115 3116 3117 3118
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3119 3120 3121 3122
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3123
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3124
	spin_lock_init(&mem->reclaim_param_lock);
3125

K
KOSAKI Motohiro 已提交
3126 3127
	if (parent)
		mem->swappiness = get_swappiness(parent);
3128
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
3129
	return &mem->css;
3130
free_out:
3131
	__mem_cgroup_free(mem);
3132
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3133
	return ERR_PTR(error);
B
Balbir Singh 已提交
3134 3135
}

3136
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3137 3138 3139
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3140 3141

	return mem_cgroup_force_empty(mem, false);
3142 3143
}

B
Balbir Singh 已提交
3144 3145 3146
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3147 3148 3149
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3150 3151 3152 3153 3154
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3155 3156 3157 3158 3159 3160 3161 3162
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3163 3164
}

B
Balbir Singh 已提交
3165 3166 3167
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
3168 3169
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
3170
{
3171
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
3172
	/*
3173 3174
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
3175
	 */
3176
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
3177 3178
}

B
Balbir Singh 已提交
3179 3180 3181 3182
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
3183
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
3184 3185
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
3186
	.attach = mem_cgroup_move_task,
3187
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
3188
	.use_id = 1,
B
Balbir Singh 已提交
3189
};
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif